
Enabling End-User Datawarehouse Mining
Contract No. IST-1999-11993

Deliverable No. D11.3

Best Practices Report
Experiences with using the Mining Mart system

Deliverable D11.3

Olaf Rem and Marten Trautwein

Perot Systems Nederland B.V.
P.O. box 2729, NL-3800 GG Amersfoort, The Netherlands

{Olaf.Rem, Marten.Trautwein}@ps.net

December 20, 2002

Abstract

This best practices report should be helpful in supporting future users with
using the Mining Mart system. The main focus is on the Mining Mart
preprocessing operators. The Mining Mart system provides an environment
for advanced preprocessing. It stores meta data about business data and
preprocessing chains, thus, making it possible to build a repository of cases,
which may be shared and reused. It also supports making more intelligent
choices during preprocessing by providing learning operators, which may be
used within this stage.

In this report we have provided information, ideas and experiences with
respect to working with the early prototype of the Mining Mart system. We
constructed an extensive overview of general preprocessing problems from
the literature. For a selection of these common preprocessing problems we
describe our experiences in dealing with them using the Mining Mart system.
We also describe the application of combinations of operators, which can be
seen as “templates” or design patterns for solving specific problems.

We have found the Mining Mart system to be a valuable tool for pre-
processing data. With its meta data model and user interface it is possible
to conveniently create a reusable repository of preprocessing cases. From
our experiences with the current Mining Mart system we expect that early
adopters will already benefit from this system and that future users will do
so even more.

Contents

1 Introduction 7

2 Overview Mining Mart System 9
2.1 Goal . 9
2.2 Principles . 10
2.3 Architecture . 11
2.4 Further Information . 12

3 Data Selection 13
3.1 Problem Description . 13
3.2 Reducing Depth . 14

3.2.1 Sample Size, Variability and Confidence 14
3.3 Reducing Width . 15

4 Missing Values 17
4.1 Problem Description . 17
4.2 Delete Records with Missing Values 17
4.3 Basic Replacement Operators for Missing Values 18
4.4 Advanced Replacement Operators for Missing Values 19

5 Time Series 20
5.1 Problem Description . 20
5.2 Handling Non-uniform Displacement 21
5.3 Windowing . 23
5.4 Simple Moving Average . 24
5.5 Weighted Moving Average . 26
5.6 Exponential Moving Average 28
5.7 Signal to Symbol Processing 29
5.8 Summarizing . 31

6 Noise 34
6.1 Problem Description . 34
6.2 Running Example . 35
6.3 Support Vector Machine . 35

1

Mining Mart IST-1999-11993, Deliverable No. D11.3 2

6.4 Decision Rules and Decision Tree 36

7 Normalization 38
7.1 Problem Description . 38
7.2 Linear Scaling . 38
7.3 Logarithmic Scaling . 39

8 Tips for Using the Mining Mart System 40
8.1 Keeping Operators Nicely Listed 40
8.2 Keeping Track of Concepts 41
8.3 Reusing Cases . 41
8.4 Reusing Concepts . 41
8.5 Building a Chain of Operators 42
8.6 General Problem Solving . 43

8.6.1 Compilation Issues . 43
8.6.2 Unlocking a Locked Case 44

9 Conclusions 45

A General Preprocessing Problems 49
A.1 Data Selection . 49

A.1.1 Getting Enough Data 49
A.1.2 Reducing Depth . 50
A.1.3 Reducing Width . 50

A.2 Data Cleaning . 51
A.2.1 Data Pollution, Noisy Data 51
A.2.2 De-duplication . 52
A.2.3 Missing and Empty Values 52
A.2.4 Outliers . 53
A.2.5 Anachronistic Variables 53

A.3 Data Integration and Enrichment 54
A.3.1 Concurrency . 54
A.3.2 Data Consistency . 54
A.3.3 Data Value Conflict 54

A.4 Data Transformation and Coding 55
A.4.1 Reverse Pivoting . 55
A.4.2 Monotonic Variables 55
A.4.3 Remapping Nominal Values 55
A.4.4 Conversion of Binary Variables to 0-1 57
A.4.5 Aggregation . 57
A.4.6 Data Enhancement . 57
A.4.7 Generalization . 58
A.4.8 Discretization and Concept Hierarchy Generation . . . 59
A.4.9 Normalization . 59

Mining Mart IST-1999-11993, Deliverable No. D11.3 3

A.4.10 Data Compression . 60
A.4.11 Numerosity Reduction 61

A.5 Displacement Series . 61
A.5.1 Missing Values . 62
A.5.2 Outliers . 62
A.5.3 Non-uniform Displacement 62
A.5.4 Trend . 62
A.5.5 Attenuation . 63
A.5.6 Moving Average . 63
A.5.7 Smoothing . 64
A.5.8 Extraction . 65
A.5.9 Differencing . 66
A.5.10 Numerating Alpha Values 66
A.5.11 Distribution . 66

B Mining Mart Operators 68
B.1 Concept Operators . 68
B.2 Feature Construction Operators 77

List of Figures

2.1 Screen shot of the Mining Mart HCI. 10
2.2 Mining Mart architecture. 12

5.1 Example of applying time series operators. 32

8.1 Example of a concept hierarchy. 42

B.1 MultiRelationalFeatureConstruction dialog. 69
B.2 JoinByKey dialog. 70
B.3 SpecifiedStatistics dialog. 70
B.4 RowSelectionByQuery dialog. 71
B.5 RowSelectionByRandomSampling dialog. 71
B.6 DeleteRecordsWithMissingValues dialog. 71
B.7 SegmentationStratified dialog. 72
B.8 SegmentationByPartitioning dialog. 72
B.9 SegmentationWithKMeans dialog. 73
B.10 Unsegment dialog. 73
B.11 Windowing dialog. 74
B.12 SimpleMovingFunction dialog. 74
B.13 WeightedMovingFunction dialog. 75
B.14 ExponentialMovingFunction dialog. 75
B.15 SignalToSymbolProcessing dialog. 76
B.16 AssignAverageValue dialog. 77
B.17 AssignModalValue dialog. 77
B.18 AssignMedianValue dialog. 78
B.19 AssignDefaultValue dialog. 79
B.20 MissingValuesWithDecisionTree dialog. 79
B.21 MissingValueWithDecisionRules dialog. 80
B.22 MissingValuesWithRegressionSVM dialog. 80
B.23 LinearScaling dialog. 81
B.24 LogScaling dialog. 81
B.25 SVMForRegression dialog. 82
B.26 ComputeSVMError dialog. 82
B.27 PredictionWithDecisionRules dialog. 83

4

Mining Mart IST-1999-11993, Deliverable No. D11.3 5

B.28 PredictionWithDecisionTree dialog. 83
B.29 AssignPredictedValueCategorial dialog. 84

List of Tables

5.1 Data fragment of the running time series example (“Sales”) . 21
5.2 Data fragment of the uniform time scale mapping (“Uniform

Time Scale”) . 22
5.3 Data fragment of the running uniformly increasing time series

example (“Uniform Sales”) 23
5.4 Data fragment of the running uniform segmented time series

example “Uniform Segmented Sales” 24
5.5 Data fragment of the Windowing example (“Sales Window3”) 24
5.6 Data fragment of the unsegmented Windowing example (“Un-

segmented Sales Window3”) 25
5.7 Data fragment of the SimpleMovingFunction example 25
5.8 Data fragment of the Window 3 mapping 26
5.9 Data fragment of the (SMA3) Smoothed Uniform Segmented

Sales example . 26
5.10 Data fragment of the WeightedMovingFunction example . . . 27
5.11 Data fragment of the (WMA235) Smoothed Uniform Seg-

mented Sales example . 28
5.12 Data fragment of the ExponentialMovingFunction example . 29
5.13 Data fragment of the (EMA55) Smoothed Uniform Segmented

Sales example . 29
5.14 Data fragment of SignalToSymbolProcessing example 30
5.15 Data fragment of the Abstracted Uniform Segmented Sales

example . 31

B.1 Alphabetical list of concept operators 69
B.2 Alphabetical list of feature construction operators 78

6

Chapter 1

Introduction

This best practices report is one of the deliverables of workpackage 11 (“Ex-
ploitation and Transfer of Results”) in the Mining Mart project. This re-
port should be helpful in supporting future users with using the (prototype)
Mining Mart system. The main focus is on the Mining Mart preprocessing
operators. Other important aspects of the Mining Mart system are under-
exposed and only briefly addressed in Chapter 8. The meta model, concept
hierarchy and reuse of cases form an integral part of the Mining Mart system,
but are only mentioned indirectly as a consequence of the chose strategy in
the construction of this report. We expect that the intuitive nature of these
aspects eliminates the need for an as elaborate discussion as devoted to the
preprocessing operators.

In general “best practices” provide practical solutions to common prob-
lems in a certain field. These solutions have proved themselves in the real
world. Useful best practices need a certain level of abstraction for general-
izing both the problem and the solution.

In this report we focus on data preprocessing best practices using the
Mining Mart system. This means discussing how common preprocessing
problems (in data selection, data cleaning and data transformation) can be
handled best using the Mining Mart system.

In preparing this document the following strategy was chosen:

• Provide an overview in the literature of common preprocessing prob-
lems. This overview has become Appendix A.

• Build up experience by using the various operators and see how they
work. A list of currently available operators with screen shots is pro-
vided in Appendix B.

• Make a selection of preprocessing problems (or categories) and describe
how the Mining Mart system can be used in solving these problems.
If possible find generalizations of the preprocessing solutions that can

7

Mining Mart IST-1999-11993, Deliverable No. D11.3 8

be presented as templates or design patterns. These descriptions have
become Chapters 3 to 7.

We have used an early prototype version of the Mining Mart system.
During our practices minor and major shortcomings to the initial system
were identified. These were reported to the responsible parties and most of
these shortcomings were overcome in subsequent fixes. In some cases the
functionality of the prototype system was extended. At the time of writing
this report some operators defined in [Eul02] were being incorporated in
the Mining Mart prototype. The added operators included a general feature
construction operator, various feature selection operators, two discretization
operators and some learning operators. (We have sometimes taken an ad-
vance on these additions and described the use of operators before they were
present in the prototype.) The creation of this best practices report, thus,
greatly contributed to the maturation of the Mining Mart system. We be-
lieve the current prototype system will already prove profitable to the early
adopters. The larger public will definitely benefit from a future matured
Mining Mart system.

The next chapter provides an overview of the Mining Mart system.
Chapters 3 through 7 focus on common preprocessing problems and how
to solve these using the Mining Mart system. Chapter 8 lists tips for the
early adopters of the prototype Mining Mart system. While practicing with
the prototype system, we have found these simple tricks and conventions of
great value. Chapter 9 provides an analysis of the strong and weak points of
the Mining Mart system and lists some recommendations for future versions.
The report has two appendices. The first is the result of a literature study
in data preprocessing. The used resources are mentioned in the preceding
bibliography. The second appendix gives a brief overview of the available
operators in the Mining Mart system.

Chapter 2

Overview Mining Mart
System

This chapter gives a brief overview of the goals, principles and architecture
of the Mining Mart system.

2.1 Goal

The success criteria for the Mining Mart project are

• Create a user-friendly access to data mining for non-expert users.

• Speed-up the discovery process.

• Minimize the amount of data kept within KDD procedures.

• Improve the quality of mining by improving the quality of data.

The Mining Mart system developed in workpackage 12 plays a crucial role
in fulfilling these criteria. Workpackage 12 depends heavily on the work done
in other workpackages and integrates many results of these workpackages
into one system.

The main objective for the Mining Mart system is to provide a user-
friendly user interface (see Figure 2.1) for enhanced preprocessing of data
for a knowledge discovery task. It should also be easy to make changes to the
preprocessing steps and then re-run the case. Further it should be possible
with the system to re-apply preprocessing to different data (but with the
same structure as the original data). A last important goal is that it should
be possible to import and export cases, thus enabling parties to exchange
cases with each other.

9

Mining Mart IST-1999-11993, Deliverable No. D11.3 10

This screen shot of the Mining Mart HCI (human computer interface) de-
picts three internal windows. The upper and right windows (the Chain Edi-
tor) show the operators and the order in which they are applied. The lower
left window (the Concept Editor) shows concepts and relationships that are
inputs or outputs for the operators. At the bottom of the screen, buttons
represent the different operators that can be added.

Figure 2.1: Screen shot of the Mining Mart HCI.

2.2 Principles

A key part in the Mining Mart system is the storage of meta data. This is
data about the data itself and about the preprocessing process. The Mining
Mart Meta Model (also known as the M4) defines the meta data model used
by the Mining Mart system. It consists of several objects, including: Case,
Step, Operator, Parameter, Concept, Relationship and BaseAttribute. The
meta data allows to easily adapt and reuse cases.

The Mining Mart system contains various operators for preprocessing.
New operators are still being added to the system. The Mining Mart project
recognizes that applying machine learning does not have to be restricted
to the learning stage: it can also be applied in the preprocessing stage.
Currently the system provides learning operators for dealing with missing
values and for feature construction. Applying learning operators in the
preprocessing stage can help to improve the quality of the data.

Working with the Mining Mart system typically involves the following
steps:

Mining Mart IST-1999-11993, Deliverable No. D11.3 11

• Create the conceptual level and connect it to the business data. First,
we create a concept and base attributes for every relevant table in the
business data. Next, we define the relationships between concepts.
These concepts and relationships define the initial conceptual model.
This conceptual model represents the business data that should be pre-
processed. This business data should be stored in a relational database
(currently only Oracle is supported).

• Define a chain of preprocessing operators. The Mining Mart system
provides a number of operators that can be used for preprocessing.
For every operator an input concept should be selected and some ad-
ditional information may be required. The output of an operator is
either a new concept or a new base attribute depending on the type
of operator. By applying more operators sequentially a preprocessing
chain is defined.

• Compile the chain. This step executes the defined preprocessing chain.
Each operator in the chain is executed. The execution of an operator
results in the generation of SQL code and in a set of views (and some-
times tables) The generated SQL code is stored in the meta data, the
views and tables are stored in the business data. The original business
data tables themselves are not altered. In general the result of a pre-
processing chain is one (or maybe more) view(s) in the business data
schema that can be used as input for a separate mining tool.

2.3 Architecture

The Mining Mart system architecture (see Figure 2.2) consists of the fol-
lowing main components: Concept Editor, Chain Editor, Compiler, meta
model schema and business data schema. The Concept Editor and Chain
Editor act closely together and are both part of the Mining Mart system
HCI (human computer interface). The HCI is written in Java. It uses the
so-called M4Interface to access the meta model schema and the business
data schema. Part of the M4Interface is implemented on the client and an-
other part uses Enterprise Java Beans running in a JBoss application server.
The Compiler is implemented as an RMI server and its methods are called
by the HCI. Because various parts of the system are implemented using
Java (HCI, Compiler, M4Interface) it should be possible to use the system
on various operating systems, like Windows, Unix, Linux or Mac OS. The
operators in the project, however, were required to work on Unix. Although
many will work on for example Windows and Linux, others may not. Not
all combinations of operators and operating systems have been thoroughly
tested at this point in time. The currently most used configuration is to
have both the HCI and the JBoss application server running on a Windows

Mining Mart IST-1999-11993, Deliverable No. D11.3 12

Schematic view of the Mining Mart architecture. The Concept Editor and
Case Editor are part of the HCI. The M4 Interface provides a Java object
interface to the M4 and is divided over the client (Java Swing) and the appli-
cation server (JBoss). The Compiler (Java RMI server) executes operators
and creates resulting tables and views. The database (Oracle) contains the
M4 and the business data.

Figure 2.2: Mining Mart architecture.

(NT or 2000) client and to have the Compiler and Oracle database running
on a Unix (Solaris) server.

2.4 Further Information

There are various other sources available that provide more information
about the Mining Mart project and the Mining Mart system. A good place
to start is the Mining Mart website1 which offers a good overview of the
available documentation. Here also many documents can be downloaded
directly.

The Mining Mart approach is described in: [MoS02], [ZKV01] and [KZV00].
Further information about the Mining Mart system can be found in: [PeF02]
(requirements, system overview), [Eul02] (Compiler and operators), [LaR02]
(M4Interface), [VKZ01] (the Mining Mart Meta Model), [Zu01b] (Compiler)
and [Zu01a] (M4 schema).

1http://www-ai.cs.uni-dortmund.de/FORSCHUNG/PROJEKTE/MININGMART/index.eng.html

Chapter 3

Data Selection

3.1 Problem Description

The Mining Mart system assumes that all business data that is to be used
in a case is stored in one schema in an Oracle database. Any data selection
or preparation that has been applied to the business data to get it into this
form is beyond the scope of the system. When using this data within the
Mining Mart system it is, however, still very likely that some form of data
selection will have to be applied.

Selecting data means reducing the amount of data available for a case
by reducing the depth (that is, the number of rows) or the width (that is,
the number of columns). It may be convenient to work only with part of
the data. In general a balance needs to be found between what can be done
and the time available. As the amount of data may considerably influence
the performance of any data preparation or analysis system it may be a
good idea to work only with part of the data. A key point to keep in mind
when taking a sample of the data is, is the sample still representative enough
for the original data? Using domain knowledge it may become clear that
certain data is not at all relevant for the learning task at hand. This may
be another reason to reduce data. Also the data exploration stage may give
reasons to remove data (for example because of sparsity of data, noisy data
or constants).

In the Mining Mart system the user can specify a sample to use less
data, but samples are also important in using learning operators. All these
operators work on a sample of the original data. The user can specify the
sample size for these operators. For the learning operators to be effective,
the specified sample should not be too small.

In this chapter we will further focus on how data can be selected (or
reduced) using the Mining Mart system.

13

Mining Mart IST-1999-11993, Deliverable No. D11.3 14

3.2 Reducing Depth

With reducing depth we mean reducing the number of records. This can be
done using the row selection operators: RowSelByQuery, RowSelByRandom
and DelRecWMVal.

The RowSelByQuery is a loopable operator that allows selection of rows
by specifying a query. For one or more base attributes of a concept one can
specify a condition and thus restrict the number of rows that will be available
in the output concept. For example, one could select only employees with
high salaries by specifying Salary > 100000. The SQL-operator parameter
can contain Oracle comparison operators like: IN, NOT IN, =, !=, >, <,
LIKE. It is also possible to specify more conditions per attribute by adding
another loop and using the same attribute again with a different condition.
Adding more conditions by adding loops effectively adds an “AND” to the
resulting SQL statement. Note that with this dialog it is not possible to
build SQL statements containing “OR” operators.

The RowSelByRandom, as could be expected from the name, randomly
selects rows from a table. With the “How Many Rows” parameter one can
specify how many rows approximately should be selected from the table.
More precise it specifies a probability per row to be selected. This probability
is defined by the “How Many Rows” parameter and the total number of
rows. The number of selected rows may deviate a bit from the number of
rows specified by the “How Many Rows” parameter. The operator is based
on the java.util.Random class.

The operator for deleting missing values (DelRecWMVal) is a specialized
row selection operator. It only selects rows where the specified attribute is
not null. It is further described in Section 4.2.

3.2.1 Sample Size, Variability and Confidence

When taking a sample of the data an important point is if the sample is
still representative enough. In other words: is the variability in the sample
close enough to the variability in the original data? But when is the data
sample too small? When is it large enough? The variability in a sample is
measured by the variance. In general the changes in the variance of a sample
will become smaller when the sample size increases. Repeatedly calculating
the variance for an increasing sample size and comparing it with the variance
of the original data can give a certain confidence level that the variability
of the variable is caught. The number of positive tests needed for a certain
confidence and equal variability level is given by the simplified formula n =
log(1− c)/ log(c) where n is the number of tests and c is the confidence and
variabilitylevel ([Pyl99]). For example, to obtain a 95% confidence that 95%
of the variability has been captured one needs 59 consequative positive tests.

Now this is a very exact way of getting a certain confidence, but unless

Mining Mart IST-1999-11993, Deliverable No. D11.3 15

one has a tool that calculates the variance for increasing sample sizes and
determines the confidence level from that it is not very practically applica-
ble. At this time the Mining Mart system does not have an operator that
determines the required sample size that is needed to obtain a certain con-
fidence level. However, the point we want to make is that the change in
variance with changing sample size is important. It may not be practical
to determine the variance for a large number of sample sizes, but it is very
much feasible to do this for a small number of samples. The RowSelection-
ByRandom operator in combination with the update statistics menu item
can be used for this. Update statistics determines basic statistics for the
specified concept including the variance. These values can be viewed with
the show statistics menu item. Creating random samples of increasing size
(say 10%, 20%, 30%,...,100%) and comparing the variance will not give a
clearly defined confidence level, but at least it will give some feeling if the
variability of the sample resembles that of the original data.

The variance can only be determined for numerical attributes, so for
nominal variables it does not work. An alternative measure that can be
used here is to look at the change in the relative occurrence of values with
increasing sample size. Suppose for example that a variable representing em-
ployee skill can have values “analyst”, “specialist”, and “senior specialist”.
Suppose further that for a certain data set these values occur for respec-
tively 47%, 35% and 18% of the instances. When using a small sample the
relative occurrence will likely be different, but as the sample size increases
it will converge to what was present in the original data set. The update
statistics option will also count the number of occurrences of different values
for a certain attribute. It will not show the relative proportion of the values
however, so this must be done manually. This is obviously not an ideal way
of determining sample size, but if no other tool is at hand it could be used
to decide on sample size.

3.3 Reducing Width

Another form of data selection is selecting features. There are two basic
ways to select features in Mining Mart:

1. When connecting a concept to a database object only select relevant
columns.

2. Use a feature selection operator.

Concepts of type DB (database) are directly based on a database ob-
ject. They determine which data is available for preprocessing within the
Mining Mart system. By only creating base attributes for those columns
that are relevant one is in effect doing feature selection. A small example
may illustrate this. Consider a table customer with columns id, name, date

Mining Mart IST-1999-11993, Deliverable No. D11.3 16

of birth, age, type, nr items purchased, value items purchased. On the con-
ceptual level one would create a concept Customer and base attributes that
may be mapped to columns. In this case the case designer decides not to
create a base attribute for the date of birth field as the (derived) age field
is considered more useful.

The second way of selecting features is by using an operator. At the time
of writing the only implemented operator which could be used for feature
selection is MultiRelationalFeatureConstruction. It allows to combine fea-
tures from several concepts into one output concept. The features may be
selected from the input concepts. Several other feature selection operators
have been defined already for the Mining Mart system (see [Eul02]), but at
this time are waiting to be implemented into the Mining Mart HCI. These
are:

• FeatureSelectionByAttributes. This operator simply allows the user
to select certain features from the input concept.

• StochasticFeatureSelection. Uses a stochastic correlation measure to
select a subset of the attributes.

• GeneticFeatureSelection. Uses a genetic algorithm to select a subset
of the attributes. Individuals of the population are evaluated using
C4.5.

• SGFeatureSelection. Here first StochasticFeatureSelection is applied
and then GeneticFeatureSelection is applied.

The last three operators are learning operators that work with a sample
of the data. They can be useful when it is not clear (from domain knowledge)
which features are the most informative.

Chapter 4

Missing Values

4.1 Problem Description

Missing values frequently occur in operational data. That values are missing
can have various causes. They can be for example the result of faults in the
technical measuring infrastructure, human errors or the variable may not
have been measured in the first place.

Although many modeling tools have some way of dealing with incomplete
data, these mechanisms are not always robust and in general the tools will
benefit from receiving cleaned data.

Various preprocessing methods exist to handle missing values including:

• Ignore (delete) records with missing values.

• Fill in the missing values manually.

• Replace the missing value with a constant, the variable mean, or the
most probable value.

One should always be careful in handling missing values. When records
with missing values are deleted information is removed. This information
could well be critical to the discovery task. Typically in fraud detection lack
of information is a valuable indication of interesting patterns. Also when
replacing missing values with default values one should realize that this may
damage the data set structure.

In the following sections support for dealing with missing values given
by the Mining Mart system will be discussed.

4.2 Delete Records with Missing Values

The Mining Mart system has an operator called DelRecWMVal that deletes
records with missing values for a given attribute. Its use is simple and

17

Mining Mart IST-1999-11993, Deliverable No. D11.3 18

straightforward: specify the input concept, target attribute and output con-
cept and as a result the output concept is automatically created and all
records that have a NULL value for the given target attribute are removed.
It is not a loopable operator so to delete records with missing values in other
attributes the operator needs to be reapplied.

4.3 Basic Replacement Operators for Missing Val-
ues

There are currently four operators in Mining Mart that do a basic replace-
ment of missing values:

• AssDefValue: Assigns a specified (default) value to all missing values
of an attribute.

• AssAvgValue: Assigns the average value of all present values to all
missing values of an attribute. If statistics are stored for the concept
these are used to find the average value otherwise the average is calcu-
lated. This operator of course only works with numerical attributes.

• AssMedValue: Assigns the median value of all present values to all
missing values of an attribute. The median value is the middle value
taken from the list of ordered values. If the list is even it is the average
of the two middle values. Statistics should have been calculated for
the concept for this operator to work. This operator only works with
numerical attributes.

• AssModValue: Assigns the modal value to all missing values of an
attribute. The modal value is the most frequently occurring value in
the list of values. This operator also requires statistics to have been
calculated for the concept.

One must realize when replacing missing values with these operators that
one is actually distorting the data set. One is saying that for every missing
value every time the same value was measured (which is very unlikely).
Therefore these operators should be used with care.

The average, median and modal operators are operators to find the “cen-
ter value” for an attribute. So effectively one is seeking to replace missing
values with the center value. The idea is that this “center value” is the best
(or least worst) estimate for the missing values.

Depending on the form of the distribution of values one operator may
better represent the “center value” than the other. In a strictly normal
distribution the average, median and modal values are the same. In a skewed
(not symmetric) distribution the median better represents the center value
than the average. In other cases the modal value may be preferred.

Mining Mart IST-1999-11993, Deliverable No. D11.3 19

4.4 Advanced Replacement Operators for Missing
Values

The Mining Mart system contains three additional learning operators for
dealing with missing values. These are learning operators that build a model
using selected predictive attributes and the values that are present in the
attribute that also has missing values. The resulting model is then applied
to predict the values that were missing. The operators mentioned here work
with a sample of the business data. The user can specify how large the
sample should be. This provides an efficient way for dealing with large
amounts of data.

The learning operators available are:

• Missing values with decision tree (MvwDecTree).

• Missing values with decision rules (MvwDecRules).

• Missing values with SVM for regression (MvwRegSVM).

The decision tree operator uses the C4.5 algorithm to build a decision
tree. Predicting attributes are input for the model and the model then
predicts the value of the attribute that is missing. The predicting attributes
may be nominal or numeric and the target attribute should be nominal.

In general learning operators may benefit from having input values nor-
malized. It prevents one predicting variable to outweigh another. Therefore
it is good practice to consider normalizing predicting attributes before ap-
plying a learning operator.

The operator has a pruning confidence parameter (value 0-100). Higher
values will lead to more pruning. Very high pruning values may lead to a
model that is learning noise (see Chapter 6). One could for example apply
the decision tree operator or decision rules operator multiple times (using
the looping functionality) specifying a different pruning confidence (say 60,
70, . . . , 100) with a different output attribute. In order to obtain a better
model the sample size could be increased or the pruning setting could be
changed.

The decision rules operator also uses the C4.5 algorithm. It determines
a set of rules from the predicting attributes and uses those to predict the
value of the target attribute. It can work with the same data types as the
decision tree operator.

For the SVM in regression mode the predicting attributes should be
numeric.

How well applying these operators works will depend among other things
on the amount of data, the percentage of missing values for the target at-
tribute and the relations between the predicting attributes and the target
attribute.

Chapter 5

Time Series

5.1 Problem Description

Series variables always are at least two-dimensional, although one of the
dimensions may be implicit. Series data enfolds their information in the
ordering of the data. Preserving the ordering is the main reason that series
data has to be prepared differently from non-series data.

Any series shape can be thought of as being constructed from simple
wave forms, each of a separate single frequency. The most common type of
series variable is a time series, in which a series of values of some event are
recorded over a period of time. The issues and techniques described about
time series also apply to any other displacement series.

Mining Mart provides five operators specifically for manipulating se-
ries. Windowing is a basic technique to create an interval in the series.
SimpleMovingFunction, WeightedMovingFunction and ExponentialMoving-
Function corresponds to the simple, weighted, and exponential moving aver-
age technique for smoothing series, respectively. SignalToSymbolProcessing
is a time series generalization/abstraction operator.

This chapter uses a sales concept as a running example. The “Sales”
concept contains four attributes: shop ID (of type numeric), year + week
number (of type time), sale number (numeric), and item ID (numeric). In
Table 5.1, we present a data fragment of the corresponding database table.
The description of the columns as well as the connection with the concept
attributes should be clear from the context. The scenario that is described
in the text is shown graphically in Figure 5.1 on page 32.

The section below describes how to handle the non-uniform displacement
in the time series. Next, the various time series techniques the Mining
Mart system supports are illustrated. We conclude this chapter with a brief
recapitulation.

20

Mining Mart IST-1999-11993, Deliverable No. D11.3 21

SHOP WEEK SALE ITEM
55 199548 9 3269
55 199548 2 13150
55 199549 4 3269
55 199549 3 13150
55 199550 5 3269
55 199550 3 13150
55 199551 10 3269
55 199551 4 13150
55 199552 4 3269
55 199552 4 13150

141 199548 7 3269
141 199548 2 13150
141 199549 11 3269
141 199549 3 13150
141 199550 4 3269
141 199550 5 13150
141 199551 7 3269
141 199551 4 13150
141 199552 4 3269
141 199552 3 13150

Table 5.1: Data fragment of the running time series example (“Sales”)

5.2 Handling Non-uniform Displacement

The time series operators presuppose that the time variable is uniformly
increasing. The time variable in our running example (Table 5.1) is not
uniformly increasing. This non-uniform displacement has the following two
causes.

1. The time attribute makes a huge jump at the end of the year, for
example, from 199552 to 199601 (not shown in the data fragment).
Therefore a mapping has to be created from the non-uniform displace-
ment variable to a uniform displacement variable.

2. The “Sales” concept contains sales data from multiple shops and mul-
tiple items (two shops and two items are shown in the data fragment).
The sales data of a week are aggregated per shop and per item. The
total sales of an item in a shop in a particular week is recorded. Each
week appears approximately as many times as the number of shops
multiplied by the number of items. As a consequence only within a
shop/item segment the displacement can be uniformly increasing.

Conceptually, one would first segment the “Sales” concept according to
the values of the shop and item attributes. Next one would create for each
segment a mapping from the non-uniform displacement variable to a uniform

Mining Mart IST-1999-11993, Deliverable No. D11.3 22

displacement variable. In practice, however, we can minimize the number
of operators applied by first mapping and next segmenting.

The mapping concept, “Uniform Time Scale”, contains two attributes:
week ID (time) and time step (time). In Table 5.2, we present a data frag-
ment of the corresponding database table. The description of the columns
as well as the connection with the concept attributes should be clear from
the context.

WEEK ID STEP
199548 1
199549 2
199550 3
199551 4
199552 5
199601 6
199602 7
199603 8
199604 9

Table 5.2: Data fragment of the uniform time scale mapping (“Uniform
Time Scale”)

The JoinByKey operator can now be used to create a new concept which
joins the “Sales” concept and the “Uniform Time Scale” concept. The re-
sulting concept “Uniform Sales” is an extension of the “Sales” concept with
a uniformly increasing displacement variable. The new concept contains five
attributes: shop ID (numeric), year + week number (time), sale number (nu-
meric), item ID (numeric) and time step (time). In Table 5.3, we present
a data fragment of the corresponding database table. The description of
the columns as well as the connection with the concept attributes should be
clear from the context.

The “Uniform Sales” concept contains sales data of multiple shops and
items. As a consequence only within segments of one shop and one item the
displacement is uniformly increasing. Thus the concept should be segmented
per shop and item to get an overview of the weekly sales per shop and item.
Therefore, we apply the segmentation operator SegmentationStratified twice
(once for the shop and once for the item attribute) to the “Uniform Sales”
concept. The resulting concept “Uniform Segmented Sales” contains the
remaining three attributes of the unsegmented concept. The attributes shop
and item have been removed from the concept. In contrast the new concept
contains four segments, that is, one column set for each shop/item pair.

In Table 5.4, we present a data fragment of the corresponding database
tables. The description of the columns as well as the connection with the
concept attributes should be clear from the context.

Mining Mart IST-1999-11993, Deliverable No. D11.3 23

SHOP WEEK SALE ITEM STEP
55 199548 9 3269 1
55 199548 2 13150 1
55 199549 4 3269 2
55 199549 3 13150 2
55 199550 5 3269 3
55 199550 3 13150 3
55 199551 10 3269 4
55 199551 4 13150 4
55 199552 4 3269 5
55 199552 4 13150 5

141 199548 7 3269 1
141 199548 2 13150 1
141 199549 11 3269 2
141 199549 3 13150 2
141 199550 4 3269 3
141 199550 5 13150 3
141 199551 7 3269 4
141 199551 4 13150 4
141 199552 4 3269 5
141 199552 3 13150 5

Table 5.3: Data fragment of the running uniformly increasing time series
example (“Uniform Sales”)

5.3 Windowing

The Windowing operator is applicable to uniform displaced time series data.
Windowing takes two attributes from the input concept: the time stamps
and the values. Each row of the output concept gives a time window. Two
time stamps define the beginning and ending of each time window. Further,
there will be as many value attributes as specified by the window size.

The running example “Uniform Segmented Sales” concept contains seg-
mented sales data per shop and item. We apply the windowing operator to
produce a new output concept “Sales Window3” with five attributes (start
week, end week, week 1, week 2, week 3) based on a window of length 3 (for
step attribute of type time) and a displacement distance of 1 (week). The
corresponding data fragment for one segment (shop 55, item 3269) is given
in Table 5.5.

Windowing is always assigned to time periods. The output values of
windowing are the actual values in the time period. The week numbers
of the time period are helpful information to put the results into perspec-
tive. Therefore we map the time step to the year + week number of the
time steps. The JoinByKey operator in combination with the “Uniform
Segmented Sales” is well suited to perform this task. Finally, we apply the
Unsegment operator twice (for the segmented attributes shop and item).

Mining Mart IST-1999-11993, Deliverable No. D11.3 24

Shop 55 - item 3269 segment Shop 55 - item 13150 segment
WEEK SALE STEP
199548 9 1
199549 4 2
199550 5 3
199551 10 4
199552 4 5

WEEK SALE STEP
199548 2 1
199549 3 2
199550 3 3
199551 4 4
199552 4 5

Shop 141 - item 3269 segment Shop 141 - item 13150 segment
WEEK SALE STEP
199548 7 1
199549 11 2
199550 4 3
199551 7 4
199552 4 5

WEEK SALE STEP
199548 2 1
199549 3 2
199550 5 3
199551 4 4
199552 3 5

Table 5.4: Data fragment of the running uniform segmented time series
example “Uniform Segmented Sales”

START END WK1 WK2 WK3 Denotes that the weekly sales

1 3 9 4 5 in periode 1995-48 to 1995-50 are 9, 4, and

5, respectively

2 4 4 5 10 in periode 1995-49 to 1995-51 are 4, 5, and

10, respectively

3 5 5 10 4 in periode 1995-50 to 1995-52 are 5, 10, and

4, respectively

Table 5.5: Data fragment of the Windowing example (“Sales Window3”)

The resulting concept is the an unsegmented concept, “Unsegmented Sales
Window3”, with seven attributes. The corresponding data fragment for is
given in Table 5.6.

5.4 Simple Moving Average

The Mining Mart operator SimpleMovingFunction implements the simple
moving average technique. The SimpleMovingFunction operator combines
windowing (see Section 5.3) with the computation of the average value in
each window. The average of the values in the window is stored in one output
attribute. The user specifies the size of the window and the displacement
distance in the window. The SimpleMovingFunction operator assigns the
average value of a window to the time interval associated with the window.

The running example “Uniform Segmented Sales” concept contains seg-

Mining Mart IST-1999-11993, Deliverable No. D11.3 25

SHOP ITEM START END WK1 WK2 WK3
55 3269 199548 199550 9 4 5
55 3269 199549 199551 4 5 10
55 3269 199550 199552 5 10 4
55 13150 199548 199550 2 3 3
55 13150 199549 199551 3 3 4
55 13150 199550 199552 3 4 4

141 3269 199548 199550 7 11 4
141 3269 199549 199551 11 4 7
141 3269 199550 199552 4 7 4
141 13150 199548 199550 2 3 5
141 13150 199549 199551 3 5 4
141 13150 199550 199552 5 4 3

Table 5.6: Data fragment of the unsegmented Windowing example (“Unseg-
mented Sales Window3”)

mented sales data per shop and item. We applied the SimpleMovingFunc-
tion operator to produce a new output concept “Sales-SMA3” with three
attributes (start week, end week, sma3 sale) based on a window of length
3 (for the time step attribute of type time) and a displacement distance of
1 (week). The corresponding data fragment for one segment (shop 55, item
3269) is given in Table 5.7.

START END SALE SMA3 Denotes the sales average

1 3 6 of 9, 4, and 5 over the period 199548 – 199550

2 4 6.333 of 4, 5, and 10 over the period 199549 – 199551

3 5 6.333 of 5, 10, and 4 over the period 199550 – 199552

Table 5.7: Data fragment of the SimpleMovingFunction example

Moving averages are often used to remove noise and reduce the variance
in a series. In order to reduce the variance, we would like to assign the com-
puted average value of the SimpleMovingFunction operator to a particular
time point (for example, the center) in the time period instead of to the
time period as a whole. The JoinByKey operator in combination with the
“Uniform Segmented Sales” and a window mapping concept is well suited
to perform this task.

Suppose a mapping concept, “Window 3”, that contains three time at-
tributes: first window step, mid window step, and last window step. The
concept1 indicates that a window of size three has, three time points. The
beginning of the window, the middle of the window and the end of the
window. In Table 5.8, we present a data fragment of the corresponding
database table. The description of the columns as well as the connection
with the concept attributes should be clear from the context.

1The concept can in a trivial way be extended to windows of other sizes.

Mining Mart IST-1999-11993, Deliverable No. D11.3 26

FIRST MID LAST
1 2 3
2 3 4
3 4 5
4 5 6
5 6 7

Table 5.8: Data fragment of the Window 3 mapping

Joining the “Uniform Segmented Sales” and “Window 3” concepts with
the JoinByKey operator at the time step and the mid window step yields an
auxiliary concept that places the “Uniform Segmented Sales” in the center
of a window of size 3. Joining this auxiliary concept and the simple moving
average concept (“Sales-SMA3”) concept by means of the JoinByKey oper-
ator at the first window step and the window start yields a SMA3 smoothed
uniform segmented sales concept with seven attributes: window start (i.e,
the first window step), window end, time step (i.e, the mid window step),
the last window step, the year + week number, the sales number and the
simple moving average of the sales. The FeatureSelectionByAttributes op-
erator finally can remove all auxiliary windowing attributes, resulting in a
smoothed segmented sales concept, “Smoothed Uniform Segmented Sales”,
with three attributes: the year + week number, the actual sales number
and the smoothed sales number. The corresponding data fragment for one
segment (shop 55, item 3269) is given in Table 5.9.

WEEK SALE SALE SMA3
199549 4 6
199550 5 6.333
199551 10 6.333

Table 5.9: Data fragment of the (SMA3) Smoothed Uniform Segmented
Sales example

Finally, we apply the Unsegment operator twice (for the segmented at-
tributes shop and item). The resulting concept is the unsegmented concept,
“Unsegmented Smoothed Uniform Sales”, with the two additional attributes
shop ID and item ID.

5.5 Weighted Moving Average

The Mining Mart operator WeightedMovingFunction implements the weighted
moving average technique. The WeightedMovingFunction operator com-
bines windowing (see Section 5.3) with the computation of the weighted
average value for the window. The weighted average of the window is stored
in one output attribute. The user specifies the weights of the window val-

Mining Mart IST-1999-11993, Deliverable No. D11.3 27

ues and the displacement distance in the window. The number of weights
determines the size of the window. The weights must sum to 1. The Weight-
edMovingFunction operator assigns a weighted average value for a window
to the time interval associated with the window.

The running example “Uniform Segmented Sales” concept contains seg-
mented sales data per shop and item. We applied the WeightedMoving-
Function operator to produce a new output concept “Sales-WMA3” with
three attributes (start week, end week, wma3 sale) based on a window with
weights 0.2, 0.3, and 0.5 of length 3 (for the time step attribute of type time)
and a displacement distance of 1 (week). The corresponding data fragment
for one segment (shop 55, item 3269) is given in Table 5.10.

START END SALE WMA3 Denotes the weighted average

1 3 5.5 (9× 0.2 + 4× 0.3 + 5× 0.5) over the period

199548 – 199550

2 4 7.3 (4× 0.2 + 5× 0.3 + 10× 0.5) over the period

199549 – 199551

3 5 6 (5× 0.2 + 10× 0.3 + 4× 0.5) over the period

199550 – 199552

Table 5.10: Data fragment of the WeightedMovingFunction example

Moving averages are often used to remove noise and reduce the vari-
ance in a series. In order to reduce the variance, we would like to assign
the computed average value of the WeightedMovingFunction operator to a
particular time point (for example the weighted center) in the time period
instead of to the time period as a whole. The JoinByKey operator in combi-
nation with the “Uniform Segmented Sales” and the “Window 3” mapping
concept (see Section 5.4) is well suited to perform this task.

Joining the “Uniform Segmented Sales” and “Window 3” concepts with
the JoinByKey operator at the time step and the window step nearest to
the weighted center of the window (that is, the last window step) yields
an auxiliary concept that places the “Uniform Segmented Sales” in the
weighted center of a window of size 3. Joining this auxiliary concept and
the weighted moving average concept (“Sales-WMA3”) concept by means
of the JoinByKey operator at the first window step and the window start
yields a WMA3 smoothed uniform segmented sales concept with seven at-
tributes: window start (i.e, the first window step), window end, mid window
step, time step (i.e, the last window step), the year + week number, the sales
number and the weighted moving average of the sales. The FeatureSelection-
ByAttributes operator finally can remove all auxiliary windowing attributes,
resulting in a smoothed segmented sales concept, “Smoothed Uniform Seg-
mented Sales”, with three attributes: the year + week number, the actual
sales number and the smoothed sales number. The corresponding data frag-
ment for one segment (shop 55, item 3269) is given in Table 5.11.

Mining Mart IST-1999-11993, Deliverable No. D11.3 28

WEEK SALE SALE WMA235
199550 5 5.5
199551 10 7.3
199552 4 6

Table 5.11: Data fragment of the (WMA235) Smoothed Uniform Segmented
Sales example

Finally, we apply the Unsegment operator twice (for the segmented at-
tributes shop and item). The resulting concept is the unsegmented concept,
“Unsegmented Smoothed Uniform Sales”, with the two additional attributes
shop ID and item ID.

5.6 Exponential Moving Average

The Mining Mart operator ExponentialMovingFunction implements the ex-
ponential moving average technique. The ExponentialMovingFunction oper-
ator is a time series smoothing operator. The smoothed value for the window
is stored in one output attribute. The distance determines the size of the
window. The last value in the window is multiplied by the head weight. The
first value is multiplied by the tail weight. The smoothed value becomes the
first value of the next window. The head and tail weights must sum to 1.
The ExponentialMovingFunction operator assigns a moving average value
for a window to the final time point of the time interval associated with the
window.

The running example “Uniform Segmented Sales” concept contains seg-
mented sales data per shop and item. We applied the ExponentialMoving-
Function operator to produce a new output concept “Sales-EMA55” with
two attributes (ema55 time step, ema55 sale) based on a window with head
and tails weights 0.55 and 0.45, respectively (for the time step attribute of
type time) and a displacement distance of 1 (week), that is of window length
2. The corresponding data fragment is given in Table 5.12.

Moving averages are often used to remove noise and reduce the variance
in a series. Exponential moving averages do not suffer from the delay prob-
lem. In contrast with the simple and weighted moving averages, exponential
moving averages are already assigned to time points and not to time peri-
ods. All that remains to be done is to map the time step to the year + week
number and add the actual sales. The JoinByKey operator in combination
with the “Uniform Segmented Sales” is well suited to perform this task.

Joining the “Uniform Segmented Sales” and the concept “Sales-EMA55”
concepts with the JoinByKey operator at the time steps yields a EMA55
smoothed uniform segmented sales concept with four attributes: time step,
the year + week number, the actual sales number and the moving average
of the sales. The FeatureSelectionByAttributes operator finally can remove

Mining Mart IST-1999-11993, Deliverable No. D11.3 29

STEP SALE EMA55 Denotes the

1 9 actual sale of week 1995-48 by default

2 6.25 weighted average of actual sale of week 1995-49 and

the weighted average of week 1995-48 (4× 0.55 + 9×

0.45)

3 5.5625 weighted average of actual sale of week 1995-50 and

the weighted average of week 1995-49 (5×0.55+6.25×

0.45)

4 8.003125 weighted average of actual sale of week 1995-51 and

the weighted average of week 1995-50 (10 × 0.55 +

5.5625× 0.45)

5 5.80140625 weighted average of actual sale of week 1995-52 and

the weighted average of week 1995-51 (4 × 0.55 +

8.003125× 0.45)

Table 5.12: Data fragment of the ExponentialMovingFunction example

the auxiliary time step attribute, resulting in a smoothed segmented sales
concept, “Smoothed Uniform Segmented Sales”, with three attributes: the
year + week number, the actual sales number and the smoothed sales num-
ber. The corresponding data fragment for one segment (shop 55, item 3269)
is given in Table 5.13.

WEEK SALE SALE EMA
199548 9 9
199549 4 6.25
199550 5 5.5625
199551 10 8.003125
199552 4 5.80140625

Table 5.13: Data fragment of the (EMA55) Smoothed Uniform Segmented
Sales example

Finally, we apply the Unsegment operator twice (for the segmented at-
tributes shop and item). The resulting concept is the unsegmented concept,
“Unsegmented Smoothed Uniform Sales”, with the two additional attributes
shop ID and item ID.

5.7 Signal to Symbol Processing

The Mining Mart operator SignalToSymbolProcessing implements the signal
to symbol processing approach. This approach bridges the gap between
numerical sensor data and symbol approaches to learning. The approach
transforms a stream of numeric sensor measurements into a sequence of
symbolic descriptions.

SignalToSymbolProcessing is a time series abstraction operator. Two

Mining Mart IST-1999-11993, Deliverable No. D11.3 30

output attributes form the bounds of the interval. The average value and
average increase of each interval is stored in one output attribute. The user
specifies the tolerance that determines when the average increase, interpo-
lated from the last interval, deviates thus that a new interval has to be
created.

The SignalToSymbolProcessing operator creates time intervals in the
time series based on a tolerance measure on the average increase in the time
interval. The SignalToSymbolProcessing operator creates the largest time
interval whose variance in increase is less than the tolerance. We applied
the SignalToSymbolProcessing operator to produce a new output concept
“Sales-S2S4” with four attributes (start time, end time, average value and
average increase value) based on a tolerance of 4. The SignalToSymbolPro-
cessing operator learned three intervals in the initial fragment of the running
example. The corresponding learned data fragment for one segment (shop
55, item 3269) is given in Table 5.14.

START END VALUE INCREASE Denotes that the average sale

1 1 9 0 in week 1995-48 is 9

2 4 6.333 3 in period 1995-49 to 1995-51 is

6.333 and sale increased weekly

with 3 on average

5 5 4 0 in week 1995-52 is 4

Table 5.14: Data fragment of SignalToSymbolProcessing example

The data fragment of the running example is too small to show major
new insights, but serves to illustrate the possibilities of signal to symbol
processing. In the running example the period of 1995-48 to 1995-52 is
partitioned into three intervals. The first and last intervals show stable
sales, for the trivial reason that they span just one week. The middle interval
shows an increase in sale for the period 1995-49 to 1995-51.

SignalToSymbolProcessing is a time series abstraction operator that can
be used to partition a time period in intervals of stability, growth and decline.
In contrast with the various moving averages, signal to symbol processing
is always assigned to time periods. The output values of signal to symbol
processing are averages over the time period. The actual sales at the start
(or end or both) of the time period are helpful information to put the results
into perspective. All that remains to be done is to map the time step to
the year + week number of the time steps and add the actual sales. The
JoinByKey operator in combination with the “Uniform Segmented Sales” is
well suited to perform this task.

Joining the “Uniform Segmented Sales” and the concept “Sales-S2S4”
concepts with the JoinByKey operator twice2 at the interval start and end

2Alas, without manual manipulation of the concept base attribute names, the current
Mining Mart prototype can only join concepts once, due to name clashes in the underlying

Mining Mart IST-1999-11993, Deliverable No. D11.3 31

time steps yields a uniform segmented sales concept with eight attributes:
interval start time step (that is the time step of the first join), interval
end time step (that is the time step of the second join), the interval start
year + week number, the interval end year + week number, the interval
start actual sales number, the interval end actual sales number, the average
sale in the time period and the average increase in sale in the time period.
The FeatureSelectionByAttributes operatorfinally can remove the auxiliary
time step attributes, resulting in an abstracted segmented sales concept,
“Abstracted Uniform Segmented Sales”, with six attributes: the starting
year + week number, the starting sales number, the ending year + week
number, the ending sales number, the average sale and the average increase.
The corresponding data fragment for one segment (shop 55, item 3269) is
given in Table 5.15.

START END SALE 1 SALE 2 VALUE INCREASE
199548 199548 9 9 9 0
199549 199551 4 10 6.333 3
199552 199552 4 4 4 0

Table 5.15: Data fragment of the Abstracted Uniform Segmented Sales ex-
ample

Finally, we apply the Unsegment operator twice (for the segmented at-
tributes shop and item). The resulting concept is the unsegmented concept,
“Unsegmented Smoothed Uniform Sales”, with the two additional attributes
shop ID and item ID.

5.8 Summarizing

This chapter described the five time series operators in the Mining Mart
system: one generic windowing operator, three moving average operators
and one signal to symbol abstraction operator (the scenario is shown in
Figure 5.1). All five operators require a uniformly increasing distributed
displacement (time) variable. The following two operations were needed to
fulfill this requirement.

• Join the “Sales” input concept with a “Uniform Time Scale” concept.

• Segment the “Sales” input concept according to the values of the iden-
tification attributes shop and item.

Series variables always are at least two-dimensional. Thus, all time series
operators operate on a time base attribute and a value base attribute of an

database column names. Currently, only the actual sale at the start or the end of the
interval can be added.

Mining Mart IST-1999-11993, Deliverable No. D11.3 32

The figure shows the scenario that is described in this chapter. Several time
series operators are applied to handle shop sales data.

Figure 5.1: Example of applying time series operators.

Mining Mart IST-1999-11993, Deliverable No. D11.3 33

input concept. The time series operators yield a time period as output. The
user specifies the size of the time period, except in the case of the Signal-
ToSymbolProcessing operator which determines the size automatically.

The Windowing operator simply gave an overview of the values of the
target attribute. Moving averages are often used to remove noise and reduce
the variance in a series. In order to reduce the variance, we assigned the
computed average value of the moving average operators to a particular
time point in the time period instead of to the time period as a whole. The
JoinByKey operator in combination with the “Uniform Segmented Sales”
and a window mapping concept performed this task.

The Windowing and SignalToSymbolProcessing operators only apply to
intervals of time. The results of these two operators were joined with the
“Uniform Segmented Sales” to add the actual sales of the interval start and
end times as a reference.

The FeatureSelectionByAttributes operator operator was used to remove
all auxiliary time window attributes from the output concept. Finally we ap-
plied the Unsegment operator to combine the results of the various segments
to one concept again.

Chapter 6

Noise

6.1 Problem Description

Operational data tend to be noisy: the data record errors and unusual values.
There are many possible reasons for noisy data. Most mining routines have
procedures for dealing with noisy data, but they are not always robust.
Noisy data may be due to faulty data collection instruments that produced
unusual values. There may have been human or computer errors at data
transmission or entry.

Noise is related to other data cleaning preprocessing problems, like pol-
lution, missing values, and empty values. Pollution is a result of people
who try to stretch a system beyond its original intended functionality. This
may be a result of a changing business environment while the data model
remains fixed. Missing and empty values are discussed in Chapter 4. Chap-
ter 5 handles about time series, where smoothing is one of the most common
techniques to reduce noise in time series.

This chapter concerns noise in non-series data. We focus on learning
techniques that predicts the value of an attribute from a set of predicting
attributes. The Mining Mart system provides three learning operators for
creating a support vector machine, a set of decision rules or a decision tree.

SupportVectorMachineForRegression: A Support Vector Machine is
trained in regression mode using the predicting attributes.

PredictionWithDecisionRules: A set of decision rules is trained using
the predicting attributes.

PredictionWithDecisionTree: A decision tree is trained using the pre-
dicting attributes.

34

Mining Mart IST-1999-11993, Deliverable No. D11.3 35

6.2 Running Example

The three learning operators have a lot in common from the end-user’s point
of view. Each operator takes a set of predicting attributes as input to learn
a user specified target attribute. The operators differ in the operator specific
parameters, like the error threshold “epsilon” (Section 6.3) or the pruning
confidence level (Section 6.4).

As a running example consider an “Employee” concept containing the
attributes “age”, “salary”, “department”, “hire date”, “commission”, and
other (identification) attributes, like “employee number” and “name”. One
might try to predict the employee’s commission from the learning attributes
“age”, “salary”, “department”, and “hire date”.

The learning operators are only able to learn discrete values. Thus, the
“commission” attribute has to be discretized. One may want to normalize
(see Chapter 7) the “commission” attribute before discretization. Linear
scaling, for instance, is a technique to limit the range of possible values of
the attribute, which will simplify the construction of numeric intervals for
the discretization operator.

The number of defined intervals in the discretization operators depends
on the required degree of granularity. Typically, one would define equiwidth
intervals, for example covering a range of 100 values ($0 – $100, $100 –
$200, $200 – $300, . . .). In special circumstances one might define, guided
by domain knowledge, intervals of alternating sizes (for example $0 – $100,
$100 – $250, $250 – $1000, . . .).

After applying the normalization and discretization feature construction
operators, the “Employee” concept contains the additional attributes “nor-
malized commision” and “commission category”. Next, any of the three
learning operator may be applied to learn the normalized discretized target
attribute “commission category”.

6.3 Support Vector Machine

The SupportVectorMachineForRegression operator is a data mining oper-
ator. The operator trains a Support Vector Machine (SVM) in regression
mode using the indicated predicting attributes. The indicated target at-
tribute serves as the target function to train the Support Vector Machine.
A new output attribute contains the predicted values for the target attribute.

A special evaluation operator, the ComputeSVMError operator, evalu-
ates the result of the Support Vector Machine. Values in the target attribute
are compared with the predicted values.

Both operators are loopable, feature construction operators. Thus, the
user can specify multiple loops for one operator. The user can vary the
SVM-specific parameters in each loop to determine the best learning model.

Mining Mart IST-1999-11993, Deliverable No. D11.3 36

The user should cautiously examine the results and be aware of overfitting.
The goal of the SVM is to find a function that has at most “epsilon”

deviation from the actual target values for all the training data. In other
words, we do not care about errors as long as they are less than “epsilon”. A
normalisation parameter balances training error against generalisation error.
The bias towards predicting too high or too low values is determined by the
ratio between the positive and negative loss function parameters.

After applying the normalization and discretization feature construction
operators to the running example, the “Employee” concept contains the ad-
ditional attributes “normalized commision” and “commission category”. We
will predict the employee’s commission from the learning attributes “age”,
“salary”, “department”, and “hire date” with a SVM. Thus, the SupportVec-
torMachineForRegression operator is applied next to learn the “commission
category” target attribute.

Suppose the user specifies five loops for the operator. As input concept
the user select the “Employee” concept. This parameter, by definition, stays
the same in all loops. In each of the five loops the user has to select the
“commission category” as target attribute, the attributes “age”, “salary”,
“department”, and “hire date” as predicting attributes. The user varies the
allowed error parameter (“epsilon”) stepwise in each loop, say from 0.10 in
the first loop to 0.50 in the fifth loop, and specifies a separate output at-
tribute for each loop, say “predicted commission category 0.10”, “predicted
commission category 0.20”, The user will have to assign values for the
remaining attributes (such as kernel type and sample size) and consistently
use these values in all loops. Next the user applies the evaluation operator,
ComputeSVMError, to evaluate the result of the Support Vector Machine.
The user has to specify exactly as many loops for this evaluation operator
and copy the corresponding values from the SupportVectorMachineForRe-
gression operator for each loop. Then the operator compares the values in
the target attribute with the predicate values.

6.4 Decision Rules and Decision Tree

The PredictionWithDecisionRules and the PredictionWithDecisionTree op-
erators are two similar data mining operators. The former operator trains
a set of decision rules using the indicated learning attributes. The latter
operator trains a decision tree using the indicated learning attributes. The
indicated target attribute of both operators contains the labels to be learned.
In both cases, a new output attribute contains the predicted labels for the
target attribute.

The user will have to compare manually the predicated values of the
output attribute and the actual values of the target attribute.

Both operators are loopable, feature construction operators. Thus, the

Mining Mart IST-1999-11993, Deliverable No. D11.3 37

user can specify multiple loops for each operator. The user can vary the
pruning confidence level parameter in each loop to determine the best learn-
ing model. The user should cautiously examine the results and be aware of
overfitting.

Both the decision rules and the decision tree operators learn labels,
that is, the target attribute must be discrete. The Mining Mart system
provides the discretization operator “NumericIntervalManualDiscretization”
that maps a numeric attribute to a user specified category. The user speci-
fies the mapping in terms of lower and upper bounds of the intervals and the
values to which the intervals are mapped. Input values that do not belong
to any interval are mapped to a user specified default value.

After applying the normalization and discretization feature construction
operators to the running example, the “Employee” concept contains the ad-
ditional attributes “normalized commision” and “commission category”. We
will try to predict the employee’s commission from the learning attributes
“age”, “salary”, “department”, and “hire date” with either decision rules or
a decision tree. Thus, either the PredictionWithDecisionRules or the Pre-
dictionWithDecisionTree operator is applied next to learn the “commission
category” target attribute.

Suppose the user specifies five loops for either operator. As input concept
the user select the “Employee” concept. This parameter, by definition, stays
the same in all loops. In each of the five loops the user has to select the
“commission category” as target attribute, the attributes “age”, “salary”,
“department”, and “hire date” as predicting attributes and has to use the
same integer value as sample size. The user varies the pruning confidence
level parameter stepwise in each loop, say from 60% in the first loop to 100%
in the fifth loop, and specifies a separate output attribute for each loop, say
“predicted commission category 60”, “predicted commission category 70”,
. . . .

The model that the decision rules and decision tree operators learn will
become more specific, with respect to the training data, with an increase
in the pruning confidence level. We may thus expect that the model will
generalize more, that is, neglect unusual values and potential errors more
often, when the pruning confidence level is low. The user has to manually
examine the outcome of the prediction operators and determine the best
learning model. The attribute for the lowest pruning confidence level will
typically misclassify distinct commission category values as one category.
The attribute for the highest pruning confidence level will typically do the
opposite, fail to classify erroneously distinct commission category values as
one category.

Chapter 7

Normalization

7.1 Problem Description

A variable is normalized by scaling its values within a small specified range
(for example the interval 0 to 1). It is convenient and sometimes necessary
to normalize the range of a variable. It makes comparing variables easier
and some modeling tools require variables to be normalized. Other tools
that do not have this requirement may still benefit considerably from using
normalized variables. Normalization is particularly useful for classification
algorithms involving neural networks, or distance measurements such as
nearest neighbor classification and clustering. It can speed up the learning
phase of neural networks and it helps prevent variables with initially large
ranges from outweighing variables with initially smaller ranges in distance-
based methods.

In general it makes sense to normalize attributes before applying a learn-
ing operator. Examples have been described for missing values (Chapter 4)
and noise (Chapter 6).

The Mining Mart system currently provides two scaling operators: a
linear scaling operator and a logarithmic scaling operator.

7.2 Linear Scaling

The linear scaling operator simply scales a specified attribute to lie between
RangeMin and RangeMax. Often used values are 0 or -1 for RangeMin and
1 for RangeMax. In order to scale the attribute the minimum and maximum
values are found for the attribute. It is a loopable operator and therefore
multiple attributes can be scaled with this operator in one step.

38

Mining Mart IST-1999-11993, Deliverable No. D11.3 39

7.3 Logarithmic Scaling

The logarithmic scaling operator scales an attribute by taking the logarithm
of the value with logBase as base value. If an attribute varies exponentially
with another attribute then this scaling operator can be useful. For example
many processes in nature depend exponentially on time like the growth in
time of an initially small colony of bacteria. After applying logarithmic
scaling the linear scaling operator may be applied again in order to restrict
values for example to the [0, 1] range.

Chapter 8

Tips for Using the Mining
Mart System

In this chapter we give some tips for early adopters for using the Mining
Mart system. These tips mainly concern the underexposed aspects of the
Mining Mart system: the meta data, the concept hierarchy and the reuse
possibilities.

Although the software has become more stable in the last months it
should still be classified as a prototype. Errors may occur when the program
is being used. Also some functionality could be made more user-friendly.
The tips mentioned here are meant to enable early users to use the system
more conveniently and more effectively. As development of the software
will still continue at least for a short time after delivery of this report (but
hopefully for much longer!), some of the remarks made in this chapter may
have become obsolete at the time of reading.

8.1 Keeping Operators Nicely Listed

It is likely that operators will be ordered in a case. The user inserts opera-
tors, edits properties and defines connections between the operators. There
are two views that show operators (see Figure 2.1 on page 10): one listing
the operator names in alphabetical order and another showing a graphical
representation of operators and their connections.

We have found it convenient to have the operators listed in the order that
the operators should be applied. As the operators are ordered alphabetically
this means using a naming strategy. We have used a simple naming strategy
starting operator names with numbers (01, 02, 03, ...) for the first, second,
third and following operators (see again Figure 2.1). In this way when a
case is opened operators are ordered like we would want to see them. More
elaborate naming strategies are possible of course, but we already found this
simple one to be useful.

40

Mining Mart IST-1999-11993, Deliverable No. D11.3 41

8.2 Keeping Track of Concepts

Operators have a concept as output or have an attribute as output. We
used a naming strategy to keep track of the output concepts and attributes.
Concepts and attributes can be viewed in the Concept Editor (see again
Figure 2.1). In order to be able to relate a certain concept to a certain
operator it is convenient to have the operator number (see Section 8.1) and
an abbreviation for the operator type in the concept name. For example, the
output of a RowSelection operator with number 06 and input concept Sales
is named Sales 06 RS. As concept names are also ordered alphabetically in
the Concept Editor this will nicely order all different Sales concepts. The
same can be done for attributes that are output of an operator.

8.3 Reusing Cases

Having a meta data repository of cases, an interesting option is of course to
reuse a case. One can reuse a case by first exporting it and then importing it
again with a different name. The import/export functionality also allows to
share cases with other users. This import/export functionality was a major
requirement for the Mining Mart system to create a “market place” of cases.

8.4 Reusing Concepts

Concepts are important in cases as they form the bridge to the business data
that is to be preprocessed. If business data should be used in several cases,
it may be convenient to create a separate concept repository. A concept
repository can be created as a case that only contains concepts and no oper-
ators. The concept repository case may be the first case a user would want to
create. Once a concept repository case has been defined its concepts can be
used in other cases. To use a concept from the concept repository in the cur-
rent case choose the menu item File\Import\Concepts from case.... It
allows to specify the case, concepts and whether the columnsets and columns
should also be imported. In this way new cases, where the main focus is on
operators, can be created quicker and more efficient.

Reuse of concepts can also be stimulated by using abstraction. Think-
ing in concept hierarchies and defining general concepts at the highest level
makes concepts more reusable. Examples of high level concepts are: cus-
tomer, product, price, transaction, region, and profession. Sub concepts for
product are, for example, loan, insurance policy, TV, mobile phone, and
Internet access. Sub concepts for customer are for example: high potential
customer, medium potential customer, and low potential customer. Concept
hierarchies are often strongly connected to a domain (for example finance,
telecommunications, biology, IT services, and sports). Therefore initially it

Mining Mart IST-1999-11993, Deliverable No. D11.3 42

Figure 8.1: Example of a concept hierarchy.

makes sense to start building concept hierarchies that are domain specific.
The Mining Mart system supports construction of concept hierarchies. The
hierarchy is shown in the Concept Editor as a tree of concepts (see Fig-
ure 8.1). Also relationships can be defined in a hierarchy. Only abstract
concepts (type BASE) and database concepts (type DB) can be placed in
a concept hierarchy by the user. Concepts of type MINING result from a
preprocessing step and therefore cannot be put into a concept hierarchy by
the user.

8.5 Building a Chain of Operators

Creating a valid chain of operators is an inherently complex task. Not so
much from a user standpoint (it is quite easy to specify operators and input
and outputs), but from a process standpoint. The HCI is still a bit weak,
however, in handling changes with operators. When the input concept or
other parameters are changed the operator may become “stuck”. The state
of the operator is not correct anymore and compilation of the step will fail.
The situation is worst in chains. Operators in the end of the chain respond
badly to changes made in the start of the chain. Therefore we suggest to
use a very cautious approach when creating cases.

Before starting to create cases one should get experience with the system
by trying out the various operators and concepts and see how they work (the
Mining Mart system also provides some helpful online information about
operators). When starting on a real case one should make an effort of
thinking out the case in order to do it right the first time. If one has a clear
idea what operators should be applied and what concepts should be used,
lesser changes will be needed during the process. Then iteratively follow a
step-by-step approach:

• Insert operator

Mining Mart IST-1999-11993, Deliverable No. D11.3 43

• Specify input and output

• Compile step

• Evaluate result

• Insert next operator

In general when one needs to change the input concept of an operator it
is better to delete the operator and create a new one (with a new name)
instead of modifying the existing operator.

8.6 General Problem Solving

8.6.1 Compilation Issues

Sometimes compilation of an operator may fail and an error code is pro-
duced. There are basically a few main reasons why compilation may fail:

• The meta data is giving problems.

• The compiler has a problem with one (or more) of the input and output
parameters.

• The HCI failed to correctly store the input and output parameters for
the operator.

• The compiler is connected to the wrong meta data schema.

• The operator is not available for the user’s platform.

Meta data problem. Sometimes compilation may fail because the com-
piler finds something in the meta data it cannot deal with. The error message
given by the compiler may then give a clue where the problem lies. By close
inspection of the data stored in the M4 schema such problems sometimes
can be resolved. At various points the HCI does check input in order to
prevent entering invalid data, but it’s not full proof. For example, at one
time we created a multicolumn feature consisting of two base attributes.
Later we deleted one of the base attributes, forgetting that it was part of a
multicolumn feature. This made the multicolumn feature invalid and caused
compilation to fail for steps where the concept containing this multicolumn
feature was used.

Mining Mart IST-1999-11993, Deliverable No. D11.3 44

Input and output parameter problem. We have seen with some oper-
ators that the compiler had trouble with handling nominal values. Although
these cases were looked at and fixed, it cannot be assured now that all op-
erators work correctly in this respect. When one encounters problems with
nominal values, one should try to enter the parameters differently. For ex-
ample, one could enter a nominal value ANALYST also as ’ANALYST’
(between single quotes).

Incorrect storage of meta data. We have also seen cases where the
HCI did not correctly store parameter names. In this case a workaround
may help to still be able to compile the operator. This involves checking
and perhaps modifying the meta data directly in the schema. The STEP T,
PARAMETER T and VALUE T tables work together in defining operator
inputs and outputs. Using the Mining Mart system online help about op-
erators (choose the menu item Help\Contents...), one can check if the
parameter names that have been stored are correct. If they are not correct,
they should be replaced manually and one could recompile the operator.

Meta data schema. If one is using more instances of the M4 schema, it
may be possible that errors are occurring because the compiler is connected
to a different schema than the HCI. This can be checked by comparing the
db.config files. The db.config file for the HCI is located in the installation
directory for the HCI; the db.config file for the compiler is located in the
path $HOME$/etc where HOME is the installation directory for the compiler.

User’s platform. Although the goal is to have all operators available on
Unix, Linux and Windows, some operators are currently only available for
Unix (operators using decision trees, decision rules, KMeans and stochastic
correlation measures). One should check the Mining Mart site1 for the latest
operators or see if it is possible to install the compiler on a Unix platform.

8.6.2 Unlocking a Locked Case

It may occur that the Mining Mart system reaches an error state, where it
doesn’t react anymore to the user. Terminating the system will cause the
case to become locked when the user tries to open it the next time. The
user will need to modify the M4 schema directly (using sqlplus for example)
to unlock the case . The SQL command DELETE FROM M4_ACCESS_T will
unlock all locked cases. To unlock a specific case with name CaseName use
DELETE FROM M4_ACCESS_T WHERE OBJECT_ID=’CaseName’.

1http://www-ai.cs.uni-dortmund.de/FORSCHUNG/PROJEKTE/MININGMART/index.eng.html

Chapter 9

Conclusions

We have found the Mining Mart system to be a valuable tool for preprocess-
ing data. With its meta data model and HCI it is possible to conveniently
create a repository of cases. Other important features are:

• A good level of platform independence (Oracle is, however, required
and for some operators Unix is needed).

• Ability to handle large amounts of data.

• Learning operators applied in the preprocessing stage.

• Re-usability of cases and concepts.

A good variety of operators is now available in the system that makes the
system useful for dealing with most of the common preprocessing activities.
Just as this report was being finalized other important operators were added
to the system: a general feature construction operator, various types of
feature selection operators, two types of discretization operators and more
learning operators. Unfortunately it was not possible for us to also include
reviews of all these additions within this report. It shows nicely, however,
that the Mining Mart system is still a very much evolving tool.

One of the important trends in data mining ([HaB02]) is the use of a
visual language (for example UML) for modeling data mining tasks. The
Mining Mart system fits this trend. The concept editor gives a static rep-
resentation of the concepts a user wants to use and the relations between
these concepts.

There are some areas where the Mining Mart system could be improved.
One point of improvement is the stability of the platform. As we started
working with operators we have encountered many minor and some major
problems. Most of these have been solved along the way and we are glad we
have been able to contribute to the maturation of the system in this way.
Improvements in this field are still possible though.

45

Mining Mart IST-1999-11993, Deliverable No. D11.3 46

The Mining Mart system gives basic data exploration support by pro-
viding views of the raw data and basic statistics. As data understanding is
an important requirement before starting any data preparation some more
support for exploring the data would be nice to have within the system (for
example by providing histograms).

Other areas of improvement are being able to copy a series of operators,
being able to copy concepts, being able to define an abstraction for a series
of operators (Chain), more support in creating and maintaining a concept
hierarchy, and a more extensive help. Some of these functionalities are
expected to be added in the near future.

In this report we have provided information, ideas and experiences with
respect to working with the Mining Mart system prototype. From the litera-
ture an extensive overview was made of general preprocessing problems (see
Appendix A). Then for a selection of common preprocessing problems (data
selection, missing values, time series, noise and normalization) we described
our experiences in dealing with them using the Mining Mart system. We
also described the application of combinations of operators in these sections
to solve preprocessing problems. These combinations of operators can be
seen as “templates” or design patterns for solving specific problems.

This report should, however, not be seen as the definitive guide on “best
practices using the Mining Mart system.” The Mining Mart system is still
evolving and functionality is still being added. More and more users are
now building up experience with the system and will continue to do so in
the future. Therefore there will be certainly room in the future for a followup
on this report. From our experiences with the current Mining Mart system
we can say that we expect that early adopters will already benefit from this
system and that future users will do so even more.

Acknowledgements

This work has partially been funded by the European Commission, IST-
1999-11993(MiningMart).

Bibliography

[AdZ96] Adriaans, P., Zantinge, D., Data Mining, Addison-Wesley, Har-
low, 1996.

[Eul02] Euler, T., Compiler Constraints and Operator Parameters, Tech-
nical report TR 12-02, October 30, 2002.

[HaB02] de Haas, M., Brandt, N., “Relational Data Mining”, in J. Meij
(ed), Dealing with the data flood: Mining data, text and multime-
dia, STT publication 65, Stichting Toekomstbeeld der Techniek,
Den Haag, 2002.

[HaK01] Han, J., Kamber, M., Data Mining: Concepts and Techniques,
Morgan Kaufmann Publishers, San Francisco, California, 2001.

[KZV00] Kietz, J.-U., Zücker, R., Vaduva, A., “Mining Mart: Combining
case-based reasoning and multistrategy learning into a framework
for reusing kdd-applications”, in Proc. of the Int. Conf. on Multi-
Strategy Learning, MSL-2000, 2000.

[LaR02] Laverman, B., Rem, O., Description of the M4 Interface used by
the HCI of WP12, Deliverable D12.2, July 16, 2002.

[MoS02] Morik, K., Scholz, M., The MiningMart Approach., Workshop
Management des Wandels der 32. GI Jahrestagung, 2002, to ap-
pear.

[PeF02] Perot Systems Netherlands, Fraunhofer Institute AiS, Mining
Mart Human Computer Interface, Technical report TR 12-01,
March 15, 2002.

[Pyl99] Pyle,D., Data Preparation for Data Mining, Morgan Kaufmann
Publishers, San Francisco, California, 1999.

[VKZ01] Vaduva, A., Kietz, J.-U., Zücker, R., Dittrich, K., Morik, K.,
Marco, B., Luigi, P., M4 - The MiningMart Meta Model., Deliv-
erable, D8/9, IST Project MiningMart, IST-11993, 2001.

47

Mining Mart IST-1999-11993, Deliverable No. D11.3 48

[Zu01a] Zücker, R., Description of the M4-Relational Metadata-Schema
within the Database., Deliverable D7a, IST Project MiningMart,
IST-11993, 2001.

[Zu01b] Zücker, R., Description of the Metadata-Compiler using the M4-
Relational Metadata-Schema., Deliverable, D7b, IST Project
MiningMart, IST-11993, 2001.

[ZKV01] Zücker, R., Kietz, J.-U., Vaduva, A., “MiningMart: Metadata-
Driven Preprocessing.”, in Proceedings of the ECML/PKDD
Workshop on Database Support for KDD, 2001.

Appendix A

General Preprocessing
Problems

This chapter briefly describes various preprocessing operations. Its purpose
is to provide a general overview of preprocessing problems. The descriptions
and examples have been freely taken from [AdZ96], [HaK01] and [Pyl99].
The purpose of data preprocessing is to transform data sets such that their
information is best exposed to the mining tool ([Pyl99]). Preprocessing
operations can be categorized into the following stages:

• Data selection

• Data cleaning

• Data integration and enrichment

• Data transformation and coding

The following sections describe each preprocessing stage in turn. A sep-
arate section is devoted to displacement series (such as time series). Often
special attention has to be given when preprocessing series, due to the en-
closed information in the ordering of the data.

A.1 Data Selection

A.1.1 Getting Enough Data

Description

Measured values should reflect some entity in the real world. Often it is
impossible to measure all possible values of an entity and therefore the data
that has been captured must be seen as a sample of all values occurring
in the real world. The question then should be: has enough data been
measured in order to properly reflect the variable?

49

Mining Mart IST-1999-11993, Deliverable No. D11.3 50

It is also common in data mining to use only a sample of the available
data for building a model. In Mining Mart samples are also used in the
preprocessing stage when applying learning operators. In these cases again
the question should be answered if the sample is representative enough for
the variable.

A certain confidence that indeed the variability has been captured to a
certain extent can be obtained by looking at the change in variance with
increasing sample size. The variance measure can be used for numeric at-
tributes. For nominal attributes the change in relative occurrence of values
with increasing sample size plays a role in determining confidence.

A.1.2 Reducing Depth

Description

The data set is presumed to be in a table format. Reducing depth means
reducing the number of rows. It is not always needed to use all of the data
all of the time. It may be more convenient to work only with part of the
data. If a selection of the data is taken, then it must be assured that the
sample still reflects all of the relationships that are present in the full data
set.

A.1.3 Reducing Width

Description

The data set is presumed to be in a table format. Reducing width means
reducing the number of variables (columns). More variables means more
information, but too many variables may bring any mining algorithm to its
knees.

Every variable in the data set should be inspected closely. A conclusion
of this inspection might be that the variable needs to be removed. There
are various reasons why a variable should be removed. Variables with no
information content should be removed. These are for example variables
with only missing values or with only one value. Also duplication of infor-
mation in variables can be a reason for removing variables. A variable may
be redundant if it can be derived from another variable. Some redundancies
can be detected by correlation analysis. Such analyses measure how strongly
one variable implies the other, based on the available data.

Another problem is highly sparse data. Sparse data is difficult to mine.
It should be decided if a sparse variable should be removed or be processed
in some way.

Mining on the reduced data set should be more efficient, yet produce
(almost) the same analytical results. Typically (heuristic) variable subset
selection methods are used to find the minimum set of variables such that

Mining Mart IST-1999-11993, Deliverable No. D11.3 51

the resulting probability distribution of the data classes is as close as possible
to the original distribution obtained using all variables.

Example

Consider one database that contains a variable “customer id” and another
database that contains a variable “cust number”. Correlation analysis can
detect whether the variables are highly correlated.

Consider another example where a client database contains both the
client names and client number. The client’s name provides the same infor-
mation as their client number. Moreover we want to identify certain types
of client and are not interested in their particular names or client numbers.
Therefore the client’s name and client number are removed from the sample.

If the task is to classify customers as to whether they are likely to pur-
chase a popular new CD when notified of a sale, variables such as the cus-
tomer’s telephone number are likely to be irrelevant, unlike variables such
as “age” or “music taste”.

A.2 Data Cleaning

A.2.1 Data Pollution, Noisy Data

Description

When variables have values that they originally were not supposed to have
one speaks of data pollution.

Operational data tend to be noisy: the data records contain errors and
unusual values. There are many possible reasons for noisy data. Most
mining routine have procedures for dealing with noisy data, but they are
not always robust. Noisy data can often be smoothed by means of the
following techniques: binning, clustering, combined computer and human
inspection, or regression.

Often pollution is a result of people who try to stretch a system beyond
its original intended functionality. This may be a result of a changing busi-
ness environment while the data model remains fixed. Human resistance is
another source of data pollution.

Example

Noisy data may be due to faulty data collection instruments that produced
unusual values.

Another example is a gender field that is filled with “business” because
a bank started to issue corporate credit cards.

Consider a transaction database recording the purchase dates of transac-
tions. The database may contain records dated January 1st, 1901 (01-01-01),

Mining Mart IST-1999-11993, Deliverable No. D11.3 52

although the company probably did not even exist at that time. In some
databases, analysis shows an unexpected high number of people born on
November 11th, 1911. When people are forced to fill in a birth date on a
screen and they do not know it, they are inclined to type in “11-11-11”,
whereas it should be represented as being unknown instead.

A.2.2 De-duplication

Description

In a normal database several records may represent the same object. In
many cases this duplication is the result of negligence, such as typing errors.
There are also cases in which deliberately spelling errors are introduced with
fraudulent objectives in mind. There is no automatic way to determine
whether the records represent the same object. A de-duplication algorithm
using pattern analysis techniques could, however, identify the situation and
present it to the user to make a decision.

Example

Consider a Mr. Johnson and a Mr. Jonson in a client database. They have
different client numbers but the same address. They could be the same
person where one of the entries contains a spelling error.

A.2.3 Missing and Empty Values

Description

For empty values there is no corresponding real-world value. For missing
values the underlying value has not been captured. There may be predictive
or inferential information content in missing values.

Operational data tend to be incomplete: variables for various records
have no recorded value. Incomplete data can occur from a number of reasons.
Most mining routines have procedures for dealing with incomplete data, but
they are not always robust. Various preprocessing methods exist to handle
missing values, including, ignore the record and fill in the missing value
manually, with a global constant, the variable mean, or the most probable
value.

One should be careful, however, with replacing missing values with de-
fault values as they can damage the data set structure. In order to be able
to use other values of the instance, it is best to replace the missing value
with a value that least influences the data set structure.

Mining Mart IST-1999-11993, Deliverable No. D11.3 53

Example

Some variables of interest, like customer income, may not always be avail-
able. Other data may not be considered important at the time of entry.
Relevant data may not be included due to equipment malfunctioning. Data
that were inconsistent with other data may have been deleted manually.

Typically in fraud detection lack of information is a valuable indication
of interesting patterns.

Consider a client database that is enriched with demographic information
on average income and car and house ownership for certain neighborhoods
from an external party. Some clients may live in neighborhoods for which
no demographic information is available. After a thorough analysis of the
consequences, the purchase records for these clients are deleted.

A.2.4 Outliers

Description

Outliers concern variable values that lie some distance apart of the rest of
the values. The question here is whether the value(s) are a mistake. If they
are found to be a mistake, they can be treated as missing values; if not the
variable can be remapped.

Example

Insurance data typically suffers considerably from the problem of outliers.
Most insurance claims are small, but occasionally a claim will come in for
a large sum. As this is not an error, it must be included in modeling. This
may, however, distort the remaining data.

A.2.5 Anachronistic Variables

Description

An anachronistic variable is a variable containing information that is not
available at the time prediction is needed. It is set after the value of the
predicted variable is known. An indicator for such variables are models that
have a near 100% prediction rate. During the initial data survey these kind
of variables may be difficult to locate. If such a variable is found it should
be removed.

Example

In a data set to predict who will take a specific type of bank account various
predicting variables are selected. If “account number” is also included, this
will be an anachronistic variable as it is only present after the account has
been created.

Mining Mart IST-1999-11993, Deliverable No. D11.3 54

A.3 Data Integration and Enrichment

A.3.1 Concurrency

Description

Different data streams may be captured at different times. When these
streams are merged concurrency should be considered. Because of the dif-
ference in time certain relationships found in the data may not be valid.

Example

Merging demographic data which is one year old with current credit infor-
mation may not produce a useful data set.

A.3.2 Data Consistency

Description

Different things may be represented by the same name in different sys-
tems and the same thing may be represented by different names in different
systems. This can lead to problems when combining data from different
systems. This is also referred to as the entity identification problem.

Example

A company’s payroll system and personnel system both use the variable
“employee”, but each have their own notion of what an employee is. Asking
the systems how many employees there are, may give two different answers.

One database may contain a variable “customer id” and another database
may contain a variable “cust number”. How can we be sure that both vari-
ables refer to the same entity?

A.3.3 Data Value Conflict

Description

Variable values from different sources may differ. This may be due to dif-
ferences in representation, scaling or encoding.

Example

A weight variable may be stored in metric units in one system and British
imperial units in another. The price of different hotels may involve not only
different currencies, but also different services and taxes.

Mining Mart IST-1999-11993, Deliverable No. D11.3 55

A.4 Data Transformation and Coding

A.4.1 Reverse Pivoting

Description

In many cases some kind of transactions of customers are recorded. If the
behavior of the customer needs to be modeled, then the information from
the transactions table needs to be aggregated into derived fields representing
customer activity. A reverse pivot is done from the transactions table to the
customer table.

Example

When a customer asks for a loan at a bank, the bank would like to estimate
if the customer will pay back the loan by examining the account transac-
tions of the customer. By comparing this customer behavior with behaviors
seen previously for other customers, it can be predicted if the customer will
pay back the loan without problems or not. Reverse pivoting extracts the
customer behavior from the transactions of the customer.

A.4.2 Monotonic Variables

Description

Monotonic variables are variables that increase without an upper bound.
The problem is that as soon as actual data for modeling is used from another
source, the monotonic variable will very likely soon take on values outside the
range sampled. Even if the data is within the sampled range the distribution
of that data will almost certainly be totally different. This may lead to
invalid results when using a previously made model. A transformation is
needed to a non-monotonic variable for the data to be useful. There are
ways to automatically give a good estimate if a variable is monotonic or
not.

Example

Examples of monotonic variables are: date, social security id and employee
id. By transforming date to season, it is transformed to an non-monotonic
variable.

A.4.3 Remapping Nominal Values

Description

Nominal values most often should be transformed to numerical values, be-
cause many modeling techniques are bad in dealing with nominal variables.

Mining Mart IST-1999-11993, Deliverable No. D11.3 56

Nominal values should not naively be substituted by assigning numbers.
This naive substitution can introduce artificial patterns. One should use
numbers that represent the “natural order” of the nominal values.

In addition, the organization of operational data is often not suited for
data mining. The records provide one dimension to view the data. We often
want to view the data along the dimension of a particular variable instead.
The record orientation of the operational data is inefficient when one wants
to find relationships between the records.

Remapping is useful when there should be no implication of ordering
among the labels. Remapping (in particular flattening) also can trans-
pose data and provides an overview of the values for a particular variable.
The remapping techniques for nominals include one-of-n remapping, m-of-n
remapping and remapping circular discontinuity.

In one-of-n remapping (also called flattening) a variable with cardinality
n is replaced by n binary variables and only one of them is “on” (set to one)
for every instance (other fields are set to zero).

In m-of-n remapping n new variables are introduced and more than one
of these fields can be “on” for every instance.

Circular discontinuity is present in some time variables. Numbering the
weeks of the year shows this problem. After week 52 week 1 follows. This
may prevent a modeling tool from finding cyclic information. Remapping
this variable makes it much easier for modeling tools to find cyclic patterns.

Example

Consider a variable representing the marital status, measured as: married,
single, windowed, divorced, or never married. Simply assigning numeric
values 1, 2, 3, 4, 5 to these nominal values is totally destructive of the
natural structure of the data.

Consider a transaction database that records per transaction the pur-
chase date, the client number, the client’s age and income and item pur-
chased. This operational database is transaction-oriented and not suited to
give a characterization of the clients that purchase particular combinations
of items. The purchase date is considered to be irrelevant for this charac-
terization and ignored. We replace the variable that represents the items
purchased, by one binary variable for each possible value of that variable.
If a client has purchased the item the corresponding variable is given the
value 1 and 0 otherwise. After this transformation the sample contains one
record for each client, describing the items purchased.

An example of m-of-n is where a grocery product name variable is re-
placed by a few variables describing common characteristics like “Fruit”,
“Vegetable”, “Leafy” or “Root crop”.

Mining Mart IST-1999-11993, Deliverable No. D11.3 57

A.4.4 Conversion of Binary Variables to 0-1

Description

In data mining applications it is sometimes easier to code binary variables
into one bit. Conversion of variables that take one of two values into 0 or 1
facilitates an efficient execution of pattern recognition algorithms.

Example

Consider variables car and house that represent ownership. The two vari-
ables take value “yes” for car owners and house owners respectively and “no”
otherwise. We can convert these variables to the values 0 and 1 instead of
“no” and “yes”.

A.4.5 Aggregation

Description

Data from operational databases often need to be transformed or consoli-
dated into a form that is appropriate for mining. Summary or aggregation
operations are applied to the data. Aggregation in addition reduces the data
set, which enables more efficient processing yet produces (almost) the same
analytical results.

Example

Consider a data set of quarterly sales for the years 1997 to 1999. You are
interested in annual sales, rather than totals per quarter. Thus the data can
be aggregated so that the resulting data summarize the total sales per year
instead of per quarter. The resulting data set is smaller in volume, without
loss of information necessary for the analysis task.

A.4.6 Data Enhancement

Description

Feature construction is a way of adding domain knowledge and enhancing
the data. It can speed up creation of better and more understandable mod-
els. It can also avoid “feature swamping”. Feature construction adds new
variables to a given set of variables to help the mining process. New vari-
ables are constructed from the given variables and added in order to help
improve the accuracy and the understanding of the structure in high di-
mensional data. By combining variables, feature construction can discover
missing information about the relationships between data variables that can
be useful for knowledge discovery.

Mining Mart IST-1999-11993, Deliverable No. D11.3 58

Example

In trying to predict stock market performance, it is believed that the trend
of the market is important. If this is indeed the case, the modeling tool will
develop a “trend detector”. The trend might be determined by comparing
the mean of the last three days’ closing prices with the previous three days.
Thus, the trend can be “up”, “down” or “flat”. By providing the trend
variable the modeling tool does not have to learn addition, subtraction and
division, which will save considerable time.

Another example is the modeling of the value of share prices. The data
contains information about the price and the earnings of shares. It is be-
lieved that the price per earning ratio has predictive value and therefore this
ratio is also added to the data.

A customer subscription date can be transformed in month numbers
starting from a certain date. This coding enables us to find patterns in
time series of customer transactions. The subscription date can also be
transformed in seasonal codes to try to find patterns in seasonal influence
on customer behavior.

A.4.7 Generalization

Description

The information in operational data is often much too detailed for pattern
recognition algorithms. The information has to be transformed into course-
grained codes. The way in which information is coded greatly determines
the type of patterns found.

Data generalization is a process that abstracts a large set of task-relevant
data in a database from a relatively low conceptual level to higher concep-
tual levels. One method for the efficient and flexible generalization of large
data sets is the variable-oriented induction approach. The general idea of
variable-oriented induction is to first collect the task-relevant data and then
perform generalization based on the number of distinct values of each vari-
able. The generalization is performed by either variable removal or variable
generalization.

Example

The removal of a variable eliminates a constraint and thus generalizes the
relation. Consider the variable “house number”, which has a large set of dis-
tinct values but no generalization. This variable should be removed because
it cannot be generalized and contradicts the goal of generating concise rules.
Consider another variable “street”, with also a large set of distinct values,
whose higher-level concepts are represented in terms of the other variables
“city”, “state”, and “country”. The variable “street” may be removed to

Mining Mart IST-1999-11993, Deliverable No. D11.3 59

generalize the relation. The variable “birth date” also has a large set of
distinct values, but can be generalized to the concept “age” and further to
concept “age range”. The variable “birth date” should be generalized to,
that is, replaced by, the concept “age range”.

A.4.8 Discretization and Concept Hierarchy Generation

Description

Raw data values for variables are replaced by ranges or higher conceptual
levels to obtain a reduced representation of the data set that is much smaller
in volume, yet maintains the integrity of the original data. Mining on the
reduced data set should be more efficient, yet produce (almost) the same
analytical results. Concept hierarchies allow the mining of data at multiple
levels of abstraction and are a powerful tool for data mining. Discretization
techniques are used to reduce the number of values for a continuous variable,
by dividing the range of the variable into intervals. Concept hierarchies can
be defined for both numeric and categorical data. A concept hierarchy for a
numeric variable defines a discretization of the variable. Concept hierarchies
also reduce the data by collecting and replacing low-level concepts by higher-
level concepts.

Example

Low-level concepts such as numeric values for the variable age are replaced
by higher-level concepts such as young, middle-aged and senior. Consider a
numeric variable “price” whose values range from $0 to $1000. A concept
hierarchy for the variable “price” could at the highest-level start with the
concept “from $0 to $1000”. At a lower level the concepts “from $0 to
$200”, “from $200 to $400”, “from $400 to $600”, “from $600 to $800” and
“from $800 to $1000” appear. At the next lower levels the concepts “from
$0 - $100”, “from $100 - $200”, etcetera are defined. The variables “street”,
“country”, “city” and “state” are concepts in the dimension “location”. The
concept hierarchy for “location” can be automatically generated by sorting
the variables in ascending order based on the number of distinct values in
each variable.

A.4.9 Normalization

Description

It is convenient to normalize the range of a variable. It makes comparing
variables easier and some modeling tools require variables to be normal-
ized. A variable is normalized by scaling its values so that they fall within
a small specified range. Normalization is particularly useful for classifica-
tion algorithms involving neural networks, or distance measurements such

Mining Mart IST-1999-11993, Deliverable No. D11.3 60

as nearest neighbor classification and clustering. Normalized input values
speed up the learning phase of neural networks. Normalization helps pre-
vent variables with initially large ranges from outweighing variables with
initially smaller ranges in distance-based methods. Other modeling tools do
not require variables to be normalized, but may benefit considerably from
it.

Another form of normalization is normalizing the distribution of variable
values. The distribution of variable values over its range may cause prob-
lems for modeling tools. Many modeling tools have difficulty with varying
density within a distribution. Even tools that are able to handle irregular
distributions may benefit from regularizing (balancing) a distribution.

Example

Consider a client database containing birth dates, income and credit. The
birth dates may be coded as age classes with an interval of 10 years, yielding
the values 1 to 10. After dividing the income and credit by 1000, most
customers will have an income class and credit class between 10 and 100.
Comparing the age, income and credit information is now easier, because
the numbers are close to each other.

Consider a variable “income” with minimum and maximum values $12,000
and $98,000, respectively, and mean and standard deviation $54,000 and
$16,000, respectively. Suppose that we would like to map “income” to the
range [0.0, 1.0] by means of the min-max normalization. The min-max
normalization will transform value $73,600 to (73, 600− 12, 000)/(98, 000−
12, 000) × (1.0 − 0.0) + 0.0 = 0.716. The zero-mean normalization uses
the mean and standard deviation to transform value $73,600 to (73, 600 −
54, 000)/16, 000 = 1.225.

A.4.10 Data Compression

Description

Data compression is used to reduce the amount of data. It can be useful
when the amount of data that is available is too large, thus, making complex
analysis impractical or infeasible. Encoding mechanisms are used to obtain
a reduced representation of the data set that is much smaller in volume, yet
maintains the integrity of the original data. Mining on the reduced data set
should be more efficient, yet produce (almost) the same analytical results.
Typically (heuristic) variable subset selection methods are used to find the
minimum set of variables such that the resulting probability distribution of
the data classes is as close as possible to the original distribution obtained
using all variables.

Mining Mart IST-1999-11993, Deliverable No. D11.3 61

Example

The discrete wavelet transform is a linear signal processing technique that,
when applied to a data vector transforms it to a numerically different vec-
tor of wavelet coefficients. The wavelet transformed data can be truncated.
Storing only a small fraction of the strongest of the wavelet coefficients re-
tains a compressed approximation of the data. For example, all wavelet
coefficients larger than some user-specified threshold can be retained. The
remaining coefficient is set to 0. The resulting data representation is very
sparse, so that operations that can take advantage of data sparsity are com-
putationally very fast.

A.4.11 Numerosity Reduction

Description

Numerosity reduction is also used to reduce data when the data set available
for analysis is impractically large. The original data are replaced by a model.
Typically the model or the parameters of the model and outliers are stored
instead of the actual data. The model is used to estimate the data.

Example

Regression models can be used to estimate the original data. In linear
regression the data are modeled to fit a straight line. One variable is modeled
as a linear function of another variable.

A.5 Displacement Series

Series variables always are at least two-dimensional, although one of the
dimensions may be implicit. Series data enfolds their information in the
ordering of the data. Preserving the ordering is the main reason that series
data has to be prepared differently from non-series data.

Any series shape can be thought of as being constructed from simple
wave forms, each of a separate single frequency. The most common type of
series variable is a time series, in which a series of values of some event are
recorded over a period of time. The issues and techniques described about
time series also apply to any other displacement series.

A form of time series analysis known as classical decomposition looks at
the series as being built from four separate components: trend, seasonality,
cycles, and noise. Trend moves in a consistent direction, monotonically in-
creasing or decreasing. Seasonality reflects the insight that certain seasons
are inherently different. Cycles are fluctuations in the level of the series
that have some identifiable repetitive form and structure. Noise is the com-
ponent that is left after the trend, cyclic and seasonal components have

Mining Mart IST-1999-11993, Deliverable No. D11.3 62

been extracted. Noise can be generated from a variety of sources. A noise
source may have a characteristic signature. Noise sources can sometimes be
identified.

A.5.1 Missing Values

Description

Filling in the holes with self-similar patterns from other parts of the series re-
inforces the self-similarity. So replacing missing values necessarily enhances
a pattern. One way to ameliorate the problem to some extent is to add noise
to the replacement values.

A.5.2 Outliers

Description

Outliers in displacement series come as individual occurrences and as clusters
of consecutive values. The miner will need to ask hard questions about why
the outliers exists. If no rationale can account for the outliers, replace the
outliers exactly as for missing values.

A.5.3 Non-uniform Displacement

Description

Many of the analytical techniques assume that measurements are taken at
regular increments. If the displacement is not constant, the values must be
adjusted to reflect what they would have been had they been taken with a
uniform displacement. Treating the non-uniform measured values as if they
were sampled at uniform displacement intervals causes distortions. These
distortions appear as noise and techniques for removing noise work well to
estimate the original series.

A.5.4 Trend

Description

Leaving a trend present in a wave form causes problems for most modeling
methods. Detrending a series is an absolute necessity.

Detrending has sever dangers. Incomplete series can indicate an artifact
trend even though they have no trends. Detrending non-trended data can
do enormous damage. Always the miner should ask if there is a reason to
expect the existence of the discovered trend.

Mining Mart IST-1999-11993, Deliverable No. D11.3 63

A.5.5 Attenuation

Description

Any series shape can be thought of as being constructed from simple wave
forms, each of a separate single frequency. Attenuation reduces the ampli-
tude of the lower-frequency wave form and thus leaves the higher frequencies
more visible.

Removing trend corresponds to lower-frequency filtering at the lowest
possible frequency. In addition to the zero frequency component, the compo-
nents consisting of fractional frequencies are usually identified and removed
from series. Some of the more common fractional frequency components in-
clude exponential growth curves, logistic function curves, logarithmic growth
curves and power-law growth curves.

A.5.6 Moving Average

Description

Moving averages are used for general purpose filtering and well-suited to
remove noise in series. Moving averages come in an enormous range and va-
riety: simple moving average, weighted moving average, exponential moving
average. The moving averages reduce the variance in the series. The longer
the period of the average, the more the variance is reduced. A drawback of
long weighting periods is that the average cannot begin to be calculated un-
til the number of periods in the weighting has passed. Exponential moving
average solves this delay problem.

In general an increase in the period for the simple moving average and
weighted moving average or in the tail weight for the exponential moving
average, makes the average react more slowly to the changes in the series.
Slow changes correspond to longer wavelength, that is, lower frequencies.
The simple moving average is the slowest to change of the averages. The
weighted moving average moves similar to the simple moving average, but
clearly responds more to the recent values. The exponential moving average
is the most responsive to the actual series value.

The ability to effectively change the frequency at which the moving av-
erage reacts to the series makes them useful filters.

Example

Consider the series of ten positions in the table below. The table shows a
lag-five simple moving average (SMA5), a lag-five weighted moving average
(WMA5) and a lag-five exponential moving average (EMA5). The weighted
moving average has the following weight distribution, which sums up to 1.0:
0.066, 0.132, 0.198, 0.264, 0.340. The exponential moving average uses head

Mining Mart IST-1999-11993, Deliverable No. D11.3 64

and tail weight 0.576766 and 0.423234, respectively. The SMA5 value1 is
assigned to the center position in the weighting period. The WMA5 value2 is
centered one advanced on SMA5, because the weights favor the most recent
values. The EMA5 value3 tends to center round about the value of the
SMA5. By definition the first EMA5 value is set to the initial value of the
series. A series of length 10 is not sufficient to show the effect clearly.

Position Value SMA5 WMA5 EMA5 Head Tail
1 0.1338 0.1338
2 0.4622 0.3232 0.2666 0.0566
3 0.1448 0.2940 0.2203 0.0835 0.1368
4 0.6538 0.3168 0.2966 0.4703 0.3771 0.0932
5 0.0752 0.3067 0.2833 0.2424 0.0434 0.1991
6 0.2482 0.3497 0.3161 0.2458 0.1432 0.1026
7 0.4114 0.3751 0.3331 0.3413 0.2373 0.1040
8 0.3598 0.4673 0.4796 0.3519 0.2075 0.1444
9 0.7809 0.5303 0.5993 0.4504 0.1490

10 0.5362 0.5629 0.3092 0.2537

A.5.7 Smoothing

Description

Smoothing removes noise from the series. Peak-valley-mean (PVM) smooth-
ing uses the mean of peaks and valleys as the estimate of the underlying
waveform. The shortest possible peak-valley-mean, the lag-three PVM, cov-
ers three data points: last peak, last valley and estimated mean. Longer
lags that take more peaks and valleys in consideration exist as well.

Median smoothing uses windows, a group of contiguous data points that
are manipulated in some way. Median smoothing uses the median of the
values in the window in place of the actual value. In many ways median
smoothing is similar to average smoothing except that the median is used
instead of the average. Using the median makes the smoothed value less
sensitive to extremes in the window. A single extreme value will never
appear in the median.

Resmoothing is a technique for smoothing the smoothed values. One
form of resmoothing continues until there is no change in the resmoothed
waveform. Other resmoothing techniques use a fixed number of resmooths,
but vary the window size from smoothing to smoothing.

Hanning is a form of weighted averaging, which uses a lag-three. The
three data points in the lag are multiplied by the weights 0.25, 0.5, and

1SMA value at position 3: 0.1338+0.4622+0.1448+0.6538+0.0752
5

= 0.2940
2WMA value at position 4: 0.1338× 0.066+0.4622× 0.132+0.1448× 0.198+0.6538×

0.264 + 0.0752× 0.340 = 0.2966
3EMA value at position 2: 0.4622 × 0.576766 + 0.1338 × 0.42323 = 0.2666 + 0.0566

= 0.3232

Mining Mart IST-1999-11993, Deliverable No. D11.3 65

0.25, respectively. The hanning operation removes any final spikes left after
smoothing or resmoothing.

Example

Consider the series of ten positions in the table below. The table shows
a lag-three peak-valley-mean4 (PVM), with its peaks and valleys, and a
Median smoothing5 with window of size five (MS5).

Position Value PVM Peak Valley MS5
1 0.1338 0.1338 0.1338 0.1338
2 0.4622 0.2980 0.4622 0.1338
3 0.1448 0.3035 0.4622 0.1448 0.1448
4 0.6538 0.3993 0.6538 0.1448 0.2482
5 0.0752 0.3645 0.6538 0.0752 0.2482
6 0.2482 0.3645 0.6538 0.0752 0.3598
7 0.4114 0.2433 0.4114 0.0752 0.3598
8 0.3598 0.3856 0.4114 0.3598 0.4114
9 0.7809 0.5704 0.7809 0.3598

10 0.5362 0.5704 0.7809 0.3598
There are very many types of resmoothing. Two examples are “3R2H”

and “4253H”. The first is a median smooth with a window of three, repeated
until no change in the waveform occurs; then a median smoothing with
a window of two; then a hanning operation. The latter has four median
smoothing operations with windows of four, two, five and three respectively,
followed by a hanning operation.

A.5.8 Extraction

Description

Smoothing and filtering methods can be combined in numerous ways. All
these methods intend to separate information in the waveform into its com-
ponent parts. The extraction techniques separate the high and lower fre-
quencies. Smoothing and filtering extract the lower frequencies. The re-
mainder forms the higher frequency part and is found by subtracting the
filtered waveform from the original waveform. When further extraction is
made on either extracted waveform, this is called re-extraction.

4PMV value at position 2: 0.4622+0.1338
2

= 0.2980
5MS5 value at position 3: median of {0.1338, 0.4622, 0.1448, 0.6538, 0.0752} = median

of {0.0752, 0.1338, 0.1448, 0.4622, 0.6538} = 0.1448

Mining Mart IST-1999-11993, Deliverable No. D11.3 66

A.5.9 Differencing

Description

The differencing method takes the difference between each value and some
previous value, and analyzes the differences. A lag value determines ex-
actly which previous value is used. The actual differences tend to appear
noisy. Looking at the spectra and correlograms of the difference plots, how-
ever, reveals information. Differencing amplifies the higher frequencies and
attenuates the lower frequencies. So differencing serves as a high-pass filter.

The difference of a composite waveform without noise contains little
spectral energy at any of the frequencies. The correlogram shows a high
correlation. A noise waveform shows high energy at high frequencies but
the correlogram shows little correlation at any lag. Differencing a random
walk shows low spectral energy at all frequencies, and the correlogram shows
a rather high correlation.

A.5.10 Numerating Alpha Values

Description

Numeration of alpha values in a series presents some difficulties. On the rare
occasions when alpha values occur, numerating them using the non-series
techniques provides better than numeration without any rationale. Arbi-
trary assignment of values to alpha labels is always damaging. Non-series
techniques, however, do not use the ordering information in the numeration.
With time series in particular, it seems easier to find an appropriate ratio-
nale for numerating alpha values from a domain expert than for non-series
data.

A.5.11 Distribution

Description

A series variable has a distribution that exists without reference to the or-
dering. The displacement variable can be redistributed in exactly the same
manner as a non series variable. The rationale and methods for redistribu-
tion are similar for series and may be even more applicable in some ways.
The distribution should be normalized after removing any trend from the
series.

Redistribution removes all nonlinearity from the series. A curved wave-
form is translated into a linear representation with only straight lines. Re-
distribution goes a long way toward equalizing the variance.

Mining Mart IST-1999-11993, Deliverable No. D11.3 67

Example

The exact shape of the waveform may be important to the modeling tool.
The modeler is in a position to know for sure if this is the case at modeling
time.

Appendix B

Mining Mart Operators

The usefulness of the Mining Mart system is greatly determined by the
available operators. This chapter contains two lists of operator names and a
series of screen shots, which give a quick impression of the available operators
and the required input. The operators listed in Tables B.1 and B.2 are the
currently available operators (November 2002). These lists of operators are
expected to grow further in the future.

There are two kinds of operators, distinguished by their output on the
conceptual level:

• Concept operators have an output concept, and

• Feature construction operators have an output attribute.

The next two sections discuss the concept and feature construction opera-
tors, respectively.

B.1 Concept Operators

This section lists the concept operators (Table B.1) and displays the cor-
responding screen shots (Figures B.1 through B.15). All concept operators
take an input concept and create a new output concept. All concept opera-
tors contain the two fields input concept and output concept in their dialog
box.

68

Mining Mart IST-1999-11993, Deliverable No. D11.3 69

Name Type Short description See
DelRecWMVal Replace missing values Deletes missing values Fig. B.6
ExpMovFct Time series operator Smooths time series Fig. B.14
JoinByKey Data integration Joins multiple concepts Fig. B.2
MrfConstr Feature construction Select features from multiple con-

cepts

Fig. B.1

RowSelByQuery Row selection Select rows by query Fig. B.4
RowSelByRandom Row selection Select randomly a specified number

of rows

Fig. B.5

SegmByPart Segmentation Segment data in specified number of

partitions

Fig. B.8

SegmStrat Segmentation Segment data by specified attribute Fig. B.7
SegmKMean Segmentation Segment data by KMeans Fig. B.9
Sig2SymbProc Time series operator Time series abstraction operator Fig. B.15
SimpleMovFct Time series operator Determines average value for each

window

Fig. B.12

SpecStat Statistics operator Creates basic statistics for a speci-

fied concept

Fig. B.3

Unsegment Segmentation Unsegment previously segmented

concepts

Fig. B.10

WeightMovFct Time series operator Determines weighted average value

for each window

Fig. B.13

Windowing Time series operator Copies time related information

into a number of attributes

Fig. B.11

Table B.1: Alphabetical list of concept operators

Creates a new concept with features that can be selected from the input con-
cept and all concepts listed in the Concepts box. All these concepts should
have a relation that connects the concept to the input concept.

Figure B.1: MultiRelationalFeatureConstruction dialog.

Mining Mart IST-1999-11993, Deliverable No. D11.3 70

Joins two or more concepts using the specified keys.

Figure B.2: JoinByKey dialog.

Creates an output concept with one row of information. For the respectively
specified attributes the sum, count, number of unique values and distribution
values are determined.

Figure B.3: SpecifiedStatistics dialog.

Mining Mart IST-1999-11993, Deliverable No. D11.3 71

Selects records based on the query specified.

Figure B.4: RowSelectionByQuery dialog.

Selects randomly the specified number of records.

Figure B.5: RowSelectionByRandomSampling dialog.

Deletes records with missing values. The records are not really deleted from
the business data. Effectively a new view is created selecting records where
the specified attribute is not null.

Figure B.6: DeleteRecordsWithMissingValues dialog.

Mining Mart IST-1999-11993, Deliverable No. D11.3 72

Divides data for a concept into segments. For every value of the specified
target attribute a new segment is created. After this step a concept may have
multiple columnsets: for each segment one.

Figure B.7: SegmentationStratified dialog.

Randomly creates the specified number of segments. For every segment in
the output concept a columnset is created.

Figure B.8: SegmentationByPartitioning dialog.

Mining Mart IST-1999-11993, Deliverable No. D11.3 73

The input concept is segmented using the clustering algorithm KMeans. One
can specify the number of records that are used to determine the clusters
(sample size); the maximum number of partitions; the predicting attributes
and if the algorithm should try to optimize the number of partitions.

Figure B.9: SegmentationWithKMeans dialog.

Unsegments data for the input concept for the specified attribute. This op-
erator can only be specified if it is first placed in a chain of operators which
contains at least one segmentation operator.

Figure B.10: Unsegment dialog.

Mining Mart IST-1999-11993, Deliverable No. D11.3 74

The Windowing operator is applicable to time series data. Windowing takes
two attributes from the input concept: the time stamps and the values. Each
row of the output concept gives a time window. Two time stamps define the
beginning and ending of each time window. Further, there will be as many
value attributes as specified by the window size and displacement distance.

Figure B.11: Windowing dialog.

The SimpleMovingFunction operator combines windowing with the compu-
tation of the average values in each window. The average of the values in
the window is stored in one output attribute. The user specifies the size of
the window and the displacement distance in the window.

Figure B.12: SimpleMovingFunction dialog.

Mining Mart IST-1999-11993, Deliverable No. D11.3 75

The WeightedMovingFunction operator combines windowing with the com-
putation of the weighted average value for the window. The weighted average
of the window is stored in one output attribute. The user specifies the the
weights of the window values and the displacement distance in the window.
The number of weights determines the size of the window. The weights must
sum to 1.

Figure B.13: WeightedMovingFunction dialog.

The ExponentialMovingFunction operator is a time series smoothing oper-
ator. The smoothed value for the window is stored in one output attribute.
The distance determines the size of the window. The last value in the win-
dow is multiplied by the head weight. The first value is multiplied by the
tail weight. The smoothed valued becomes the first value of the next window.
The head and tail weights must sum to 1.

Figure B.14: ExponentialMovingFunction dialog.

Mining Mart IST-1999-11993, Deliverable No. D11.3 76

SignalToSymbolProcessing is a time series abstraction operator. Two output
attributes form the bounds of the interval. The average of each interval is
stored in one output attribute. The user specifies the average increase, and
when the average increase, interpolated from the last interval, deviates thus
that a new interval is created.

Figure B.15: SignalToSymbolProcessing dialog.

Mining Mart IST-1999-11993, Deliverable No. D11.3 77

Replaces missing values with the average value for that column. Statistics
for the concept should first have been calculated.

Figure B.16: AssignAverageValue dialog.

Replaces missing values with the modal value for that column. Statistics for
the concept should first have been calculated.

Figure B.17: AssignModalValue dialog.

B.2 Feature Construction Operators

This section lists the feature construction operators (Table B.2) and displays
the corresponding screen shots (Figures B.16 through B.29). All feature con-
struction operators are loopable. Looping means that the operator is applied
to several target attributes (one after the other). The input concept remains
the same in each loop, while the target attribute, the output attribute and
further operator-specific parameters change from loop to loop.

Mining Mart IST-1999-11993, Deliverable No. D11.3 78

Name Type Short description See
AssAvValue Replace missing values Replace missing values with average

value

Fig. B.16

AssDefValue Replace missing values Replace missing values with default

value

Fig. B.19

AssMedValue Replace missing values Replace missing values with median

value

Fig. B.18

AssModValue Replace missing values Replace missing values with modal

value

Fig. B.17

AssPredValue Replace missing values Replace missing values with a pre-

dicted value

Fig. B.29

CompSVMError Evaluate learning operator Evaluation operator for Support

Vector Machine

Fig. B.26

LinScal Scaling Linear scaling of specified at-

tributes

Fig. B.23

LogScal Scaling Logarithmic scaling of specified at-

tributes

Fig. B.24

MvwRegSVM Replace missing values Replace missing values using a Sup-

port Vector Machine

Fig. B.22

MvwDecRules Replace missing values Replace missing values using a De-

cision Rules

Fig. B.21

MvwDecTree Replace missing values Replace missing values using a De-

cision Tree

Fig. B.20

PredWDecRules Feature construction Use Decision rules to add attribute

that is predicted from specified at-

tributes

Fig. B.27

PredWDecTree Feature construction Use Decision tree to add attribute

that is predicted from specified at-

tributes

Fig. B.28

SVMForRegr Learning operator Support Vector Machine for Regres-

sion

Fig. B.25

Table B.2: Alphabetical list of feature construction operators

Replaces missing values with the median value for that column. Statistics
for the concept should first have been calculated.

Figure B.18: AssignMedianValue dialog.

Mining Mart IST-1999-11993, Deliverable No. D11.3 79

Replaces missing values with the specified value.

Figure B.19: AssignDefaultValue dialog.

Replaces missing values with a predicted value using a Decision Tree. A
Decision Tree is learned from the predicting attributes.

Figure B.20: MissingValuesWithDecisionTree dialog.

Mining Mart IST-1999-11993, Deliverable No. D11.3 80

Replaces missing values with a predicted value using a set of Decision Rules.
A set of Decision Rules is learned from the predicting attributes.

Figure B.21: MissingValueWithDecisionRules dialog.

Replaces missing values with a predicted value using a Support Vector Ma-
chine. A Support Vector Machine is trained in regression mode from the
predicting attributes.

Figure B.22: MissingValuesWithRegressionSVM dialog.

Mining Mart IST-1999-11993, Deliverable No. D11.3 81

Scales the specified attribute between the minimum and the maximum value.

Figure B.23: LinearScaling dialog.

Determines the logarithm with the specified base for the specified attribute.
Useful for attributes that show exponential behavior.

Figure B.24: LogScaling dialog.

Mining Mart IST-1999-11993, Deliverable No. D11.3 82

A data mining operator. A Support Vector Machine is trained in regression
mode using the predicting attributes. It predicts the value for the output
attribute. Several parameters can be set to manipulate the behavior of the
operator.

Figure B.25: SVMForRegression dialog.

A special operator to evaluate the results obtained from the Support Vector
Machine.

Figure B.26: ComputeSVMError dialog.

Mining Mart IST-1999-11993, Deliverable No. D11.3 83

A data mining operator. A set of Decision Rules is learned from the pre-
dicting attributes. It predicts the value for the output attribute. Several
parameters can be set to manipulate the behavior of the operator.

Figure B.27: PredictionWithDecisionRules dialog.

A data mining operator. A Decision Tree is learned from the predicting
attributes. It predicts the value for the output attribute. Several parameters
can be set to manipulate the behavior of the operator.

Figure B.28: PredictionWithDecisionTree dialog.

Mining Mart IST-1999-11993, Deliverable No. D11.3 84

Replaces missing values in the target attribute with the value of the predicted
attribute. The predicted attribute results from the PredictionWithDecision-
Rules or PredictionWithDecisionTree operator.

Figure B.29: AssignPredictedValueCategorial dialog.

