
Enabling End-User Datawarehouse Mining
Contract No. IST-1999-11993

Deliverable No. D12.4

The Concept Editor
A Description of Part of the Mining Mart HCI Deliverable D12.4

Erik Darwinkel and Olaf Rem

Perot Systems Nederland B.V.
P.O. box 2729, NL-3800 GG Amersfoort, The Netherlands

{Erik.Darwinkel, Olaf.Rem}@ps.net

December 20, 2002

Abstract

The main objective for workpackage 12 is to deliver a Human Computer
Interface for the Mining Mart system and to integrate all components. The
Concept Editor is part of the HCI. It allows to create and manipulate con-
cepts and connect them to the business data. These concepts are inputs for
preprocessing operators that can be specified using the Chain Editor.

In this report the functional requirements for the Concept Editor are
described; the design and implementation is discussed and information is
provided about using the Concept Editor.

We conclude that the current version of the Concept Editor fulfills the
functional requirements. Some functionality can be made more user-friendly
or more scalable. On the whole, however, the Concept Editor does what it
is supposed to do and allows to conveniently work with concepts.

Contents

1 Introduction 2

2 Concept Editor Architecture, Design, and Implementation 4
2.1 Architecture . 4
2.2 Design and Implementation 4
2.3 Recommendations for Future Development 6

3 Using the Concept Editor 10
3.1 Overview of Functionality . 10
3.2 Building a Conceptual Data Model 10
3.3 Mapping of Conceptual Data Model to the Relational Data

Model . 11
3.4 Validity of Objects . 13
3.5 Viewing Data . 13
3.6 Creating and Viewing Statistics 14
3.7 Re-using Concepts . 14

4 Conclusions 16

A Programming standards 18

1

Chapter 1

Introduction

The main objective for the Mining Mart system (see Figure 1.1) is to provide
a user-friendly interface for enhanced preprocessing of data for a knowledge
discovery task. The system architecture (see Figure 1.2) consists of several
components of which the Concept Editor is one. The other major compo-
nents are: Chain Editor, Compiler, Mining Mart Meta Model (M4) Schema,
M4 Interface, and Business Data Schema. The heart of the Mining Mart
system is the M4. It stores meta information about preprocessing steps and
data. The M4 Interface provides a Java object interface to access the M4.
The Concept Editor and Chain Editor act closely together and are both part
of the Mining Mart system HCI (human computer interface). They both
use the M4 Interface to manipulate the M4. For the end user they provide
a user-friendly way to work with the meta data. The Concept Editor allows
users to work with meta data about business data. The user needs this
information when working with the Chain Editor for defining preprocess-
ing steps. The Compiler manages the execution of preprocessing steps. It
triggers operators and writes the results back in the M4.

The objective for workpackage 12 is to design and implement the Con-
cept Editor, Chain Editor and Compiler and integrate all components into
a working system. This report focuses specifically on the design, implemen-
tation and use of the Concept Editor.

There are various other sources available that provide more information
about the Mining Mart project and the Mining Mart system. A good place
to start is the Mining Mart website1 which offers a good overview of the
available documentation. Here also many documents can be downloaded
directly. The Mining Mart approach is described in: [MoS02], [ZKV01]
and [KZV00]. Further information about the Mining Mart system can be
found in: [PeF02] (requirements, system overview), [Eul02] (Compiler and
operators), [LaR02] (M4Interface), [VKZ01] (the Mining Mart Meta Model),
[Zu01b] (Compiler) and [Zu01a] (M4 schema).

1http://www-ai.cs.uni-dortmund.de/FORSCHUNG/PROJEKTE/MININGMART/index.eng.html

2

Mining Mart IST-1999-11993, Deliverable No. D12.4 3

This screen shot of the Mining Mart HCI (human computer interface) de-
picts three internal windows. The upper and right windows form the Chain
Editor; the lower left window shows the Concept Editor.

Figure 1.1: Screen shot of the Mining Mart HCI.

Schematic view of the Mining Mart components. The Concept Editor and
Case Editor are part of the HCI. The M4 Interface provides a Java object
interface to the M4 and is divided over the client (Java Swing) and the appli-
cation server (JBoss). The Compiler (Java RMI server) executes operators
and creates resulting tables and views. The database (Oracle) contains the
M4 and the business data.

Figure 1.2: Mining Mart components.

Chapter 2

Concept Editor Architecture,
Design, and Implementation

In this chapter an overview will be given of the architecture of the concept
editor and we will focus on some aspects of the design and implementation.

2.1 Architecture

The Concept Editor and the Case Editor are part of the presentation layer
(see Figure 2.1). The business logic is part of the business layer and handles
the communication of the presentation layer with the database layer and
the Compiler. The M4 interface forms a buffer between the business logic
and the database. It provides methods for creating, updating, deleting, and
finding information in an M4 instance.

Figure 2.1 presents the architectural view, showing the three tier model
superimposed on the major Mining Mart components. It shows how the
different components are distributed over the client, the application server
and the database server. The M4 Interface consists of two parts: the Client
Object Library (COL) and several session beans. The COL abstracts the
data centric view used in the data layer for the application client and hides
the communication with the application server. Further “down” into the
data layer Session Beans are used to provide access to the data stored in the
database.

2.2 Design and Implementation

The Concept Editor has been implemented using Java. For the graphical
components the Swing components were used. The Concept Editor consists
of many Java classes that work together to provide the required functionality.
All these classes reside within the

4

Mining Mart IST-1999-11993, Deliverable No. D12.4 5

The figure shows a conceptual view of the Mining Mart architecture. The
case designer and datawarehouse administrator use the Mining Mart HCI.
The HCI consists of the Chain Editor and the Concept Editor, which are
both part of the presentation layer. The Concept Editor also contains some
business logic and access the database through the Client Object Interface.
The COL provides an object interface and shields the data centric view from
the client.

Figure 2.1: Mining Mart architecture.

Mining Mart IST-1999-11993, Deliverable No. D12.4 6

com.syllogic.miningmart.concepteditor

package and its subpackages. The main component is the ConceptEditor
class. For most of the functionality it is the starting point. Other classes
are grouped logically together in subpackages. In Table 2.1 an overview is
presented of the packages used for the Concept Editor.

Package Name Description
db Utilities for database access.
diagram Utilities for master detail view.
dialogs Contains all dialogs.
event Contains Concept Editor events.
images Contains images for icons.
tree Utilities for the concept and relation tree.
util General utilities.
wizard Wizard for creating many to many relation between

Concept and business data table.

Table 2.1: Overview of packages used for Concept Editor

The classes have been documented using the Java documentation fea-
tures. Using the standard javadoc tool an API has been produces in HTML
form. For further detailed information about the classes we refer to this
API. Figure 2.4 shows a screen shot of the API.

For two use cases we have created sequence diagrams to illustrate how
some of the classes work together in providing functionality. The first use
case is to create a new concept. It is illustrated in Figure 2.2.

The second use case is connecting a concept to the business data. This
involves quite a few classes as can be seen from the sequence diagram in
Figure 2.3.

2.3 Recommendations for Future Development

Although all the functional requirements for the Concept Editor have been
implemented (at least to a certain level), there is room for improvement.
These are mainly improvements in the areas of increased user-friendliness
and better scalability. Points for improvement are:

• Requests have been made to add an option to the Concept Editor
to automatically create new concepts and base attributes given one
or more tables. This would be especially practical for concepts with
many base attributes.

• Further the mapping of base attributes to columns could be made more
user-friendly. Currently this mapping cannot be edited or viewed after
it has been defined. The only way to change it, is by defining it once
more.

Mining Mart IST-1999-11993, Deliverable No. D12.4 7

The figure shows which main classes are involved in creating a Concept. The
method names are shown that are called sequentially on the different objects.

Figure 2.2: Create Concept sequence diagram.

The diagram shows which classes are involved in connecting a Concept to
the business data. The method names that are called on the objects are also
shown in the diagram.

Figure 2.3: Connect Concept sequence diagram.

Mining Mart IST-1999-11993, Deliverable No. D12.4 8

Overview of HTML documentation for the Concept Editor using a standard
webbrowser. It has been generated using the standard javadoc tool. For
more extensive information about the Java classes that build up the Concept
Editor we refer the reader to this API.

Figure 2.4: Screenshot of HTML documentation for the Concept Editor.

Mining Mart IST-1999-11993, Deliverable No. D12.4 9

• Although concepts can be copied from another case into the current
case, it would also be nice to be able to copy concepts (and their base
attributes) within the same case.

• Triggers in the database are responsible for setting object validity. We
believe there is still some optimization possible in these triggers. This
could improve the performance, for example, when importing a case
including columnsets and columns.

• Currently the scroll panes for the tree-view and master detail view
have fixed maximum sizes. Large cases with many concepts may run
into the limits of these components.

• Although it is possible to build a concept hierarchy this hierarchy is
not enforced or rigidly maintained by the software. More support for
constructing subConcepts would be nice and better maintenance of
the concept hierarchy would be good.

Chapter 3

Using the Concept Editor

In this chapter an overview is given from the functionality of the Concept
Editor and it is explained how to use it. The focus will be on the use cases
for the concept editor, starting at a high level and then specifying these use
cases further.

3.1 Overview of Functionality

The primary goals of the Concept Editor are to build a Conceptual Data
Model (Concepts, FeatureAttributes and Relationships) and map this to the
Relational Data Model. The editor must provide an interface for doing this.
It is also responsible for validation of Conceptual Data Model elements. The
editor does not provide an interface for M4 objects that are not involved in
the realization of the primary goals of the editor (e.g.: Case, Step, Operator).
The editor does not access the M4 model directly for editing, but uses the
M4 interface.

The following lists the use cases:

• Build Conceptual Data Model

• Map Conceptual Data Model to Relational Data Model

• Validate the Conceptual Data Model

• Viewing Concept Data

• Create and View Statistics

• Reuse of Concepts

3.2 Building a Conceptual Data Model

An important part in the work of the case designer is to build a conceptual
data model. The concepts will have relationships to each other, may be

10

Mining Mart IST-1999-11993, Deliverable No. D12.4 11

Overview of a Conceptual model in the Concept Editor.

Figure 3.1: Screenshot of the Concept Editor.

ordered in a hierarchy and will be, together with the operators, the building
stones for preprocessing chains in a case.

Concepts and Relationships can be created by choosing “New Concept”
or “New Relationship” from the menu and filling in the properties for the
Concept or Relationship. Editing and deleting existing concepts is done in a
straightforward way by using the respective menu items in the Mining Mart
HCI.

For an example of a Conceptual model see figure 3.1.

3.3 Mapping of Conceptual Data Model to the Re-
lational Data Model

The Conceptual Data Model defined by the case designer will have to be
mapped to the Relational Data Model (the database) in order to be able to
execute a case. This is only relevant for Concepts that are indeed based on
existing tables in the database (Concept type DB). For Concepts that are
created in one of the Steps of a Case (Concept type MINING) the corre-
sponding ColumnSets are created by the Compiler. For Concepts of type
BASE no mapping is allowed.

For an example of mapping a concept see figure 3.2.

Mining Mart IST-1999-11993, Deliverable No. D12.4 12

Schematic view of connecting a Concept with the Business data using the
Concept Editor.

Figure 3.2: Connecting a concept.

Mining Mart IST-1999-11993, Deliverable No. D12.4 13

3.4 Validity of Objects

The case designer needs to know if the current conceptual data model is
valid or not. The validity of a conceptual data model can be summarized in
the following way:

The Conceptual Data Model is valid if:

1. All Concepts are valid.

2. All FeatureAttributes are valid.

3. All Relationships are valid.

A Concept is valid if:

1. It is generated by an operator or based on a ColumnSet,

2. at least one included FeatureAttribute exists, and

A FeatureAttribute is valid if:

1. It is connected to a Concept.

2. It is generated by an operator or based on a Column.

3. (for MultiColumnFeature) at least two BaseAttributes exist, which
belong to the same Concept as this MultiColumnFeature.

A Relationship is valid if:

1. both related Concepts exist.

2. it is based on Keys or a ColumnSet.

The GUI implements validation checking when creating, editing or delet-
ing Concepts, FeatureAttributes or Relationships. The GUI shows the va-
lidity using a red icon (invalid) or green icon (valid) (see figure 3.1).

3.5 Viewing Data

The case designer might want to see the data that is associated with a
concept. This can be of importance in making decisions for preprocessing.
Therefore the GUI could provide an option for viewing the data that is
associated with a concept. The Mining Mart HCI provides a method for
showing the data for a concept. Figure 3.3 shows an example of the dialog
that is presented to the user after choosing this option.

Mining Mart IST-1999-11993, Deliverable No. D12.4 14

Viewing the data that is associated with a concept in the Concept Editor.

Figure 3.3: Screenshot of viewing data for a concept.

3.6 Creating and Viewing Statistics

Concept data statistics concerning cardinality, missing values, minimum,
maximum, average and distribution blocks are helpful in making prepro-
cessing decisions. These statistics can be generated by choosing the “update
statistics” menu item in the HCI. They can be viewed by choosing the “view
statistics” menu item. Figure 3.4 shows an example the statistics dialog.

3.7 Re-using Concepts

An important functional requirement is to be able to reuse an existing Con-
ceptual Data Model from another case. The user must be able to select
a Conceptual Data Model from another case, import it into the Concept
Editor and adapt it to his wishes. For adapting the imported Concepts,
FeatureAttributes and Relationships he can use the functionality which has
been mentioned in “build Conceptual Data Model”(see Section 3.2).

Cases can be exported by the HCI to a file using the export option in
the file menu. Via the import menu the user is able to import a case from
a file (from another database) or import concepts from another case (in the
same database).

Mining Mart IST-1999-11993, Deliverable No. D12.4 15

Viewing the statistics from data that is associated with a concept in the
Concept Editor.

Figure 3.4: Screenshot of viewing statistics for data from a concept.

Chapter 4

Conclusions

The Concept Editor is part of the Mining Mart HCI. It allows to build a
Conceptual Model, map concepts to business data, show the validity status
of objects, view data, view statistics and re-use concepts. With this func-
tionality all the functional requirements have been fulfilled. In some areas
improvements are possible. These are mainly improvements to make things
more user-friendly and better scalable.

We have also described aspects of the architecture, design and imple-
mentation of the Concept Editor. For more specific information about Java
classes used in the Concept Editor we refer to the API documentation.

Our experience with the Editor is that it provides a convenient way of
working with concepts and also partners have worked with it successfully in
their cases.

16

Bibliography

[Eul02] Euler, T., Compiler Constraints and Operator Parameters, Tech-
nical report TR 12-02, October 30, 2002.

[KZV00] Kietz, J.-U., Zücker, R., Vaduva, A., “Mining Mart: Combining
case-based reasoning and multistrategy learning into a framework
for reusing kdd-applications”, in Proc. of the Int. Conf. on Multi-
Strategy Learning, MSL-2000, 2000.

[LaR02] Laverman, B., Rem, O., Description of the M4 Interface used by
the HCI of WP12, Deliverable D12.2, July 16, 2002.

[MoS02] Morik, K., Scholz, M., The MiningMart Approach., Workshop
Management des Wandels der 32. GI Jahrestagung, 2002, to ap-
pear.

[PeF02] Perot Systems Netherlands, Fraunhofer Institute AiS, Mining
Mart Human Computer Interface, Technical report TR 12-01,
March 15, 2002.

[VKZ01] Vaduva, A., Kietz, J.-U., Zücker, R., Dittrich, K., Morik, K.,
Marco, B., Luigi, P., M4 - The MiningMart Meta Model., Deliv-
erable, D8/9, IST Project MiningMart, IST-11993, 2001.

[Zu01a] Zücker, R., Description of the M4-Relational Metadata-Schema
within the Database., Deliverable D7a, IST Project MiningMart,
IST-11993, 2001.

[Zu01b] Zücker, R., Description of the Metadata-Compiler using the M4-
Relational Metadata-Schema., Deliverable, D7b, IST Project
MiningMart, IST-11993, 2001.

[ZKV01] Zücker, R., Kietz, J.-U., Vaduva, A., “MiningMart: Metadata-
Driven Preprocessing.”, in Proceedings of the ECML/PKDD
Workshop on Database Support for KDD, 2001.

17

Appendix A

Programming standards

Copyrights

The source code will be copyrighted by the company where it originated,
unless otherwise decided during the course of the MiningMart project. Due
to the sensitive nature of copyright protection however, it should be noted
that any material produced should be protected by copyright (default will
be a copyright owned by the producer of that material) at all times. If it is
decided to place material in the public domain, then experience shows that
an Open Source style license such as the GPL or LGPL provides adequate
protection coupled with full disclosure and availability. Note however that
such a license does not preclude a copyright ownership by the MiningMart
partners. Perot Systems Nederland will include the following code snippet
at the top of all of its code: // Copyright 2002 by Perot Systems Nederland
// All rights reserved.

Java Package Name Choices

Java package naming has solved many of the problems faced by integrators
of code from different sources. We would however propose to standardize
the names of the packages themselves as follows:

• All code which is common for the entire MiningMart system should
reside in packages under the global package miningmart.

• All code which is internal to parts developed by an individual partner
should reside in either a package under the MiningMart package men-
tioned above, or else in a package named according to that partners
own standards. For example, the implementation of the Concept Edi-
tor will reside under the package com.syllogic.miningmart.concepteditor.

This approach, when combined with the Factory and Facade design pat-
terns, will allow partners to interface to each others code, without ever hav-
ing to known partner specific package names. In fact, one would never know

18

Mining Mart IST-1999-11993, Deliverable No. D12.4 19

of the com.syllogic packages unless one browsed the jar files or performed
getClass().getName() calls on objects received from the factory methods.
This is the same approach also followed by Sun Microsystems for large parts
of the standard Java library.

Naming Standards

Names are generally defined as is common for Java code:

• Package names are all lowercase.

• Classes and interfaces start with an uppercase letter, while methods,
attributes, and variables start with a lowercase letter. Names are gen-
erally chosen to describe value (Classes, interfaces, and attributes) or
function (methods) and not abbreviated. If the name is a concatena-
tion of several words, then the start of each word is highlighted by
putting the first letter in uppercase.

• Accessor methods are named getXxx() or setXxx(), where Xxx is the
capitalized name of the attribute involved.

• Single letter variables are only used in loops:

– Counters are called n, m,

– Indexes in arrays are called i, j,

– Characters (typically retrieved from strings are read from streams)
are called c.

For other uses descriptive names should be used.

• In a few cases suffixes will be used:

– Enterprise Java Beans will be referred to by the name of the Re-
mote interface. The Home interface will have this name suffixed
with Home, and the implementation will have suffix EJB.

– Value objects will have suffix V.

– When several methods are needed with the same name and pa-
rameter list, but with different return types, a single letter suffix
may be used to distinguish between them. For example, if an
integer value is sometimes needed in a wrapper object, and some-
times as an int, the Integer returning method will get a suffix O
to signify as object.

Mining Mart IST-1999-11993, Deliverable No. D12.4 20

Version Control Related Standards

Perot Systems uses CVS for its version control. Since CVS relies on RCS
code for the actual processing of the files, RCS style markers are used and
substituted. We normally use Id at the top of the file to provide identifica-
tion, and Log at the bottom to keep track of the change history.

Source Code Layout

Unfortunately layout is a subject which can easily waste a lot of time. When
working with code produced by others, the simple but hard rule is to fol-
low the style already in use. For newly crafted code, Professor Andrew
Tanenbaum of the Amsterdam Free University once stated (in relation to
contributions to the Minix Operating System) that he would not look at
any piece of code before it had been reformatted by cb using his standard
settings. We do not propose to go that far, but will use the following settings:

• ASCII TAB characters will be presumed to expand to 8 spaces.

• Indentation is 2 spaces.

• If/while/for/etc will always have use braces around their sub-statements.

• The opening brace will preferably be placed at the end of the line
preceding the block, while the closing brace comes on a line by itself.

• Every statement is on its own line.

Other Standard Elements

Perot Systems Nederland will use Together 5.5 as its primary design/development
tool, Together ControlCenter will allow us to develop EJBs using a simpli-
fied interface to the three source files involved, and integrates seamlessly
with CVS. Together stores most of its integration information in the source
files themselves, using the javadoc style comments. Some of these comments
are used to control display of UML diagrams, while others control the links
to the J2EE deployment tools. As a result of this, several @¡keyword¿ style
lines will be present in the source files, which do not come from the javadoc
standard. Some of the more common ones are: @notProperty This signifies
that a method looks like an accessor function, but should not imply the pres-
ence of a JavaBean property. @ejbHome Specifies the EJB Home interface.
@ejbRemote Specifies the EJB Remote interface. @ENV-REF Starts an
environment reference. @ENV-TYPE Java type of the environment value.
@ENV-VALUE The actual value involved. @RESOURCE-REF Starts a
resource reference. @RES-JNDI-NAME JNDI name of the resource.

