
UNIVERSIT

�

AT DORTMUND

Fachbereich Informatik

Lehrstuhl VIII

K

�

unstliche Intelligenz

Inferring Probabilistic Automata from Sensor

Data for Robot Navigation

LS{8 Report 18

Anke Rieger

Dortmund, May 22, 1995

Universit�at Dortmund

Fachbereich Informatik

University of Dortmund

Computer Science Department

Forschungsberichte des Lehrstuhls VIII (KI) Research Reports of the unit no.VIII (AI)

Fachbereich Informatik Computer Science Department

der Universit�at Dortmund of the University of Dortmund

ISSN 0943-4135

Anforderungen an:

Universit�at Dortmund

Fachbereich Informatik

Lehrstuhl VIII

D-44221 Dortmund

ISSN 0943-4135

Requests to:

University of Dortmund

Fachbereich Informatik

Lehrstuhl VIII

D-44221 Dortmund

e-mail: reports@ls8.informatik.uni-dortmund.de

ftp: ftp-ai.informatik.uni-dortmund.de:pub/Reports

www: http://www-ai.informatik.uni-dortmund.de/ls8-reports.html

Inferring Probabilistic Automata from Sensor

Data for Robot Navigation

LS{8 Report 18

Anke Rieger

Dortmund, May 22, 1995

Universit�at Dortmund

Fachbereich Informatik

Abstract

We address the problem of guiding a robot in such a way, that it can decide, based on

perceived sensor data, which future actions to choose, in order to reach a goal. In order to

realize this guidance, the robot has access to a (probabilistic) automaton (PA), whose �nal

states represent concepts, which have to be recognized in order to verify, that a goal has

been achieved. The contribution of this work is to learn these PA's from classi�ed sensor

data of robot traces through known environments. Within this framework, we account for

the uncertainties arising from ambiguous perceptions. We introduce a knowledge structure,

called pre�x tree, in which the sample data, represented as cases, is organized. The pre�x

tree is used to derive and estimate the parameters of deterministic, as well as probabilistic

automata models, which reect the inherent knowledge, implicit in the data, and which

are used for recognition in a restricted �rst-order logic framework.

(This paper is also published in M. Kaiser (ed.), Proceedings of the Third European

Workshop on Learning Robots, 1995.)

1 INTRODUCTION 1

1 Introduction

One problem in navigation is to guide a robot in such a way, that it can choose future

actions, in order to achieve a goal, by taking into account perceived sensor data. Sensor

measurements are not only to be used for verifying goals, but also for reacting to unex-

pected situations. In our approach we realize this guidance by giving the robot access

to a (probabilistic) automaton, whose �nal states represent concepts, which have to be

recognized, in order to verify, that a goal has been achieved. The contribution of this

work is to learn this automaton from classi�ed sensor data of robot traces through known

environments.

In [10] and [11], operational concepts have been introduced, which are used by a human

user to guide a robot. They constitute the basis for high-level planning, but are also

symbolically grounded in robot perceptions. Rules have been learned, which derive these

abstract concepts in several steps from sensor data and robot actions. The work presented

in this paper complements the learning approach taken in [10], [11] in the following way:

The learned rules, which are represented in a restricted �rst-order logic framework, do not

take into account the uncertainties, which are associated with sensor observations: rules

were learned, which derive di�erent concepts from the same sensor data. This means, that

the robot cannot distinguish two di�erent states, for which it might be necessary to be

recognizable as being di�erent, because they require di�erent actions. Given two rules with

di�erent conclusions, but the same premise, and given a situation, in which the premise

is satis�ed, the robot is not sure, in which state it is and it has di�culties in choosing

the next action. In that case probabilities o�er a solution in the following sense: If we

can associate probabilities with the ambiguous rules, the robot can assume the object,

which is most probable, in the �rst place, and can select the next action according to this

assumption.

The aim of this work is to estimate these probabilities. With this goal in mind, we

organize the data, from which the automata are to be learned, in a pre�x tree, which

can be mapped to (probabilistic) automata models, which reect the inherent structure

of the knowledge, implicit in the data. We consider deterministic and non-deterministic

�nite state automata (DFA's and NFA's), and hidden Markov models (HMM's). Each

of these models has already been applied to robotics . In addition, there exist already

several learning algorithms, which try to determine or estimate the parameters of these

models (e.g., [1],[9],[13],[5],[12]). The characteristic feature of these existing approaches

is, that they work on representations in propositional logic. Therefore, these learning

algorithms cannot be applied directly to the domain used in [11], which is represented

within a restricted �rst-order logic. The existing algorithms learn the structure of the

automaton and estimate the probabilities of transitions, respectively. We show, how we

can achieve the same objectives for a more complex representation by constructing the

pre�x tree, and by deriving relative frequencies from the data associated with it. These

relative frequencies are taken as estimates for transition probabilities. In addition, we

show, how the data, associated with the pre�x tree, can be used for the generation of

predictions and foci of attention.

We proceed as follows: In Section 2, we present the approach in the context of learning

operational concepts. In Section 3, we show, how the training data has to be prepared,

in order to derive the automata models. Section 4 deals with the generation and use of

DFA's for recognition. Section 5 addresses the ambiguities, i.e., PA's. In Section 6, we

present �rst results of experiments in the robotics domain. Section 7 deals with prediction

and focus of attention. We conclude in Section 8 with a discussion of related and future

work.

2 The Approach

In [10], operational concepts were developed, which are used by a robot to perform a

user-de�ned task in a exible way. On one hand, operational concepts provide the basis

for high-level planning. On the other hand, they are symbolically grounded, in the sense,

that they can be traced down to basic robot actions and perceivable observations. Op-

erational concepts constitute the highest level of the abstraction hierarchy presented in

Figure 1. At the lowest level, we have the real-world data containing information about

action-oriented perceptual
features

perception-integrating
actions

operational
concepts

sensor features

basic features

measurements

basic actions

sensor group features

Figure 1: Abstraction hierarchy

sonar sensor measurements and robot positions. As we cannot bridge the gap between the

real-world data and the operational concepts, such as move through door in one step, we

introduced intermediate levels of abstraction. The strategy is then to learn o�-line, how

2 THE APPROACH 3

to derive higher-level concepts from lower-level ones. The learning steps are indicated in

Figure 1 by the directed non-dashed arcs. In this paper, we are primarily concerned with

the recognition of concepts from observations, and therefore focus on the left side of the

hierarchy. In our learning scenario, we used data of robot traces through known environ-

ments, such as the one in Figure 2. An example for an action-oriented perceptual feature

is the concept of moving through a doorway. With reference to Figure 2, we illustrate,

what happens during robot traces, in which the robot moves through a doorway: The

sensors on the robot's right side will �rst perceive the doorframe, labelled 9, and then the

wall, labelled 7. Correspondingly, the sensors on the robot's left side will perceive wall 3

and 5. In [11], we introduced the term jump for these kind of edge groupings, consisting

of two parallel edges. An example of a rule

1

, which has been learned by ILP-algorithms

is the following:

through_door(Trace,Start,End,parallel) <-

sg_jump(Trace,left,T1,T2,parallel) &

sg_jump(Trace,right,T1,T2,parallel) &

Start < T1 & T2 < End.

It states, that the robot moved parallely through a doorway in a Trace during the

interval frome time point Start to End, if, during a subinterval, the sensors on the robot's

right and left side perceived the edge grouping jump. Other edge groupings, which are

considered, are convex and concave corners, and singular edges, called line. Sensor group

features are de�ned in terms of sensor features . Both describe the same event, namely

the perception of an edge grouping during a time interval, during which the robot moved

in a relative orientation towards, along, or away from the grouping. As the name already

indicates, sensor group features describe the event for a group of sensors, whereas sensor

features provide the information for a single sensor. Sensor group features are derived, if

su�ciently many sensors, which are adjacent and belong to the same class, have perceived

the same edge grouping:

sg_jump(Trace,right,TS,TE,parallel) <-

s_jump(Trace,Sensor1,TS,TE,parallel) &

s_jump(Trace,Sensor2,TS,TE,parallel) &

adjacent(Sensor1,Sensor2) &

sclass(Trace,Sensor1,T1,T2,right) &

sclass(Trace,Sensor2,T1,T2,right) &

T1 < TS & End < TE.

This rule states, that the sensors at the robot's right side perceive a jump during the time

interval form TS to TE during which the robot moves parallely along it, if at least two

sensors, which belong to the class right perceived this grouping. Assume the situation,

that t12 denotes one of the traces in Figure 2, in which the robot moves parallely through

the doorway. In this situation sensor s5 on the robot's right side perceives during the time

interval from time point 1 to 10 the jump, consisting of walls 9 and 7. The robot moves

parallely along this grouping. This situation is described by the predicate instance

s jump(t12,s5,1,10,parallel).

1

We use a Prolog-like notation, i.e., variables begin with capital letters, constants with small letters.

1

2
3

4

5

6

7

8
9

0

10

11

0
1

2
3

Figure 2: Room with robot traces

While moving, sensor s5 receives a sequence of sonar sensor measurements, illustrated in

Figure 3. They are grouped together in time intervals, during which the tendency of

change of the measurements remains approximately the same (for details see [10],[17]).

These time intervals are described by the basic features on the right side of Figure 3. The

incr_peak(t12, 90, s5, 4, 5, 0.5)
stable(t12, 90, s5, 1, 4, 0)

stable(t12 ,90, s5, 5, 10, 0)

Time

1m

2m

D
is

ta
nc

e

4 62 8 10

Figure 3: Sequence of sensor measurements

�rst one states, that in trace t12 sensor s5 received during the time interval from time

point 1 to 4 approximately stable measurements. During this time interval the robot

perceived the doorframe, labelled 9. The stable measurements during the time interval

from 5 to 10 correspond to the wall 7. The measurements at time points 4 and 5 di�er

signi�cantly, which is reected by the incr peak predicate. (The second argument of

the basic features denotes the orientation of the sensors. It is taken into account in order

to ensure, that the sensor orientation does not change. The last argument denotes the

average gradient, which was measured during the time interval. It thus adds more details

to the classi�cation decreasing, increasing etc.). An example of a rule, which derives

sensor features from basic features, and which has been learned within the ILP-framework,

is the following:

s_jump(Trace,Sensor,T1,T4,parallel) <-

stable(Trace,Or,Sensor,T1,T2,Grad1) &

3 DATA PREPARATION 5

incr_peak(Trace,Or,Sensor,T2,T3,Grad2) &

stable(Trace,Or,Sensor,T3,T4,Grad3).

We will illustrate the inference of automata with this learning step, i.e., learning, how to

derive sensor features from basic features, taking into account ambiguities. We start with

a set of examples, E, and background knowledge B. In our application, both sets consist

of ground literals. The predicates occurring in E are called target predicates , which may

appear in the conclusion of a rule. The predicates in B are called de�ning predicates ,

which may appear in the premise of a rule. In the context of automata, instances of

de�ning predicates constitute the sequences, which are input to the automaton, whose

�nal states are associated with target predicates, representing the concept(s), which have

been recognized. In the following, a target predicate of our domain, i.e., a sensor feature

predicate, is denoted by sf2 SF=fs line, s concave, s convex,s jumpg. A de�ning

predicate, i.e., a basic feature, is denoted by bf2 BF=fincreasing,decreasing,stable,

no measurement, incr peak,...g. The goal is to infer from B and E an automaton,

which takes as input sequences of basic features bf

1

: : :bf

k

in temporal order, which

eventually lead to an accepting state, tagged by sensor feature(s) in SF. The method for

inferring (probabilistic) automata consists of the following steps:

1. Represent the training data as cases ;

2. given the cases, construct the pre�x tree;

3. derive the DFA from the pre�x tree.

If the analysis of the DFA yields, that there are signi�cantly many ambiguous states,

4. transform the DFA to a NFA;

5. evaluate the pre�x tree, in order to estimate the transition probabilities.

The inferred (probabilistic) automaton is used for recognition, taking as input sequences

of basic features. If a sequence leads to a �nal state, the recognized sensor feature(s) will

be output and propagated up the abstraction hierarchy for further processing, enabling

the robot to react to its observations.

3 Data Preparation

Cases Given the sets E and B, the data has to be prepared in such a way, that each

sensor feature predicate instance is associated with the sequence of relevant basic fea-

tures. This task is accomplished by generating a case for each example in E. A case

is represented by a list [target instance|defining instances], which contains all the

de�ning instances, which are relevant for the respective target instance. In our application

instances of basic features are relevant for a target instance, if they refer to the same trace,

to the same sensor, and to the same time interval, respectively. In addition we ensure, for

our domain, that the de�ning instances are sorted according to temporal order. Thus, the

sequences of de�ning instances in the set of cases constitute the input sequences, which

have to be accepted by the inferred automaton.

Pre�x Tree Given a set of cases, each of which consists of an instance of a target

predicate and a sequence of instances of de�ning predicates, which in our domain describe

a temporal process, we organize this sample data in a pre�x tree, such that a sequence of

de�ning predicates corresponds to a path from the root node to another node of the tree,

which contains the information about the corresponding target instance. The nodes are

associated with the following information (see Figure 4):

� Label: label of the node (sequence of de�ning predicates);

� #CC: number of cases completely covered by the node;

� #SC: number of cases covered by the subtree, whose root the node is;

� CC: cases, which are completely covered by the node

� SC: cases, which are covered by the nodes of the subtree, whose root the node is.

The edges are labeled by a de�ning predicate, in our domain a basic feature. A case

is covered by a node, if its sequence of de�ning predicates corresponds to the labels of

the edges of the path from the root to the respective node. Given a node i with label

bf

1

: : :bf

k

, CC(i) contains those cases, whose sequence of de�ning predicates matches

exactly the label, whereas SC(i) contains the cases, which have the label Label(i) as

pre�x, i.e., whose sequences of de�ning predicates match a label bf

1

: : :bf

k

: : :bf

n

, n > k.

The information stored in the nodes is absolutely redundant, but facilitates the access to

the data, and therefore supports fast evaluation operations.

4 Derivation of DFA's

Construction of the DFA The pre�x tree can easily be transformed to a DFA, which

reects the inherent structure of the knowledge, implicit in the data. A DFA is de�ned

by the tuple (Q;�; �; q

0

; F), where Q denotes a set of states, � denotes the input alpha-

bet, � : Q � � ! Q denotes the transition function, q

0

denotes the starting state, and

F denotes the set of �nal states. We generate the DFA from the pre�x tree in the fol-

lowing way: The input alphabet consists of the predicates for basic features, i.e., � =f

increasing(, , , , ,), stable(, , , , ,),...g. For each node in the pre�x tree

we establish a state q 2 Q. The starting state q

0

will be the state corresponding to the root

node. The edge information of the pre�x tree is used to generate the transition function

�: If there exists an edge from node i to node j, labeled by a basic feature bf 2 �, then

establish the transition �(q

i

; bf) = q

j

, where q

i

and q

j

represent the states, established for

nodes i and j respectively. Those states, which were established for nodes in the tree with

#CC > 0, become the �nal states of the DFA. The �nal states in F are tagged with the

concepts, described by the target predicates of the cases, covered by the corresponding

node. As our input alphabet consists of predicates instead of propositional constants, the

application of the transition function requires a test for uni�ability. Thus we can check,

whether a sequence of observations bf

1

: : :bf

k

, i.e., a sequence of ground predicates for

basic features, is accepted by the automaton, and, if that is the case, the tags of the

accepting state indicate the concept(s), which have been recognized.

4 DERIVATION OF DFA'S 7

#CC(i)

#SC(i)

SC(i)

CC(i)

Node i

Root

2

Node i Node i Node i

#CC(i)

#SC(i)

CC(i)

SC(i)

#CC(i)

#SC(i)

CC(i)

#CC(i)

CC(i)

SC(i)

#SC(i)

1

1

1

1

1 2 3

2

2

2

2

3

3

3

3

......

SC(i)

bf (.....) bf (.....) bf (.....)k+1 k+1 k+1

1 2 n

......

bf

bf

bf

k

2

1

Label(i): bf bf ... bf
1 k

Figure 4: Pre�x tree information

Using the DFA for object recognition When the robot moves through the environ-

ment, its sensors constantly perceive observations, each of which might be the beginning

of a string, which is accepted by the automaton. Based on this idea, we can apply a

simple marker passing method [7],[2] to the DFA. Assume, that the robot has perceived

a sequence of observations bf

1

: : :bf

k

during a period of time, in which no change of di-

rection of movement took place. Then we can generate at each time point t; 1 � t � k a

marker m, which is associated, if possible, with the state of the DFA with �(q

0

; bf), where

the predicate bf 2 � is uni�able with the ground predicate bf

t

. We denote the state,

to which the marker m

l

; 1 � l � k is associated at time point t, by q

t

(m

l

). Each of the

markers m

r

; 1 � r < t, which has been generated at previous time points, is passed from

its previous state q

t�1

(m

r

) = q

i

to the next state q

t

(m

r

) = q

j

, if there exists a transition

�(q

i

; bf) = q

j

, such that bf is uni�able with bf

t

. Otherwise the marker is thrown away.

If a marker has reached a �nal state, a message is produced, that an object has been

recognized, which is possibly an instance of several concepts. So the algorithm can be

sketched as follows:

Input: An observation sequence bf

1

: : :bf

k

.

Output: The concepts, instances of which have been recognized during subintervals

of the time interval [1; k].

Algorithm: For t = 1; : : : ; k

1. establish a marker m

t

, and, if possible, associate it with the state q = �(q

0

; bf), such

that bf is uni�able with bf

t

, i.e., q

t

(m

t

) = q 2 Q;

2. for each marker m

r

; 1 � r < t, with q

t�1

(m

r

) = q

i

:

if there exists a state q

j

, such that �(q

i

; bf) = q

j

and bf is uni�able with bf

t

, then

pass the marker to state q

j

, i.e., q

t

(m

r

) = q

j

; if q

t

(m

r

) 2 F , return a message, that

an instance of one or several concepts has been recognized; if the marker cannot be

passed forward, throw it away.

5 Derivation of PA's

The problem We now turn to the problem of dealing with uncertainties, caused by

ambiguous sensor observations. In order to evaluate the pre�x tree with respect to the

relative frequencies of ambiguities, we provide operations, which search for the nodes

in the tree, which cover cases, whose instances of target predicates describe di�erent

concepts. Concepts in our domain can be described by predicates and combinations

of predicates and argument values. Sensor features, e.g., s line(, , , ,parallel),

s line(, , , ,straight towards), and s line(, , , ,straight away), should be dis-

tinguishable for the following reason: if the higher-level goal is to move along a wall , this

goal translates on the lower level to the sensor feature s line(, , , ,parallel), which is

di�erent from s line(, , , ,straight towards), and s line(, , , ,straight away),

because the latter would signal the failure of executing the operational concept of moving

along a wall .

If we derive the DFA from a given pre�x tree, situations, similar to the one sketched in

Figure 5, may arise. The same sequence of basic features, namely stable(, , , , ,),

sf2

sf1

sf1,sf2stable stableincreasing

stable increasing
stable

stable

Figure 5: Ambiguous Perceptions

increasing(, , , , ,), stable(, , , , ,), leads to a �nal state, which is tagged

with two di�erent concepts, sf1 and sf2. If these are s line(, , , ,straight towards)

5 DERIVATION OF PA'S 9

and s line(, , , ,parallel), they should be distinguishable, because dependent on the

higher-level goal, e.g.,moving along a wall , they require di�erent actions, namely a change

of direction of the movement in the former case, and a continuation of the movement in

the latter case.

Now the idea is to split up the �nal state into two, and to introduce non-deterministic state

transitions (see Figure 5). The ultimate goal is to tag these non-deterministic transitions

with probabilities, such that the robot can assume the concept, which is most probable,

in the �rst place, and can choose its action accordingly.

Probabilistic automata (PA's) In order to model this situation, we switch to prob-

abilistic automata models. If we want to be able to represent ambiguities by stochastic

state transitions, the state transition function � has to become a state transition probabil-

ity distribution. One possibility is to use Markov chains, which are de�ned by the tuple

(Q;�; �

1

), where Q denotes a set ofN states, � denotes a stochastic matrix containing N

2

transition probabilities, and �

1

is the initial state distribution. The transition probability

�

ij

is de�ned as

�

ij

= Pr(q

t+1

j

jq

t

i

) 1 � i; j;�N; t = 0; 1; 2; : : :,

i.e., it is the probability that a process, which is in state q

i

at time point t, will occupy

state q

j

after the next transition. Each �

ij

satis�es the condition 0 � �

ij

� 1; 1 �

i; j � N Since the process must occupy one of its N states after each transition, we have

P

N

j=1

�

ij

= 1 , i = 1; 2; : : : ; N The initial state distribution �

1

is de�ned as the vector

�

1

= f�

1

i

g; 1 � i � N , where

�

1

i

= Pr(q

1

i

) with 1 � i � N ,

i.e., �

1

i

denotes the probability, that the system is in state q

i

at time point 1.

Whereas Markov chains do not take into account observations, hidden Markov models do

so. They are de�ned by the tuple (Q;Z;�;�; �

1

), where Q, �, and �

1

are de�ned as

described above, Z denotes the output alphabet (in our domain the basic features), and

� denotes the observation probability distribution, which can be associated either with

states (see [13]) or with state transitions (see [9]). In the latter case the distribution is

de�ned as

�

ijk

= Pr(z

t

k

jq

t�1

i

! q

t

j

)

with 1 � i; j � jQj and 1 � k � jZj,

i.e., �

ijk

denotes the probability, that the system observes the output symbol z

k

at time

point t, given that the transition from state q

i

at time point t� 1 to state q

j

at the next

time point t took place. The probabilities have to add up to one, i.e., the condition

jZj

X

k=1

�

ijk

=

jZj

X

k=1

Pr(z

t

k

jq

t�1

i

! q

t

j

) = 1

has to be satis�ed.

Whereas Markov chains are insu�cient for our purposes, because of the missing obser-

vations, HMM's o�er to much, as in our case the output function is deterministic, i.e.,

there exists a k 2 f1; : : : ; jZjg, such that �

ijk

= 1, and for all l 6= k we have �

ijk

= 0.

Nevertheless, we choose the HMM, because in future work we want to consider scenarios,

in which we have to account for probabilistic outputs.

Pre�x tree evaluation Before switching to the probabilistic framework, we have to

evaluate our sample data with respect to the relative frequencies of ambiguities. Only if

these frequencies are signi�cant, it will be worthwile to transform the DFA to a NFA and

to estimate the transition probabilities of the non-deterministic transitions. Once, we have

determined the nodes of the pre�x tree, which cover cases, whose target predicate instances

belong to di�erent concepts, we can use the node information (see Figure 4) to determine

the number and relative frequencies of the concepts, given that the corresponding sequence

of observations has been perceived. Consider an arbitrary node i of the pre�x tree, whose

label is bf

1

: : :bf

k

. Let c

1

; c

2

; : : : ; c

n

denote the n concepts, which are represented by the

cases covered by the node i, i.e., by the targets of the cases in CC(i). Let CC(i; c

j

) and

#CC(i; c

j

) denote the cases of node i, which belong to concept c

j

; 1 � j � n, and their

number respectively. Then the relative frequency, that concept c

j

has been recognized,

given that the observation sequence bf

1

: : :bf

k

has been observed is

RFfc

j

jbf

1

: : :bf

k

g =

#CC(i; c

j

)

#CC(i)

(1)

Pre�x tree ! HMM Only if there are signi�cantly many nodes in the tree, which are

associated with di�erent concepts, whose relative frequency is signi�cantly high, it will

be worthwile introducing probabilistic automata. This is done in the following way: We

transform the pre�x tree to a DFA as described above. Assume, that the evaluation of the

pre�x tree has yielded the result, that node j covers cases, whose target predicates describe

several concepts, c

1

; : : : ; c

n

, which should be distinguishable, i.e., the state, corresponding

to node j, q

j

, is to be split up into n states, q

j

1

; : : : ; q

j

n

(see Figure 6). Then, we

have to introduce non-deterministic transitions from the state q

i

corresponding to the

predecessor i of node j, to the states q

j

1

; : : : ; q

j

n

. Furthermore, we have to add for each

newly generated state q

j

1

; : : : ; q

j

n

the deterministic transitions emanating from state q

j

to its successors, which, of course, remain deterministic. In the second step, we have to

q iq i

q
j q

j1
q

j 2
q

j 3

bfbf

bf1 bf2 bf3

c1,c2,c3

bfbf

c1 c2 c3

Figure 6: DFA ! NFA

estimate the transition probabilities for the non-deterministic transitions from the sample

data in the pre�x tree. The goal is to estimate the transition probabilites �(q

j

l

jq

i

); 1 � l <

n. Remember, that the index l identi�es one of the concepts c

1

; : : : ; c

n

. Let bf

1

: : :bf

k

be

the label of node j. Then we can use Equation 1 to determine the estimators, i.e., we take

the relative frequency, that concept c

l

has been recognized, given, that bf

1

: : :bf

k

has been

6 EXPERIMENTS 11

perceived, as estimator for the transition probability from state q

i

to state q

j

l

; l = 1; : : : ; n:

^

�

ij

l

=

^

Pr(q

t+1

j

l

jq

t

i

) =

#CC(j; c

l

)

#CC(j)

(2)

As already mentioned, in our domain the observations associated with the transitions are

deterministic, i.e.,

^

�

zij

l

=

^

Pr(z

t

jq

t�1

i

! q

t

j

l

) =

(

1 if z = bf

0 otherwise

(3)

for l = 1; : : : ; n. The transitions from the newly introduced states q

j

1

; : : : ; q

j

n

to the m

successor states q

s

1

; : : : ; q

s

m

of the original state q

j

remain deterministic:

�

j

l

s

k

= Pr(q

t+1

s

k

jq

t

j

l

) = 1 (4)

for l = 1; : : : ; n and k = 1; : : : ; m. The deterministic output is determined in the same

way as for the non-deterministic transitions (see Equation 3).

Use of the PA for object recognition Given the PA, derived from the pre�x tree in

the way described above, we can apply the Viterbi algorithm [13],[9]. This algorithm is

an optimal search procedure for �nding the most likely state sequence q = q

0

q

1

: : : q

n

of

a Markov source, given an observation sequence z=bf

1

: : :bf

k

. In other words, it tries to

�nd the sequence q

�

, that maximizes the conditional probability P (zjq). This algorithm

can modi�ed to work with our representation, as already illustrated for DFA's above.

Then, given the estimate q

�

, we can investigate its last state q

n

, whose tag represents the

concept, which has been recognized most probably.

6 Experiments

In this section, we present �rst results of learning automata for the recognition of sensor

features from basic features. For the experiments we used the data

2

of seven traces

through a known environment illustrated in Figure 7. The experiments were set up in

such a way, that they could give answers to the following questions:

1. What does the structure of the learned tree automata look like, referring to their

depth, the number of states, and the number of �nal states, respectively?

2. How many of the �nal states are ambiguous?

3. How do di�erent ways of calculating basic features e�ect the structure and the

ambiguities?

The calculation of basic features can be guided by di�erent parameters. One parameter

is the tolerance, within which successive measurements and their gradients, respectively,

are considered to be approximately equal (for details see [17]). This tolerance has been

set to 6 (Version 1), 10 (Version 2), and 15 degree (Version 3), respectively. The e�ect of

the di�erent versions is illustrated with the sequence of measurements in Figure 8. For

2

The data has been provided by the University of Karlsruhe

Figure 7: Scene with traces used for learning

Figure 8: Sensor measurements

these measurements, each version calculated a di�erent sequence of basic features:

Basic features for Version 1:

increasing(t76,75,s6,3,32,13).

no_measurement(t76,75,s6,32,53,999).

decreasing(t76,75,s6,53,59,-9).

stable(t76,75,s6,59,65,1).

increasing(t76,75,s6,65,69,11).

something_happened(t76,75,s6,69,70,18).

increasing(t76,75,s6,70,85,13).

Basic features for Version 2:

increasing(t76,75,s6,3,32,13).

no_measurement(t76,75,s6,32,53,999).

decreasing(t76,75,s6,53,63,-5).

increasing(t76,75,s6,63,85,12).

Basic features for Version 3:

increasing(t76,75,s6,3,32,13).

6 EXPERIMENTS 13

Version 1 Version 2 Version 3

cases 400 385 373

jQj 225 146 108

jF j 143 100 75

Depth 9 7 6

A1 16 23 20

A2 25 25 22

Table 1: Results of learning

no_measurement(t76,75,s6,32,53,999).

stable(t76,75,s6,53,69,0).

increasing(t76,75,s6,69,85,13).

The �rst version is most sensitive to variances with the e�ect, that the sequence of time

points is split up into smaller time intervals, resulting in the longest sequence of basic

features. The di�erence between the second and third version again reects the e�ect

of the greater variance. The time region, which is labelled decreasing in Version 2 is

considered stable under Version 3.

For each of the three versions, we organized the data in cases, constructed the pre�x

tree, and derived the corresponding NFA. For each automaton, we determined the number

of states, jQj, the number of �nal states jF j, and the depth of the tree, in oder to analyze

the automaton structure. Then, we evaluated the �nal states with respect to ambiguities.

In Section 5, we stated, that concepts in our domain can be characterized by the predicate

(alternative A1) or by the predicate and the �fth argument (alternative A2). For each

alternative, A1 and A2, we determined the number of �nal states, which were associated

with more than one concept.

The results are summarized in Table 1. The di�erent numbers of cases for each version

are an e�ect of the way basic features and cases are generated. Above we have seen

the tendency, that the bigger the tolerance is set, the bigger the time intervals for basic

features become. Thus it may happen, that there is no basic feature instance, whose time

interval is a subinterval of a given sensor feature example. So there might be examples,

for which no cases can be found.

The greater the tolerance is chosen, the less states and �nal states the learned automata

have. Furthermore, the depth of the trees decreases. This also reects the e�ect, that the

greater the tolerance for calculating basic features is set, the bigger the time intervals

become, and the shorter the sequences of basic features.

We now turn to the ambiguities: Considering the di�erentversions for calculating basic

features, the absolute number of �nal states, which are associated with di�erent concepts,

does not vary too much from version to version. However, if we consider the ratio between

the number of ambiguous states and the number of �nal states, we get 17 % for Version

1, 25 % for Version 2, and 29 % for Version 3. Thus, the relative number of ambiguous

states increases and becomes signi�cantly high, the greater the tolerance for calculating

basic features is set.

An example for an ambiguous state is the one, to which the sequence incr peak,

stable leads. For alternative A2, this state is associated with the concepts

s jump(, , , ,parallel), s convex(, , , ,parallel), and s concave(, , , ,parallel).

The evaluation of the pre�x tree yields for these concepts the relative frequencies 0.25, 0.5,

and 0.25, respectively. The sequence decreasing,stable,increasing leads to a state,

which is associated with the concepts s line(, , , ,parallel) and s line(, , , ,diagonal).

The relative frequencies for these concepts are 0.75 and 0.25, respectivley. They are used

as estimates for the transition probabilities for the HMM, as explained in Section 5 (see

Equation 2). So, given, that the latter sequence of basic features has been perceived,

the Viterbi algorithm will output, that the concept s line(, , , ,parallel) has been

recognized most probably, namely with probability 0.75.

7 Further Evaluations

In the previous sections, we were concerned with recognition and the interpretation of

sensor observations, respectively. In this section, we show, how the information in the

pre�x tree can also be used to determine a focus of attention and to make predictions.

Focus of attention In this context, we address the situation, that the robot is to

recognize a speci�c concept c. The robot has already observed a partial observation

sequence bf

1

: : :bf

k

, which does not yield enough information, to derive, that an instance

of concept c has been recognized. The question is, which future observation would yield

the most evidence for it. Given the sequence bf

1

: : :bf

k

, we determine the node i of the

pre�x tree, which is reached, when following the path described by the sequence. With

reference to Figure 4 let i

1

; : : : ; i

n

denote the successor nodes of node i. Then we can

calculate for each sucessor node i

l

; 1 � l � n

RFfcjbf

1

: : :bf

k

bf

k+1

l

g =

#CC(i

l

; c) + #SC(i

l

; c)

#CC(i) + #SC(i)

; (5)

which is the relative frequency, that the concept c will be recognized, given that the

sequence bf

1

: : :bf

k

bf

k+1

l

has been observed. The observation bf

l

, which will yield the

most evidence for the concept c is

max

fl21:::;ng

n

RF (cjbf

1

: : :bf

k

bf

k+1

l

)

o

: (6)

Prediction Recognition is concerned with the question: Given a sequence of observa-

tions, which concept has been recognized most probably? Prediction deals with the situa-

tion, that the robot tries to orient itself: Given a partial sequence of observations, which

concept will be recognized most probably, when further observations are made? Given the

sequence bf

1

: : :bf

k

, we determine the node i of the pre�x tree, which is reached, when

following the path described by the sequence. Let c

1

; : : : ; c

n

denote the concepts associ-

ated with the cases in SC(i). Then the concept, which will be recognized most probably,

will be

max

j2f1;:::;ng

�

#SC(i; c

j

)

#SC(i)

�

: (7)

8 DISCUSSION 15

8 Discussion

Inferring probabilistic automata requires, in the �rst step, the derivation of the automaton

structure, i.e., the number of states, and the graph of possible transitions. Then, the

probabilities of the transitions have to be estimated. We have organized the training data

in a pre�x tree, which was used to solve both tasks.

In principal, the �rst objective can also be achieved, by applying the L

�

-algorithm,

developed by Angluin [1]. The algorithm learns a regular set from a minimal adequate

teacher , who is assumed to answer correctly membership queries and conjectures of the

learner about the unknown regular set. There have been numerous approaches for infering

automata, especially with applications to robotics, e.g. [12],[14],[16], and [5], which are

based on L

�

. Modi�cations of the algorithm seem to be possible, in order to apply it to our

domain. Nevertheless, in our case, the construction of the pre�x tree is a more straight-

forward way of attaining the automaton structure for a more complex representation.

Given the automaton structure, we have estimated the transition probabilities from the

sample data associated with the pre�x tree. An alternative would have been to apply

Viterbi- or forward-backward extraction [9],[13], which are gradient descent methods to

estimate the state transition and output probability distributions of a hidden Markov

model. Given a set of output sequences Z = fz

1

; : : : ; z

L

g; where z

i

= z

1

i

z

2

i

: : : z

n

i

i

with i 2

f1; : : : ; Lg, and a guess for the structure of the Markov source and its statistics, i.e., Q,

^

�

(0)

(q

t

jq

t�1

) and,

^

�

(0)

(z

t

jq

t�1

! q

t

), they determine estimates

^

� and

^

� for the transition

and output probability distributions, respectively. As in our domain of application it

turned out, by evaluating the experiments, that most of the transitions and all outputs are

deterministic, the calculation of the relative frequencies from the information associated

with the pre�x tree was a more direct way of acquiring the same objective. A topic of

future research will be, to evaluate in more complex situations with probabilistic outputs,

whether the application of one of the extraction methods will be more advantageous.

Other important related work stems from the �eld of machine learning and ILP. By

constructing the pre�x tree, we have extracted the knowledge structure, which is implicit in

the sample data, and, ultimately, in the at rule set, learned in [11]. When generating the

knowledge structure, we use the temporal relation between events. However, the resulting

hierarchy can also be interpreted as concept hierarchy with a generalization hierarchy. The

internal nodes of the tree represent potentially useful concepts, which could be introduced,

in order to support recognition and classi�cation. From this point of view, our approach is

related to concept formation and clustering. Future work will have to clarify the relation

between this approach and those proposed for demand-driven concept formation [18], for

rule restructuring [15], and for conceptual clustering [6].

We have shown, that it is possible to match sequences of observations onto input

sequences of automata, whose �nal states indicate, that a concept, i.e., a sensor feature,

has been recognized. Clearly, the work, presented in this paper, is work in progress, and

future work will certainly include further experiments, tests, and evaluations. In principle,

however, it is also possible, to design and learn automata for higher-level concepts, e.g.,

perception-integrating actions (see Figure 1). They associate sequences of observations

of action-oriented perceptual features with sequences of basic actions , during which the

features have been perceived. By mapping actions to the input alphabet of a DFA and

observations to its output alphabet, we obtain an automaton model, whose �nal states

indicate the recognition or veri�cation of a higher-level concept. The investigation of this

will be future work. The point, we would like to emphasize here, is that the inference of

automata is a contribution to the idea to learn abstract operational concepts, such asmove

through door, turn left, and stop in front of the cupboard (see [10]), which will be used

exibly, also in unknown environments. So our focus is put on closing the gap between

the numerical representation of sensor data and the logic-based description of abstract

concepts, which can be understood and used by a human user, in order to guide the robot.

This idea distinguishes this work from the numerous approaches in the �eld of robotics,

which, using sensor data, try to localize the robot with the help of statistical methods.

Crowley [3], Leonard [8], and Curran[4], for example, use the Kalman �lter to estimate

the robot position from sensor data in known environments, which are represented by

geometric descriptions. The goal of all of these approaches is di�erent from ours in the

following sense: They try to improve processing the sensor data at one level, whereas

we aim at bridging the gap between low-level representations of sensing and action and

the high-level representations of operational concepts. This is done in several steps, by

applying di�erent algorithms, which learn, how to derive higher-level concepts from lower-

level ones. The approach of inferring automata, presented in this paper, is integrated

in this framework. An interesting point for future work would be, to see, whether the

approaches, mentioned above, could be, in principle, integrated in our framework, as they

have the advantage of considering sensor noise and sensor failure, respectively.

9 Acknowledgements

Part of this work was done during the author's stay at the University of Torino. The author

would like to thank A. Giordana, L. Saitta, and all members of the machine learning group

for fruitful discussions during the stay at Torino. Thanks also to St. Wessel for providing

the algorithm for calculating basic features.

References

[1] Dana Angluin. Learning regular sets from queries and counterexamples. Information and Computa-

tion, 75:87{106, 1987.

[2] E. Charniak. Passing markers: A theory of contextual inuence in language comprehension. Cognitive

Science, 7, 1983.

[3] J. L. Crowley. World modeling and position estimation for a mobile robot usig ultrasonic ranging. In

Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 674{680, 1989.

[4] A. Curran and K. J. Kyriakopoulos. Sensor-based self-localization for wheeled mobile robots. In Proc.

of the IEEE Int. Conf. on Robotics and Automation, pages 8{13, 1993.

[5] T. Dean, K. Basye, and L. Kaelbling. Uncertainty in graph-based map learning. In J. H. Connell and

S. Mahadevan, editors, Robot Learning, chapter 7, pages 171{192. Kluwer Academic Press, 1993.

[6] J. H. Gennari, P. Langely, and D. Fisher. Models of incremental concept formation. Machine Learning,

40:11{61, 1989.

[7] J. A. Hendler. Integrating marker-passing and problem solving. In A. Tate J. Allen, J. Hendler,

editor, Readings in Planning, pages 275{287. Morgan Kaufmann, 1990.

[8] H. F. Durrant-Whyte J. J. Leonard. Mobile robot localization by tracking geometric beacons. IEEE

Transactions on Robotics and Automation, 7:376{382, 1991.

REFERENCES 17

[9] F. Jelinek. Continuous speech recognition by statistical methods. Proc. of the IEEE, 64:532{556,

1976.

[10] V. Klingspor, K. Morik, and A. Rieger. Learning operational concepts from sensor data of a mobile

robot. (submitted to Machine Learning Journal), September 1994.

[11] K. Morik and A. Rieger. Learning action-oriented perceptual features for robot navigation. In Proc.

of the 1st European Workshop on Learning Robots, 1993. also available as Research Report 3, FB

Informatik LS 8, Universit�at Dortmund.

[12] R.E. Schapire R. L. Rivest. Inference of �nite automata using homing sequences. In R.L. Rivest

S. J. Hanson, W. Remmele, editor, Machine Learning: From Theory to Applications, pages 51{73.

Springer, 1993.

[13] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition.

Proceedings of the IEEE, 77:257{286, 1989.

[14] Wei-Min Shen. Learning �nite automata using local distinguishing experiments. In R. Bajcsy, editor,

Proc. IJCAI 1993, pages 1088{1093. Morgan Kaufmann, 1993.

[15] E. Sommer. Fender: An approach to theory restructuring. In N. Lavrac and St. Wrobel, editors,

Proc. of the European Conference on Machine Learning (ECML-95). Springer Verlag, 1995.

[16] W. Tzeng. Learning probabilistic automata and Markov chains via queries. Machine Learning, 8:151{

166, 1992.

[17] St. Wessel. Lernen qualitativer Merkmale aus numerischen Robotersensordaten. Master's thesis,

Universit�at Dortmund, 1995. in German.

[18] S. Wrobel. Concept Formation and Knowledge Revision. Kluwer Academic Publishers, 1994.

