
A Model-Driven Runtime Environment for Web
Applications

Jörg Pleumann and Stefan Haustein

Computer Science Dept. VIII/X
University of Dortmund

Germany
{joerg.pleumann,stefan.haustein}@udo.edu

Abstract. A large part of software development these days deals with
building so-called Web applications. Many of these applications are data-
base-powered and exhibit a page layout and navigational structure that
is close to the class structure of the entities being managed by the sys-
tem. Also, there is often only limited application-specific business logic.
This makes the usual three-tier architectural approach unappealing, be-
cause it results in a lot of unnecessary overhead. One possible solution
to this problem is the use of model-driven architecture (MDA). A simple
platform-independent domain model describing only the entity structure
of interest could be transformed into a platform-specific model that in-
corporates a persistence mechanism and a user interface. Yet, this raises a
number of additional problems caused by the one-way, multi-transform-
ational nature of the MDA process. To cope with these problems, the
authors propose the notion of a model-driven runtime (MDR) environ-
ment that is able to execute a platform-independent model for a specific
purpose instead of transforming it. The paper explains the concepts of an
MDR that interprets OCL-annotated class diagrams and state machines
to realize Web applications. It shows the authors’ implementation of the
approach, the Infolayer system, which is already used by a number of
applications. Experiences from these applications are described, and the
approach is compared to others.

1 Introduction

A large part of software development these days deals with building so-called
Web applications, that is, server-sided applications that are remotely accessed
via the Internet using a standard Web client like Netscape or the Internet Ex-
plorer. Communication between client and server is based in the Hypertext
Transfer Protocol (HTTP) and uses the Hypertext Markup Language (HTML)
for content description. For nontrivial applications, static HTML pages are usu-
ally not sufficient – instead, each page exists in two variants: The server holds
the original page that consists of HTML code and embedded scripting com-
mands which, for example, access the content of some underlying database. This
template-like page is processed on the server, resulting in a pure HTML page
which is then delivered to the client.

Web applications often employ a three-tier architectural approach: The lower
tier provides a persistence mechanism for the entities the application deals with.
The upper tier provides either the HTML user interface meant to be consumed
by humans or a communication interface for other applications based on, for
example, the Simple Object Access Protocol (SOAP). The middle tier ties the
other two together and implements the application’s business logic. While this
approach is relatively common, it raises a number of problems:

– The database used in the persistence tier is likely to be a relational one.
Given that the rest of the application is modeled using the Unified Modeling
Language (UML) [1, 2] and later implemented using an object-oriented pro-
gramming language like Java, a mapping between the object-oriented and
relational worlds is necessary. This mapping is further complicated by the
need for a normalization of database tables and the expressive mismatch
between the Standard Query Language (SQL) and a modern object-oriented
language like Java.

– As mentioned, most approaches use some form of scripting language to sep-
arate static and dynamic portions of a Web page. While it is possible that
the scripts are implemented in (roughly) the same language as the rest of
the application – like in the combination of Java and Java Server Pages
(JSP) – , this is not a necessity. It may well be a different language like PHP
or Perl, which results in at least five languages being used in the overall sys-
tem: UML, SQL, HTML, Java plus the scripting language. This poses high
demands on the developers’ skills, it raises development time and cost and
it complicates maintenance.

– In a significant number of cases, the application’s business logic is pretty uni-
form. Take, for example, the typical simple Web application used to realize
the Internet presence of a university department (see Fig. 1). The database
stores instances of some entity classes, and the user interface provides access
to them. Often, even the navigational structure of the user interface is close
to the entities’ class structure, that is, there is a correspondence between do-
main classes and HTML pages used to display, manipulate or query instances
of these classes. If the logic is not application-specific, it seems unnecessary
to explicitly model and implement it. Instead of going through the effort
of the full three-tier approach, one would want to focus on the entities and
their presentation in the user interface and leave the rest to a tool.

A solution to these problems, as mandated by OMG, is the use of Model
Driven Architecture (MDA) [3, 4]. For a given problem, MDA proposes that
first a platform-independent model (PIM) be created. This model is then trans-
formed to one or more platform-specific models (PSM) using appropriate trans-
formation rules. In the given domain of Web applications, the PIM could encom-
pass application-specific information like the domain model and the application’s
business logic. From the potentially infinite number of possible PSMs, one could
incorporate a user interface based on HTML and a persistence layer empoying
a relational database. Theoretically, a PSM can be refined into an even more

Fig. 1. A (simplified) domain model of a university department

platform-specific model. Yet, at some point programming language code has to
be emitted that can be compiled into an executable application.

From a programmer’s point of view, MDA is not completely new. It is ex-
tending the traditional idea of a compiler to the earlier phases of the software
development process, that is, to the models. While this is surely a powerful idea,
it has some consequences for the overall process as well as the application under
development:

– Evolution is complicated. As Heckel and Lohmann [5] have noted before,
MDA doesn’t pay enough attention to functional evolution of the system.
Every such evolutional step, for example a new requirement, induces changes
to the PIM or the specification of the transformations from the PIM to the
PSMs. In either case, the whole transformational chain up to the executable
application has to be applied over and over again. Given that a large part
of Web application development deals with the creative process of designing
an appropriate user interface, that is, small changes to HTML pages (or
their equivalent in the model) are made and evaluated, these time-consuming
transformations are likely to hamper development progress.

– Maintenance is complicated. This is due to the fact that the application has
not only undergone one transformation, as in the traditional compilation
approach, but possibly several ones. Tracking a problem in the running ap-
plication back to its roots in either the PIM or one of the transformations
requires that the equivalent to ”debugging” information is available for each
model that was derived from a less-specific one. Currently, there seems to be

no solution for this problem. Also, as usual for generative approaches, the
generated models and source code are likely to be unreadable, since they are
not meant to be consumed by humans.

– The process is one-way. While it is theoretically possible to modify models
generated during a previous transformation step, this is not recommended.
Manually changing a PSM or some generated source code potentially results
in an inconsistent description of the whole system architecture, since these
changes are neither reflected in the other models nor gained ”legally” through
a transformation. They are lost when a complete rebuild of the system is done
starting from the PIM. Thus, until there exists a means to propagate manual
changes in any model to the rest of the system architecture, it is best to treat
generated models and source code as read-only.

Since all three problems stem from the multiple transformations (or compi-
lations) inherent in the MDA approach, the authors were looking for a solution
that suited the Web application domain better. As a result, we propose a slight
variant of MDA that does not compile PIMs, but interprets them instead. In this
approach, the transformation from the PIM to the PSM is handled implicitly
by a model-driven runtime (MDR) environment. Where MDA potentially trans-
forms object-oriented concepts to non object-oriented ones (as in the case of the
relational database), an MDR implements selected parts of the UML metamodel
and interprets them for a given application domain. Just like it is possible to de-
rive multiple PSMs from a single PIM in the pure MDA approach, it is possible
to have a number of very different MDRs executing the same PIM for different
reasons. In our case, the MDR of interest is one that allows us to build Web
applications as described above.

The rest of this paper is organized as follows: Section 2 presents the basic
concepts of an MDR for Web applications. It shows how UML is used to describe
static and dynamic aspects of a Web application and how these descriptions are
interpreted at runtime. Section 3 presents our implementation of an MDR for
Web applications, the Information Layer system, or Infolayer for short. Section 4
describes examples of concrete applications realized with the approach, with ex-
periences from these being given in section 5. The final sections 6 and 7 compare
our approach to others and draw a conclusion.

2 Concepts

The basic idea of an MDR is to not have to go through all the transformational
steps from the PIM via the PSM and the generated source code to a working
application. Instead, the MDR is to interpret, or execute, the PIM itself: Any
class diagram designed in a Computer Aided Software Engineering (CASE) tool
and exported to the standard Extensible Metadata Interchange (XMI) format
supported by most contemporary tools should be sufficient to invoke the system.
The MDR then provides a user interface and persistence mechanisms otherwise
gained though transformation or explicit modeling/implementation. To achieve

this, the model information, possibly annotated with constraints specified in the
Object Constraint Language (OCL) [6], is interpreted in several ways:

1. The model drives the database.
2. The model drives the user interface.
3. The model provides business logic.

Fig. 2 depicts the system at a very high level of abstraction. We are going to
detail each aspect in one of the next sections.

Fig. 2. Overview of an MDR-based Web application

2.1 The model drives the database

First of all, the MDR needs to provide a persistence mechanism that allows to
create, access, modify, and delete instances of the classes defined in the model.
Attributes can utilize the usual primitive types Boolean, Integer, Float, String,
and DateTime. An additional built-in type File can provide for easily storing
binary files and thus supports a limited form of content management system
(CMS) functionality. Associations between classes are first-order elements that
are kept consistent by the system according to the multiplicities at the associa-
tion ends. No normalization of tables is necessary, as in the relational database
case.

All changes are made persistent to some underlying storage, which may em-
ploy either a system-specific mechanism based on, for example, the Extensible

Markup Language (XML) or an existing database system. Changes that violate
OCL constraints specified in the class diagram are denied. Practically speaking,
the MDR allows to construct a persistent object diagram that conforms to the
given class diagram.

Operations are supported, too, as long as they are queries (that is, side-effect
free). The reason for this requirement is the language we chose to ”implement”
operations: OCL serves as our primary language for evaluating any kind of ex-
pressions in the system.

The system knows several predefined classes. One of them is the usual Object
class that forms the ultimate ancestor of any user-defined class. Object provides
a built-in operation toString(): String that is used to derive printable text
for any object in the system. It is used and redefined in the same way as, for
example, in the Java class libraries. Another predefined class User serves as
the basis for user management, authentication and access control to classes and
objects based on permissions (again expressed in OCL).

2.2 The model drives the user interface

Theoretically, an MDR can be accessed in numerous ways, but for the moment
we’re only interested in Web-based access. For this purpose, the system needs to
run inside a servlet-capable Web server or provide Web server functionality itself.
For each client accessing the system, a generic user interface can be generated
on-the-fly, based both on the class and the object information:

– The interface shows a clickable inheritance tree of known classes. When
a specific class is selected, its current instances are listed, and individual
instances can be selected or created.

– For each instance, the system shows a list of all attributes and associations,
with associations being rendered as hyperlinks to the associated objects. The
latter allows the user to easily nagivate through the whole object diagram.

– When editing an object, list boxes are used where possible to restrict the
user’s input to sensible choices – like exactly those objects that can partici-
pate in a certain association.

– A very similar screen is used for querying the database.

Fig. 3 depicts the user interface generated for the Thesis class of the univer-
sity example. Underlined strings denote hyperlinks. Arrows are used to clarify
which parts of a class declaration influence which parts of the user interface.

Being relatively simple and thus maybe not sufficient for real-life applica-
tions, the generic user interface needs to be tailorable to specific needs. We find
it easiest to achieve this tailoring by an XML/HTML-based template mecha-
nism, since HTML is also the target language of the system and a number of
powerful and mature tools exists for creating HTML pages. We assume that
people responsible for the more artistic design of a system will prefer these over
a CASE tool. The template mechanism allows to change the default output gen-
erated for a certain class or for objects of a certain class. It is mainly used to

Fig. 3. Generated user interface

control the layout of pages generated by the system. Yet, it also allows to realize
systems whose navigational structure is far from the assumption of one class or
object being displayed at a time.

The template mechanism is somewhat similar to the mentioned approach
of embedding a programming or database query language into HTML pages.
Yet, it is very different in the language we propose to use: Again, OCL is
used to retrieve a set of objects matching a desired criterion. A few addi-
tional XML elements can allow for a limited degree of ”control flow” while
generating an HTML page. As an example, there can be an element that al-
lows to iterate over the constituents of an OclCollection (the result of a
<class>.allInstances.select(<condition>) expression) and output a cer-
tain HTML fragment for each. Another XML element provides an equivalent to
the usual if-then-else construct known from programming languages. Its con-
dition is an OCL expression that evaluates to a boolean value. Both are depicted
in Fig. 4.

The templates follow the inheritance rules dictated by the class hierarchy:
Subclasses inherit the templates defined by their superclasses, but can override
them. If no specific templates are defined at all, classes inherit their templates
from Object – which results in the default output behaviour described above.

<h1>Theses Available</h1>

<!-- The inner block is repeated for each item. -->
<!-- ’t’ is the namespace for template elements. -->

<t:iterate expr="Thesis->select(author->isEmpty())">

<!-- ’self’ holds the current iteration item (optinal). -->
<!-- ’eval’ evaluates and prints the given expression. -->

<t:eval expr="self.title"/>

<!-- ’if’ encloses a conditional block. -->

<t:if expr="advisor->notEmpty()">
(advice by <t:eval expr="advisor.givenName"/>

<t:eval expr="advisor.familyName"/>)
</t:if>

</t:iterate>

Fig. 4. Template incorporating OCL expressions

2.3 The model provides business logic

Experience with Web applications shows that a number of systems have more or
less workflow-like characteristics. Take, for example, the university department
model from Fig. 1. Such an Internet presence would usually provide a list of
master theses, each of which can be in different states: A thesis can be available,
it can be reserved for a student who is writing a proposal, it can be work in
progress, and it can be finished. The possible transitions between these states are
restricted, and the user interface should enforce these restrictions. For example,
one should be able to go from ”in progress” to ”finished”, but not back. Such
behavior is easily specified as a UML state machine (see Fig. 5).

Fig. 5. State machine for the Thesis class

The MDR is able to interpret state machines as additional business logic
of the system. Every class in the domain model can be annotated with a state

machine that describes its behaviour. Once a new object is created at runtime,
it not only has all its attributes set to default values, but also starts in its initial
state(s).

When the object is displayed, the HTML user interface shows a list of but-
tons representing the potential triggers. These are the triggers of exactly those
transitions that are enabled, or, more precisely, would be enabled if these events
were to enter the system (see Fig. 3). The buttons can take into account any
guard expressions attached to the transitions. These guards are, again, specified
in OCL and may encompass all objects in the system. If a button is pressed, the
enabled transitions are taken, resulting in a new active state configuration. Is
also makes sense to allow special actions here that are able to modify an object’s
attributes by some form of assignment. The new state configuration is made
persistent with the object, just as the attributes and associations are. Once a
state machine reaches a terminal state, the object it belongs to is deleted.

If required inside a template, the current active state configuration of an
object can be queried using the OclInState(<state>) function, and HTML
output can be created accordingly. As an example, one could display a longer
textual description of the current state to provide the user with some assistance
on the current position in terms of the workflow and what actions are possible.

3 Implementation

We have implemented the above ideas in our Infolayer system. The roots of this
Java-based system go back to the COMRIS [7] project funded by the European
Community. Fig. 6 shows a very rough approximation to the architecture. At
the heart of the system lies an implementation of selected portions of the UML
metamodel:

– A core part, implementing basic properties of all model elements. This part
has a loose conceptual relationship to the UML meta-metamodel, but it is
not an implementation of the Meta Object Facility (MOF).

– A part that implements UML classes and objects, including all the necessary
properties like attributes, associations, methods, inheritance, etc.

– A part that implements UML state machines, including a runtime component
that is able to simulate a state machine.

– An OCL parser and evaluator. This component implements the OCL lan-
guage as defined in the UML 1.4 specification. As mentioned, OCL is used
to specify (side-effect free) query operations. For pragmatic reasons, we also
allow some additional (non-query) constructs. These encompass object cre-
ation and destruction as well as value assignment and can be seen as a limited
subset of Action Semantics.

– An XMI loader that allows to feed the model into the system. Since XMI
operates on the UML meta-metamodel, this part requires the core part only
and is able to handle arbitrary metamodel elements by means of the reflective
capabilities introduced in the core model element.

Fig. 6. Architecture of the Infolayer

– A part that implements an XML-based persistence mechanism as well as
other ones, for example one based on Java Database Connectivity (JDBC)
that allows the Infolayer to integrate existing relational database. Actually,
it is even possible to have the Infolayer operate on a BibTeX file.

All these components contribute to the system’s model layer or back-end,
which is still largely application-independent. Atop the model layer lie different
application front-ends which provide the functional equivalent to transformations
from the PIM to a PSM in MDA. One of them is the servlet already mentioned in
the previous sections. The servlet uses template mechanisms to generate output
based on the model information. HTML is one possible output format, but it’s
not the only one. Attempts have also been made to produce output conforming to
the Resource Description Framework (RDF) to open the system for the Semantic
Web [8]. Further template sets could be used to address mobile phones using the
Wireless Markup Language (WML) or a limited subset of HTML.

Fig. 7 shows the HTML user interface for the university example described
above, both with and without using templates.

In addition the the servlet, several other front-ends exist. A command-line
client can be used to access the system using OCL only, and a similar client uses
the Telnet protocol to access an Infolayer installation from a remote host. A
Swing-based graphical client that adapts its user interface to the model has also
been implemented, but is currently not maintained, because the focus lies on

Fig. 7. User interface with and without templates

the web client. Finally, a client implementing the Simple Object Access Protocol
(SOAP) allows to remotely access the Infolayer from third-party applications.

4 Applications

In spirit of ”eating one’s own food”, that is, the idea that a (software) engineer
should always be the first one to apply his own systems, the Infolayer is being
actively used in a number of different projects. The largest of these applica-
tions is probably the Web presence for MuSofT (http://www.musoft.org), a
distributed project that develops multimedia teaching material for software en-
gineering education in Germany [9]. The goal of this web presence is to manage
and distribute the material contributed by the various project partners and to
facilitate sustainable (re-) use amongst its users. The corresponding database is
rather complex: It not only features authors, their (binary) material and access
rights, but also metadata conforming to the Learning Objects Metadata (LOM)
[10] standard as well as a subset of the ACM computing classification system
[11], both of which allow for proper structuring and efficient retrieval inside the
database.

A second application is the Java 2 Micro Edition (J2ME) Device Database
(http:// kobjects.org/devicedb), a database of mobile phones and personal
digital assistants (PDAs) supporting J2ME. Although these devices follow a
common standard, they all have their own bugs, peculiarities and limitations –
which is critical information from the point of view of a developer who, naturally,
can’t own all the devices available in the world. The database accumulates this
information. It receives ”live” data from a small benchmarking application that
is publicly available and can be run on the different devices by their owners,
sending its results to the Infolayer database after it has been executed.

Other applications include the Machine Learning Net (MLnet) teaching server
(http: //kiew.cs.uni-dortmund.de:8001), a system that provides informa-

tion for the artificial intelligence community, and several chairs of the University
and the University of Applied Sciences in Dortmund who use it to manage their
web presences. In addition to these, the Infolayer is used in numerous smaller
projects where a database with web-based front-end and an easy-to-use naviga-
tional structure is required without spending much effort on its implementation.

5 Lessions learned

Some of the above applications have been in use for about two years. Expe-
riences with these applications and with the overall Infolayer approach have
shown a number of things. For this paper, we’d like to concentrate on the areas
of feasibility, methodology and OCL usage.

5.1 Feasibility

First, the general approach of modeling relevant structural and dynamic parts
of a Web application in a CASE tool and then executing this model works well.
For the applications mentioned in the previous section, there was practically no
additional Java programming necessary (only the MuSofT application required
one additional class to handle e-mail notifications sent to interested users once
a learning object changes). With the model itself becoming executable, we were
able to produce a working prototype for any of the applications very early. If
a database schema proved insufficient for the application, it was possible to
go back to the CASE tool, change the model, and then execute it again. No
implementation effort was spend on thrown-away prototypes, which makes the
Infolayer ideal for a rapid application development (RAD) approach in the Web
application or database context. We think a similar approach would be possible
in other areas, too.

5.2 Methodology

Second, a methodology or ”best practice” for working with the Infolayer has
evolved over time. It emcompasses these steps:

1. A domain model consisting of OCL-annotated UML class diagrams and pos-
sibly UML state machines is designed using one or more iterations of design-
ing and testing a prototype, as described above.

2. A first attempt is made to tailor the system’s layout (to personal taste or
a given corporate design) using one very simple template that provides a
basic frame and a main navigation structure. This is usually the point at
which the system can actually be be utilized by its users, that is, the Web
application’s database can be filled with content.

3. The page layout for individual classes can successively be improved, or the
system’s whole navigational structure can be changed according to the spe-
cific needs dictated by the application.

4. The model itself can be modified, too, as long as these changes only introduce
elements (classes, attributes, associations, constraints) into the system that
are consistent with existing instances. We hope to loosen this restriction
using refactoring facilities in the near future.

5.3 OCL usage

Third, the decision to use OCL as a query language inside the system proved
to be very helpful. A previous version of the Infolayer used the Object Query
Language (OQL) [12] instead, so the authors are able to draw a comparison
here: OQL is basically a slight syntactic adaption of SQL to the object-oriented
world. Queries that encompass multiple associations with a cardinality greater
than one tend to become lengthy and unreadable, because they result in nested
select statements. The implicit collect() in OCL expressions allows much
shorter and more intuitive queries.

As a result, we propose to use OCL – possibly with some syntactic exten-
sions for database updates – as an general access language for OODBMS. An
alternative would be the use of a subset of UML Action Semantics, probably
with a surface language that resembles OCL.

6 Related work

The Infolayer is not the first system that is based on the idea of interpreting
and executing a graphically specified formal model. Harel’s Statemate tool [13]
uses state machines to describe and simulate system behavior. The Real-Time
Object-Oriented Modeling (ROOM) [14] language specifies both system struc-
ture and behavior using a mixture of classes and state machines. Both systems
are targeted at generating code for embedded systems, not for database systems
or Web applications. As a result, user interface considerarions are not a concern.

Horrocks [15] uses state machines for modeling user interfaces, where we are
using them for modeling an object’s behavior and have a user interface largely
based on the domain model. If we were to allow additional graphical specification
of user interface structures, we would likely use activity diagrams instead of
state machines to support the description of ”wizard-like” dialog sequences that
implement certain use cases.

Riehle [16], Mellor [17] and Frankel [4] mention UML virtual machines (VM)
capable of interpreting arbitrary UML models. Yet, these VMs seem to be more
of a means to simulate and check a given model or use it for research purposes in
areas like refactoring [18]. As far as we can see, most of them are not targeted at
a certain application domain, as is the Infolayer, yet the systems are very close
in spirit to ours.

There’s also a number of approaches trying to employ the UML for creating
Web applications. Conallen [19] uses UML stereotypes to model various aspects
of a Web application, from client and server components to details of individ-
ual HTML pages. While this approach pays off for very large applications that

incorporate traditional executable code development, we find it overly complex
for the average small or medium Web application. Baumeister et. al [20] de-
scribe a systematic design method for Web applications combining ideas from
the Object Oriented Hypermedia Design Method (OOHDM) [21] and UML. The
system specification is divided into a conceptual model, which is roughly equal
to our domain model, and a navigational model. Since our premise is that the
system’s navigational structure is close or equal to the entity structure anyway,
we don’t see the necessity for the navigational model, and the examples given in
[20] seem to concede more to our point than to theirs.

WebML [22] is a high-level specification language for data-intensive Web
applications. It seems closest to our approach in that it focuses on an entity-
relationship model, that is, on a subset of UML specifying the data classes of
interest. One then composes Web pages from these entities and high-level com-
ponents like buttons, indexes etc.

Interestingly, all three approaches try to model HTML page layout by means
of UML and find equivalents to single HTML elements using stereotypes. In our
opinion this is putting the cart before the horse. The purpose of a Web applica-
tion is determined by its content, that is, the entities it deals with, so these should
come first and be central to the whole development process. Also, HTML is just
one of many possible user interfaces for accessing the application. For HTML-
centric approaches, incorporating alternative user interfaces or handling changes
to the entity structure will be complicated. For model-based approaches – be
it pure MDA or our MDR variant – this is easily done by either adding a new
transformation or implementing a variant of the runtime environment.

7 Conclusion and Outlook

We have presented a novel approach to developing Web applications. It is highly
model-driven, but instead of transforming a PIM to a PSM as in the MDA case,
it directly interprets or executes the domain model. For that purpose we have
the notion of a model-driven runtime environment that accepts UML models
consisting of class diagrams and state machines and makes this model accessible
via a servlet. A default HTML user interface is generated on-the-fly, but can be
tailored to specific needs using a template mechanism. The template mechanism
uses OCL plus a few additional constructs to access the domain model and the
existing objects and renders them to HTML.

The idea has been implemented in the Infolayer system, which provides the
basis for a number of different Web applications already in use. Experiences
with developing and using these applications have been very positive so far, and
we feel that it should be feasible to apply the same ideas to other application
domains, too.

Amongst the things we consider for future extensions to the system are addi-
tional UML diagram types, refactoring facilities and incorporation of full Action
Semantics.

References

1. Object Management Group: Unified Modeling Language (UML) 1.5 Specification.
http://www.omg.org/cgi-bin/doc?formal/03-03-01 (2003)

2. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. Addison Wesley Longman (1999)

3. Object Management Group: Model Driven Architecture (MDA).
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01 (2001)

4. Frankel, D.S.: Model Driven Architecture – Applying MDA to Enterprise Com-
puting. OMG Press (2003)

5. Heckel, R., Lohmann, M.: Model-based Development of Web Applications Using
Graphical Reaction Rules. In Pezzè, M., ed.: Fundamental Approaches to Software
Engineering, Springer (2003) 170–183

6. Warmer, J., Kleppe, A.G.: The Object Constraint Language: Precise Modeling
with UML. Addison Wesley (1999)

7. Haustein, S.: Information environments for software agents. In Burgard, W.,
Christaller, T., Cremers, A.B., eds.: KI-99: Advances in Artificial Intelligence. Vol-
ume 1701 of LNAI., Springer Verlag (1999) 295–298

8. Haustein, S., Pleumann, J.: Is Participation in the Semantic Web Too Difficult?
In Horrocks, I., Hendler, J., eds.: First International Semantic Web Conference.
Volume 2342 of LNCS., Springer (2002) 448–453

9. Doberkat, E.E., Engels, G.: MuSofT – Multimedia in der SoftwareTechnik. Infor-
matik Forschung und Entwicklung 17 (2002) 41–44

10. IEEE Learning Technology Standards Committee: Final Draft of the IEEE Stan-
dard for Learning Objects and Metadata. http://ltsc.ieee.org/wg12 (2002)

11. Association for Computing Machinery: ACM Computing Classification System.
http://www.acm.org/class (1998)

12. Cattell, R.G.G., Barry, D.K.: The Object Data Standard ODMG 3.0. Morgan
Kaufmann (2000)

13. Harel, D., Naamad, A.: The STATEMATE Semantics of Statecharts. ACM Trans-
actions on Software Engineering and Methodology 5 (1996) 293–333

14. Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object-Oriented Modeling. John
Wiley and Sons (1994)

15. Horrocks, I.: Constructing the User Interface with Statecharts. Addison Wesley
(1999)

16. Riehle, D., Fraleigh, S., Bucka-Lassen, D., Omorogbe, N.: The Architecture of
a UML Virtual Machine. In: 2001 Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA ’01), ACM Press (2001) 327–341

17. Mellor, S.J., Balcer, M.: Executable UML – A Foundation for Model-Driven Ar-
chitecture. Addison Wesley Longman (2002)

18. Ho, W.M., Jézéquel, J.M., Guennec, A.L., Pennaneac’h, F.: UMLAUT – An Exten-
sible UML Transformation Framework (1999) http://www.w3.org/TR/2002/CR-
soap12-part2-20021219/.

19. Conallen, J.: Building Web Applications with UML. Addison Wesley Longman
(2000)

20. Baumeister, H., Koch, N., Mandel, L.: Towards a UML Extension for Hypermedia
Design. In: Proceedings of UML’99. (1999)

21. Schwabe, D., Rossi, G., Barbosa, S.D.J.: Systematic Hypermedia Application De-
sign with OOHDM. In: UK Conference on Hypertext. (1996) 116–128

22. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Modeling
Language for Designing Web Sites. Computer Networks 33 (2000) 137–157

