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Chapter 1

Introduction

Time series forecasting plays an important role in strategic decision-making in a wide range
of industries, e.g., economics, retail, business, finances, environmental and social studies,
etc. Effective forecasting methods may provide meaningful information about the future
based on given data. Various machine learning techniques have already been applied to
solve real-world forecasting problems on data collected over time.

In a rapidly evolving digital environment, the representation of data often involves
multiple inter-dependent variables. On the one hand, this may give data engineers addi-
tional information about the target concept. On the other hand, the dataset might include
irrelevant and redundant features, which increase the dimensionality of the machine learn-
ing model input without contributing to the model’s forecasting accuracy. Moreover, the
changing and non-stationary nature of data distributions leads to a phenomenon of so-
called concept drift. In order to reduce the generalization error and increase the efficiency
of time series forecasting, we devise an online adaptive framework, which performs time
series selection on the raw time series data and adapts to concept drifts by informed re-
training.

1.1 Motivation and aim

Most of the existing time series forecasting models operate in a static manner, i.e. the
model is trained offline using some historical data. Its parameters are optimized once
at training time and the model is deployed in production with fixed learned parameters
and fixed information about temporal and spatial data. However, in a rapidly evolving
non-stationary environment, the relation between the input data and the target variable
might change over time. This change is formally described as concept drift. As a result,
previously learned concepts about data become no longer valid, making the offline model
not appropriate for future predictions. For instance, the launch of new products on the
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2 CHAPTER 1. INTRODUCTION

market leads to a change in consumers’ behavior and, consequently, concept drift in sales
prediction model.

This thesis proposes an online time series forecasting method that uses dynamic time
series selection and concept drift detection on given data. Dynamic time series selection
ensures, that at each timestamp the model is being trained only on the relevant data,
thus, avoiding the curse of dimensionality. This step consisted of two parts: selection
of the relevant time series, exclusion of the redundant time series. We have compared
the results of applying various distance and similarity measures to determine relevant
features. To remove the redundancies from the selected subset, the relevant time series are
clustered and only cluster representatives are selected. We have explored and compared
different clustering strategies: k-means clustering with Euclidean distance and dynamic
time warping clustering.

The main aspect of this work is concept drift detection within both temporal and spatial
dimensions of the multivariate time series data. Spatial dependencies indicate the similarity
between the values at one time instant. We investigate the change of the similarity measures
between the two most dissimilar processes using Hoeffding Bound. Temporal dependencies
indicate the patterns discovered within the same dimension. The drift detection within the
temporal dimension is ensured by tracking the change in estimated model’s performance
error over time.

1.2 Structure of the thesis

This work is structured as follows. Section 2 gives an overview of the key terms needed
in the time series and concept drift detection fields, introduces the formulation of the
problem. Section 3 describes the state-of-the-art approaches and related work on concept
drift detection and adaptation. Section 4 gives a detailed description of the statistical and
machine learning models, to which we applied our framework. Section 5 presents our online
adaptive time series forecasting framework. We evaluate our approach by comparing it to
standard baselines methods for time series forecasting in section 6. The thesis concludes
with a summary and a short discussion in section 7.



Chapter 2

Key Terms and Problem Formulation

Before introducing the phenomenon of concept drift and our online adaptive forecasting
framework, we will first focus on the definition of multivariate time series.

The series of data points indexed in time order form a time series. However, some real-
life scenarios involve multiple inter-dependent variables. One example of a possible scenario
is weather forecasting. We require complementary variables like humidity, precipitation
percent, wind speed, etc., in addition to temperature, to be able to optimally predict the
temperature in the future. A statistical model that deals with dependent data over time
is denoted as multivariate time series forecasting model. Multivariate time series analysis
considers the discovery of repeating patterns within two dimensions: spatial and temporal.
We will introduce the formal notation of spatial and temporal dimensions in the chapter
below.

2.1 Time Series

The definition of time series was generalized by the value series by Morik and Mierswa
in [23]. They define each element yi of the series as an instance consisting of the index,
indicating unit of time, and an m-dimensional value vector. The value vector is an element
of the value space.

2.1.1 Definition. (Value Series) A value series is a mapping y : N� > R ⇥ Cm. yn is
the element of series with index n and (yi)i2{1,..,n} a series of length n.

The introduction of the index component allows equally as well as unequally spaced value
series, while the complex number value space grants a convenient way to use basis trans-
formations like the Fourier transformation. For the reasons named above, the definition of
value series covers both time series and their transformations. However, the target of the
following work is multivariate time series.
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4 CHAPTER 2. KEY TERMS AND PROBLEM FORMULATION

2.1.2 Definition. (Multivariate Time Series) A time series is a set of observations,
Y

i = {yi1, yi2 ..., yit} made sequentially through time, where y
i
j indexes the value of time

series i at time j; yij 2 R, 8j 2 {1, 2, ..., t}. If i is greater than 2, the time series is denoted
as multivariate time series.

Multivariate time series Y = {y1, y2, ...yt} can be represented as follows:
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where vector y
i = (yi1, ...y

i
j , ...y

i
t) is called a value vector of time series with index i and

will further be denoted as feature. The value vector y
i describes the temporal dimension

of mulivariate time series y. A vector yj = (y1j , ...y
i
j , ...y

M
j ) is a vector of y at time j, which

characterizes the spatial dimension of multivariate time series. M and t are the sizes of
spatial and temporal dimensions respectively.

2.1.3 Definition. (Feature Space) Given time series Y = {y1, y2, ..., yt}, feature space
X ⇢ R

k is defined by

xi = (yi�k, yi�k+1, ...yi), xi 2 X,

where k is a lag, which specifies the number of past observations to be considered in feature
space.

The standard approaches to handle time series include classic linear statistical models,
such as Autoregressive Integrated Moving Average (ARIMA) for univariate time series and
Vector Autoregression (VAR) for multivariate. However, such models may be insufficient
in practice due to the non-linearity of real-life time series scenarios. Hence, various ma-
chine learning techniques have already been applied to time series forecasting problems to
perform non-linear modeling. But before moving to the role of machine learning in the
time series domain, we will first define what is a forecasting task.

2.1.4 Definition. (Forecasting) Given a time series matrix Y defined in 2.1.2 and con-
structed feature space X, the task is to predict the value yt+1, using past k observations:

yt+1 = f(xt), for xt 2 X

where f is the prediction function learned by the model.
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2.1.5 Definition. (Supervised Machine Learning) Supervised Learning is a machine
learning task, where the model learns a function that maps an input to an output based
on example input-output pairs: (Xi, Yi), for Xi being an input feature vector and Yi being
an expected output at the time i.

Supervised learning algorithms are trained using labeled examples, such as input values
where the desired output is known. In other words, labeled instances are defined as a set
of data assigned with some meaningful and informative “tag” (e.g. what does the photo
contain, “spam” flag on email messages, etc.). Learning is achieved by comparing its actual
output with correct outputs in order to find errors and modifying the model according to
the results.

Supervised learning can be classified into two major prediction techniques: classification
and regression. Classification algorithms categorize data under different labels according
to a given input outputting a discrete value. Regression algorithms look for numerical (or
continuous) values. In the case of regression, the output is the real value, which can be an
integer or floating value (e.g. quantities, sizes, etc.).

2.1.6 Definition. (Regression) Given a time series matrix Y defined in 2.1.2 and the
task to predict the value yt+1. The goal of the regression is to approximate function
f : X! Y, where X is a constructed feature space, so that

yt+1 = f(xt), for xt 2 X

is as close as possible to the real value.

The construction of multivariate feature space is also denoted as time series embed-
ding. An embedding is a process of translating high-dimensional vector in a relatively
low-dimensional space. It reduces the dimensionality of the input data, while still retain-
ing the important information about the target variable. It reformulates the time series
forecasting task into a supervised learning regression task. Time series embedding was
formally defined in [8].

2.1.7 Definition. (Time Series Embedding) An embedding of time series Y into em-
bedding space of size k is a mapping Rt ! Rk, which constructs a multivariate feature
space:

Xt�k = {x1, x2, ...xt�k},

where xi is a feature space of time series i.

In this work, we perform a two-stage time series selection on the multivariate time
series data. The first step is similarity-based selection. We have applied and compared
different measures to estimate the most coherent time series with the target one, such as
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similarity measures based on Euclidean, Fourier Coefficient and Manhattan distances, as
well as Pearson and Spearman correlations. Distance between target time series y

p and
candidate time series y

q is measured as follows:

2.1.8 Definition. (Manhattan Distance)

d(yp, yq) =
nX

i=1

|ypi � y
q
i |

2.1.9 Definition. (Euclidean Distance)

d(yp, yq) =

vuut
nX

i=1

(ypi � y
q
i )

2

where y
p and y

q are the value vectors of time series with index p and q respectively
and n is the temporal dimension of the time series. This two measures show very similar
behaviors on different kinds of data. This is explained by that fact that both measures
compute the difference in time series values. However, Euclidean distance is more sensitive
to outliers than Manhattan distance due to its non-linear characteristics [1].

2.1.10 Definition. (Fourier Coefficient based Distance)Fourier coefficient-based dis-
tance is the Euclidean distance between two time series yp and y

q with Fourier coefficients
y
p
f = h(m0, l0), · · · (mn�1, ln�1)i and y

q
f = h(r0, s0), · · · (rn�1, sn�1)i:

d(yp, yq) =
n�1X

i=1

(mi � ri)
2 + (li � si)

2

Fourier-based similarity measure is highly sensitive to scaling and noise effects than Eu-
clidean and Manhattan distances, but more robust to amplitude changes [1].

2.1.11 Definition. (Pearson Correlation)

r(yp, yq) =

Pn
i=1(y

q
i � yq)(ypi � yp)pPn

i=1(y
q
i � yq)

Pn
i=1(y

p
i � yp)

2.1.12 Definition. (Spearman Correlation) The Spearman correlation coefficient is
defined as the Pearson correlation coefficient between the rank variables. The rank R(xi)

is the position of numerical value xi in the sorted set of data x.

r(yp, yq) =

Pn
i=1(R(yqi )�R(yq))(R(ypi )�R(yp))pPn

i=1(R(yqi )�R(yq))
Pn

i=1(R(ypi )�R(yp))

The main difference between two correlations measures is that Pearson correlation mea-
sures the linear relationship between two time series, while Spearman correlation only
measures monotonic one.
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The second step of the framework includes the exclusion of the redundant features by
time series clustering to ensure the diversity of the input data.

Clustering is the partitioning of multiple univariate time series into groups based on
their similarity measure [17]. The desired property of every clustering algorithm is, that
all members of the same cluster are similar to each other, but are as dissimilar as possible
from objects in a different cluster. This problem is formally defined as follow [2]:

2.1.13 Definition. (Time Series Clustering) Given a set of n univariate time series
Y = {y1, y2, ...yn}, time series clustering partitions Y into C = {C1, C2, ...Ck} in such way,
that homogenous time series are grouped together based on chosen similarity measure. The
Ci is called a cluster, where Y = [ki=1Ci and Ci \ Cj = ; for i 6= j.

2.1.14 Definition. (K-means Clustering) K-means clustering is one kind of centroid
based clustering. In centroid-based clustering the cluster center is defined by the average of
all cluster members. The candidate time series is the one assigned to the closest centroid.
The K stays for the number of clusters. The initialization of centroids is done by randomly
selecting K time series for the cluster centers.

We compared k-means clustering using different distance measures: Euclidean distance
(see 2.1.9) and dynamic time warping. Dynamic time warping algorithm is the time series
similarity measure, which overcomes the restrictions of Euclidean distance. It allows to
calculate matching distance by minimizing a cumulative distance measure of distances
between samples of one time series [26]. Dynamic time warping distance problem is solved
by using a dynamic programming approach.

Figure 2.1: Euclidean vs. DTW Distances. https://rtavenar.github.io/blog/dtw.html

2.1.15 Definition. (Dynamic Time Warping) The DTW-distance between two time
series y

p = (yp1 , ...y
p
t0) and y

q = (yq1, ...y
q
t1) of length t0 and t1 respectively is:

D(i, j) = min

8
>><

>>:

D(i, j � 1)

D(i� 1, j)

D(i� 1, j � 1)

9
>>=

>>;
+ d(xpi , x

q
j),
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where i starts with t0 and j with t1.

The time series analysis requires the modelling of the underlying stochastic process
that forms the time series.

2.1.16 Definition. (Stochastic Process) A model that describes the probability struc-
ture of a sequence of observations is called a stochastic process [31]. A stochastic process is
a collection of random variables Xt indexed by a set T , i.e. t 2 T . Such a random process
can be used to described by the moments of its time samples:

• The mean of a random process Xt for time t is defined as follows

µ(t) = E[X(t)]

• The variance of a random process Xt for time t is defined by

�
2 = V AR[X(t)]

• The autocovariance of a random process Xt for two time moments t1 and t2 is defined
by

�(t1, t2) = E[(X(t1)� µ(t1))(X(t2)� µ(t2))]

2.1.17 Definition. (Stationary process) Stochastic process is considered stationary, if
mean, variance and autocovariance do not change when shifted in time. A k-dimensional
time series xt is strictly stationary if the joint distribution of the m collection, (xt1 ,...,xtm),
is the same as that of (xt1+j ,...,xtm+j), where m, j, and (t1, ..., tm) are arbitrary positive
integers [30].

As stated in the introduction, data is expected to change over time, especially in envi-
ronments where the change in the underlying random process over time is common. Con-
sequently, the moments of the stochastic process significantly diverge as time passes by.
Such processes are denoted as non-stationary. In order to simplify the potential solution
search and reduce the time invested in finding the alternative solution, the stationarity as-
sumptions are rarely being tested in practice. Most of the existing methods in applied time
series analysis are based on the assumption, that the underlying probability distribution
is constant.

However, one recent work [24] has claimed, that the assumptions of the existence of a
stationary distribution cannot be taken for sure. In some real-life scenarios, the periods
of change in the underlying concept might be of paramount importance for business and
industry decision-making.
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2.2 Concept Drift

As already mentioned above, the main aspect of this work is the concept drift detection
and adaptation mechanism. In this section, we will discuss the possible nature and kinds
of concept drifts in the data.

2.2.1 Definitions

The main characteristic of the dynamically changing environment is, that the change usu-
ally happens unexpectedly. Furthermore, the change might have different nature of origin,
e.g., the change in the input data or the change in the learned relation between input
features and the target variable.

2.2.1 Definition. (Concept Drift) The formal definition of concept drift between time
point t0 and time point t1 can be expressed as

9X : pt0(X, y) 6= pt1(X, y),

where pt0 denotes the joint distribution at time t0 between the set of input variables X

and the target variable y [11]. The change in data between two points in time t1 and t0

can be explained by the possible changes in the components of this relation [16, 22]. That
is, the cause of the concept drift may be the change in one of the three probabilities p(y),
p(X|y) or p(y|X).

2.2.2 Concept Drifts types

Based on the origin of the change, we can categorize all concept drifts into two groups:

1. Real drift indicates the change in the posterior probabilities p(y|X). Real concept
drift may also happen at the same time with the change in the input data charac-
teristics p(X).

2. Virtual drift occurs if the change in the distribution of incoming input data p(X)

has happened, but without any impact on p(y|X).

We can distinguish between different structural forms of change in the data distribution
over time. The main forms of concept drift are illustrated on the Figure 2.2. In this
example, we consider one-dimensional data, where the origin of drift is defined by the
mean of the data.

A sudden/abrupt drift happens, when suddenly replacing one concept with another
one. A drift happens incrementally or gradually, when many intermediate concepts exist
between the old and new concept. However, it is important to observe such kinds of drifts
on a longer time interval, as the difference between intermediate concepts is expected to be
very small. Another type of concept drifts are reoccurring contexts. They can be explained
by seasonal patterns, i.e. when a previously valid concept repeats after some time.
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Figure 2.2: Forms of Concept Drift [21].

2.3 Evaluating forecast accuracy

It is common to split the data into train and test data. The training data is used for
estimating the parameters of the forecasting model, while test data is used to evaluate its
accuracy. Given a set of the forecast Ŷm = {ŷt+1, ŷt+1, ..., ŷt+n} and a set corresponding
observed values Ym = {yt+1, yt+2, ..., yt+n}, where m is the candidate model and n is the
size of test set, we compute two most popular accuracy measures: Root mean squared
error (RMSE) and Symmetric mean absolute percentage error (SMAPE).

2.3.1 Definition. (Root mean squared error)

RMSE =
1

n

vuut
nX

t=1

(yt � ŷt)2

The RMSE error value is in the same units as the forecast. We compute the Root mean
squared percentage error (RMSPE) as follows:

RMSPE =
RMSE

mean(Yt)

The RMSE is a scale-dependent measure, that is why we cannot use RMSE to compare
the accuracy of two different time series forecasts with different measure units.
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2.3.2 Definition. (Symmetric mean absolute percentage error)

SMAPE =
1

n

nX

t=1

|ŷt � yt|
(yt + ŷt)/2

The SMAPE is a scale-independent error metric. However, it has one restriction: the
values Ŷt and Yt should be positive.

2.4 Online vs. Offline Learning Tasks

We can categorize the learning tasks into two groups: offline and online learning. Offline
learning refers to learning when the training data is available only once, at the training
time. After completing the training, the model can be deployed in production and used
for training. In offline learning, the prediction function f(.) is kept constant over time.

Online learning refers to the learning when the training data is being processed se-
quentially, i.e. one data point at a time. The prediction function f(.) can be updated, as
more training data is being discovered over time. The framework proposed in this thesis
operates on the multivariate time series regression problems in an online fashion.

2.5 Problem Definition

The problem considered in this thesis is to forecast multivariate time series. Let MTS =

{ts1, ts2, ..., tsm} be the set of m time series, i.e. M = {1, ...,m}, while Y
i = {yi1, yi2 ..., yit}

denote a time series, where y
i
t 2 N represents the value of time series i at time instant t.

Formally, each Y
i
, 8i 2 M is an infinite sequence of random variables forming a random

process, where y
i
t is the random variable at instant t. Let Y represent a M�dimensional

vector of the random processes
�
Y

1
, Y

2
, ..., Y

M
 
. k

i is the number of considered lags in
each ts Y

i. Based on the above notation, it is possible to formulate the multivariate time
series forecasting problem as follows.

2.5.1 Definition. (Online Multivariate Time Series Forecasting Problem).
Given: Historical realizations of random demand processes Y

i
, 8i 2 K and Y denoting

the following Euclidean space:

Y =
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T

Objective: Forecast all the K realizations of Y at instant t+ 1.
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Most of the existing approaches to forecast time series are designed unaware of concept
drifts. However, as already mentioned in 2.1, the assumptions about the stationarity of
time series do not always hold. The relation in the input dependencies and the performance
of the model changes over time. Thus, the need to update the model emerges. One of the
methods to handle concept drift is to periodically retrain the model, independently from
the concept drift occurrence. However, such an approach can potentially lead to extreme
consumption of computational resources and long processing times. In this thesis, we
present a two-stage concept drift detection mechanism with dynamic feature selection. In
the first stage, we compute the similarity between the features of the raw data over time and
compare if the similarity measure of the two most dissimilar processes significantly diverges
as more input data arrives using Hoeffding bound. In the second stage, we compute the
estimated forecast error of the candidate model and carry out the Page-Hinkley test to
estimate whether there is a drastic negative change in the models’ accuracy.



Chapter 3

Related Work

In this chapter, we introduce related works and existing approaches that are used to detect
and handle concept drift on multivariate time series data. Concept drift detection and
adaption done in the domain of the classification problems has been researched in bigger
depth compared to the domain of regression problems.

The existing methods proposed for handling concept drifts can be categorized into
two main groups: (1) informed and (2) uninformed methods. Uninformed drift detection
methods [20] blindly retrain the predictive model in a fixed period of time without any
information about characteristics of concept drift. However, the possible resource con-
sumption, which might not contribute to the model’s predictive quality, is an unavoidable
consequence of periodic retraining in an uninformed way, when choosing a small interval
between two trainings. If the interval is, in opposite, too big, the model might not adapt
to drift at all.

Informed or white box drift detection uses some statistical information about the data
or model performance to inform the model about the occurrence of concept drift and, if
necessary, update the predictor. We will present the main contributions and approaches
for handling the concept drifts in both uninformed and informed manner in the section
below.

3.1 Time Windowing for Concept Drift Detection

The approaches based on time windowing of fixed or adaptive size make the first group of
informed drift detectors [12].

The main idea of such methods is to conduct a statistical test on the examples from
the defined time window, which will make an assumption about a possible change in the
underlying distribution. If it is the case, the model will then be retrained only on the newest
examples included in the window. The main challenge of the proposed approach is to find
the window of the optimal size (i.e. balancing between the relevance and the number of

13



14 CHAPTER 3. RELATED WORK

the training examples). The general rule of adaptive windowing is to decrease the window
size, when the concept drift is assumed to take place and increase in the opposite case.
One of the first adaptive windowing algorithms was FLORA2 [33]. Widmer and Kubat
continuously monitored the accuracy and the coverage of the current model to guess the
change in the underlying concept and adapted the window size according to the results of
the statistical test.

One more example of handling concept drifts using adaptive windowing was developed
by Klinkenberg and Joachims in [18]. In their method, they have used support vector
machines as a base-learner. The main idea of the following approach can be broken down
to the following optimization problem: adjust the window size so, that the estimated
generalization error on new examples is minimized. The generalization error was measured
based on "↵ method for support vector machines. However, this method is restricted to
using a support vector machine and cannot be applied to every kind of forecasting problem.
The hypothesis of time windowing is, that the most recent data is expected to be the most
relevant and important for the target concept. Yet such assumption can not be taken,
when the data is noisy or contains reoccurring concepts. Moreover, the window size might
as well be shorter than the length of the change.

3.2 Example Weighting

The approach proposed by Klinkenberg and Joachims in [18] was extended in the following
work [19] using a support vector machine as well. This work takes into account the impor-
tance of single data points by integrating a weighting scheme. The weights are assigned
only to the examples from the most recent batch of data. They are selected based on their
corresponding age, using an exponential aging function.

3.2.1 Definition. (Exponential Aging Function)

w�(x) = exp(��tx),

where x is an example observed tx time steps ago.

The key idea of this work is to slowly reduce the impact of uninformative examples on the
learning result, instead of completely excluding them from the training. Unfortunately,
the limitations named above apply to this framework too.

3.3 Concept Drift Detectors

Concept Drift Detector is a mechanism, that identifies the drift and change in the char-
acteristics of the studied object. The advantage of such methods is that they are able to
provide information about the nature and further characteristics of concept drift dynamics.
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The basis for several change detection algorithms is the sequential probability ratio test
[32]:

3.3.1 Definition. (Sequential Ratio Probability Test) Given a sequence of inputs
X

n
1 , the subset of inputs Xw

1 , 1 < w < n, which is generated from the unknown distribution
P0 and the subset of inputs X

n
w, which is generated from another unknown distribution

P1. A null hypothesis that there was a change in the distribution at time w is given by

T
n
w = log

P (xw...xn|P1)

P (xw...xn|P0)
> L

where L is a user-defined threshold.

The most acknowledged technique based on the sequential probability ratio test is
the cumulative sum (CUSUM) technique developed by E.S. Page [25]. It is often used
for change detection and involves the calculation of the cumulative sum of residual, e.g.
estimated prediction error of the model.

3.3.2 Definition. (CUSUM) Let xt be the observed value (e.g. prediction error) at time
t, � be the allowed magnitude of changes and � a user defined threshold. The CUSUM
test is then defined by:

gt = max(0, gt�1 + (xt � �)), (g0 = 0) for positive change

gt = min(0, gt�1 + (xt � �)), (g0 = 0) for negative change

If gt is greater (for positive change) or smaller (for negative change) than �, then the drift
is considered to take place and gt will be set to 0.

One of the variants of the CUSUM algorithm is the Page-Hinkley (PH) Test [25]. This
sequential analysis technique is common for drift detection in signal processing.

3.3.3 Definition. (Page-Hinkley Test) For the allowed magnitude of changes ⌫ and
user-defined threshold %, the PH test is defined as follows:

mt =
TX

t=1

(xt � xT � ⌫)

MT = min(mt, t = 1...T )

PHT = mT �MT

where xT is the mean of the values observed up to time T . If the condition PHT > % is
fulfilled, then the drift alarm will be triggered.
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3.4 Ensemble Methods

An ensemble is a set of different models that serve to predict the same target variable. En-
sembles have been claimed to be a powerful method when it comes to time series forecast-
ing. The general assumption behind, the combination of predictions returned by multiple
weaker models improves the accuracy of the prediction.[14].

The work by Scholz and Klinkenberg [28, 29] introduces an ensemble method for han-
dling concept drifts. The weights of previous models in the ensemble are updated based on
their performance on the most recent batch of data. Formerly, the algorithm samples out
the instances that were not classified right by the previous models, and induces the new
models from the sampled examples. This method does not explicitly detect concept drifts,
but adds more models to the ensemble, thus, needing more computational resources.

3.5 Evaluation of Drift Detection Methods

Another research [5] has focused on developing a framework to evaluate change detection
methods. The motivation behind this work is to go beyond the classic error-based evalua-
tion of drift detection methods for real-time predictions, as they might not be informative
enough. The framework proposed in the work mentioned above is built as an extension of
MOA: Massive Online Analysis. "Massive Online Analysis (MOA) is a software environ-
ment for implementing algorithms and running experiments for online learning from data
streams" [4]. It uses the following criteria for an effective evaluation of change detection
methods: Mean Time between False Alarms, Mean Time to Detection, Missed Detection
Rule, Average Run Length [5].



Chapter 4

Forecasting

In this chapter, we present a pool of models used for time series forecasting to which we
apply our framework. The models used for time series forecasting can be categorized into
two groups: (1) statistical linear models and (2) non-linear machine learning models. The
former group base on the theory of stochastic process and time series, while the latter one
stems from machine learning study. First of all, we will introduce a statistical model used
for multivariate time series forecasting, particularly Vector Autoregression. After that, we
will look at the further machine learning models, which tended to show good performance
on time series forecasting problems.

4.1 Vector Autoregression

The most widely used multivariate time series statistical model is the vector autoregressive
model. It is called autoregressive model, because each value of the target variables is
modelled as a function of its own past observations, i.e. the predictors can be described
as time delayed value of the series. The main assumption is, that the prior values of the
series are able to predict the present as well as the future. VAR models the k-dimensional
random process with lag p as follows:

Ŷt+1 = Y
T
t �0 + ...+ Y

T
t�p+1�p�1 + ✏t =

pX

j=1

Y
T
t�j+1�j�1 + ✏t,

where � = (�0,�1, ...,�p� 1) 2 Rp⇥k are the parameters of the model. Thereby, ✏t is the
vector of white noise, i.e. random process with zero mean and constant variance.

17
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4.2 Projection Pursuit Regression

Projection Pursuit Regression is a linear model, which is induced as a sum of non-linear
transformation of linear combination of the features. This method uses initially unknown
smoothing functions fj to estimate the variables from noisy scattered data.

yi = �0 +
rX

j=1

fj(�
T
j xi)

where xi is a feature space, �j is a collection of r vectors containing unknown parameters
and r is a hyperparameter.

4.3 Partial Least Squares Regression

Partial Least Squares Regression is a statistical technique, which breaks the predictors
down to a smaller set of independent components and performs least squares regression on
them.

4.3.1 Definition. (Least Squares Regression) Least Square Regression is a linear
model, which aims to find model parameters that best fit the data. Its main goal is
to minimize the sum of squared residuals S:

S =
nX

i=1

(yi � f(xi,�))

4.4 Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines (MARS) is an algorithm, that handles nonlineari-
ties between features by using nonparametric regression [9]

f(x) =
MX

m=1

amBm(x)

where Bm is the basis function and c is a constant coefficient. Each basis function can be
one of the following:

1. a constant 1.

2. a function of form max(0, x� constant) or max(0, constant� x)

3. a product of two or more functions from (2).

MARS is a two-stage algorithm. It consists of the forward and the backward pass. In
the first phase, MARS aims to iteratively add the pair of basis functions that achieve
the maximum reduction in sum-of-squares residual error. This phase usually overfits the
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model. In the second phase, the backward pass, the algorithm removes the terms added in
the first phase one by one, keeping only the most effective terms. The algorithm stops as
soon as the best submodel is found. The backward pass uses generalized cross validation
to compare the accuracy of separate subsets of terms in order to find the best one.

4.5 Gradient Boosting Machine

Gradient Boosting Machine is a prediction model developed in the form of an ensemble of
weak predictors, based on the same method. The typical baseline model is a decision tree.
Gradient indicates the error, or residual, computed after building a model. The boosting
algorithms aim to incrementally increase the model’s accuracy. Given a set of training
pairs (xi, yi), i 2 {1, ..., n}, a solution of gradient boosting machine is defined as a sum of
series of models, each trained on a different training set, to produce a final prediction

F (x) =
MX

m=0

fm(x),

where M is the amount of iterations and fm(x) are incremental functions, or "boosts",
induced by the optimization algorithm (f0(x) is the initial model, trained on the training
set). The "boost" fm(x) is then defined by

fm(x) = �⇢mgm(x),

where gradient of the model and current step size for the model are calculated correspond-
ingly

gm(x) =


✓Ey[L(y, (F (x))|x]

✓F (x)

�

F (x)=Fm�1(x)

⇢m = argminEy,xL(y, Fm�1(x)� ⇢gm(x))

with L(y, F (x)) being a loss function. The gradient descent of the current model are the
targets, that are used to train a new model, i.e. the new model fm is inferred using an
updated dataset of {(xi, gm(xi))}. More on the gradient boosting machines theory can be
found in [10].

4.6 Random Forest

Random Forest [6] is an ensemble learning method for classification and regression, which
consists of multiple decision trees constructed at training time on different subsets of data.
The basis of this learning algorithm is a method denoted as bootstrap aggregation, or
bagging [7]. At each tree split in the learning process, the procedure extracts a random
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subset with the replacement from the dataset and trains the next predictor on it. The key
idea behind the random forests is to obtain the set of models that are trained on different
underlying patterns. The final prediction is induced by the average of all trees in the
model. Bagging helps to generalize the prediction and, thus, lower the model’s variance.

4.7 Support Vector Regression Machine

Support vector regression machine is supervised machine learning algorithm used for solv-
ing regression problems, based on the idea of support vectors for classification problems.
Support vector regression can be formulated as following optimization problem: define
and minimize a convex "-insensitive loss function, find the flattest tube that covers most
of the training instances [3]. One possible visualization of the support vector regression is
represented below.

Figure 4.1: Support Vector Regression. [27]
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The function f(x) being approximated for M -dimensional multivariate time series can
be defined as

f(x) = hw, xi+ b, b 2 R, w, x 2 RM

As mentioned above, one of the tasks of support vector regression to find the narrowest
tube centered around the hyperplane, while minimizing the estimated prediction error.
This can be achieved by minimizing the norm, i.e. kwk2. This problem can be devised as
following convex optimization problem:

minimize
1

2
kwk2

subject to

(
yi � hw, xii � b 6 "

hw, xii+ b� yi 6 "

However, the important step to handle non-linearity using support vector regression is
done by using kernels. Kernel is a function � : � ! F , that maps training instances into
some feature space F . In this work we compared following kernels [3]

K(w, x) =

8
>>>>>>>><

>>>>>>>>:

exp(�kx� wk
�

) laplacian

(↵xTw + c)q, q > 0 polynomial

exp(�kx� wk2

�2
) rbf

hw, xi linear

↵,�, c are user-defined parameters. The approximated function f(x), which uses kernel,
looks as follow

f(x) = K(w, x) + b, b 2 R, w, x 2 RM

4.8 Deep Neural Networks

Deep Neural Networks have been considered to be one of the most robust and capable
tools when it comes to a huge amount of non-linear data. Neural Network is the base of
all deep learning algorithms, which was inspired by the nature of the human brain. It is
structured as multiple layers of neurons. The neurons, or nodes, of one layer are connected
with the neurons of the next layers. Neural Network usually consists of an input layer,
one or more hidden layers and an output layer. An output layer can contain one or more
nodes, for regression problems it contains a single neuron. We can think of each neuron as
a separate linear regression model, producing an output y:

y = g(
nX

i=1

wixi + b),
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where xi is an input, wi is weight, b is a bias(or threshold) and g is an activation function.
The activation function g ensures, that the neural network is able to handle non-linear
character of data. The most common activation functions are sigmoid, hyperbolic tangent
and rectified linear unit (ReLU) functions:

g(x) =

8
>>>>>>>><

>>>>>>>>:

1

1 + e�x
sigmoid

2

1 + e�2x
� 1 tahn

8
<

:
0, for x < 0

x, for x > 0
ReLU

The weights and biases are the learned parameters of the model. The weight gives in
the importance of the given input variable. Neural networks use backpropagation to
tune the weights based on the estimated error rate achieved in the previous training iter-
ation. Backpropagation computes the gradient of the loss function to provide the level of
adjustment for network’s learnable parameters. Mathematically, the gradient is a partial
derivative of the loss function L with respect to the learned weight w:

@L

@w

The gradient defines to which extent the parameter w has to be adjusted in order to
minimize the loss function L.

4.8.1 Multilayer Perceptron

The most basic example of neural networks is a multilayer perceptron (MLP). It is com-
posed of an input layer to process the input, an output layer to make a prediction and a
arbitrary number of hidden layers, which act as a computational engine. MLPs are usually
described as fully connected networks, i.e. each node in one layer is connected to all nodes
in the next layer.
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Figure 4.2: A Multilayer Perceptron with one input, hidden and output layer [13].

4.8.2 Convolutional Neural Network

The next popular deep learning model is a convolutional neural network (CNN), which
mostly used in visual imagery recognition. However, due to their pattern recognition
background and ability to capture both temporal and spatial dependencies, they have
also been proven to show good performance on multivariate regression data. CNNs are
regularized kinds of MLPs. Unlike MLPs, CNNs omit the "full connectivity" property of
MLPs, i.e. CNN algorithms penalize the parameters during training or drop out some
connections between neurons, thus, avoiding overfitting. CNNs consist of multiple layers:
convolutional layer, pooling layer and fully-connected layer.

The former layer uses a specialized type of linear function, called convolution, to detect
the low-level patterns from the input data. It applies a sliding filter, or kernel, upon
two dimensions of the input to obtain an arbitrary number of feature maps. On the
example of image recognition: the convolution operation extracts following features: edges
of the image, color or gradient orientation. The more convolutional layers are added to the
network, the higher is the ability of the network to adapt to high-level features as well. The
pooling layer is responsible for reducing the dimensionality of the feature maps obtained
by the convolutional layer. Such operation is denoted as downsampling. Downsampling
deals with overfitting and decreases the number of model’s parameters, in order to avoid
high consumption of computational resources required to process the data. There are
two kinds of pooling layers: max pooling and average pooling. Max pooling returns the
maximum value from the region covered by the kernel, while average pooling returns the
average of all values. A fully-connected, or dense, layer transforms the extracted and
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downsampled features produced by the two preeceding layers into the final output of the
neural network. This layer is followed by an activation function due to the possible presence
of non-linearities in the model.

4.8.3 Long Short-Term Memory Network

Long Short-Term Memory Network (LSTM) is a deep learning architecture, which is based
on the architecture of recurrent neural networks (RNN). RNNs are distinguished from
traditional feedforward neural networks, like CNNS, by their ability to monitor their own
temporal dynamic behavior, i.e. they allow previous outputs to be used as inputs for the
current node. The state of the network at time t can be described mathematically as
follows:

ht = g(Wxt + Uht�1),

where W is the weight matrix, xt input of the network, ht�1 state of the network at time
(t � 1) with weight matrix U . However, RNNs are not able to memorize the information
from earlier steps if the input sequence is too long. The short-memory problem was solved
by LSTMs. LSTM contains feedback connections and is usually composed of a cell, an
input gate, an output gate and a forget gate. The key concept of LSTM’s is a cell state. It
transports the relevant information to the current active node. The gate is a mechanism,
which controls the flow of the input sequence by learning which data should be kept or
neglected. Gates use sigmoid activation function to normalize the parameters between 0

and 1. The forget gate provides the network with the relevance of the information from
prior states. The information from previous state and current input is passed to the sigmoid
function. The outputs of the sigmoid function close to 0 will be forgotten and those, close
to 1 will be kept in memory. The input gate decides which parameters should be updated
based on the information about the current step. This procedure is similar to the one in
the forget gate. The next state of the network is derived by the output gate function based
on the computations in the prior network gates.
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Online Adaptive Multivariate Time

Series Forecasting

Due to the nature of multi-dimensional time series data, it will often contain a lot of
irrelevant and redundant information. Hence, it is of paramount importance to be able
to determine a subset of the time series for an accurate and efficient forecasting. This
task will be further denoted as feature selection, where ’feature’ describes one complete
time series. The main role of feature selection in time series forecasting is to identify an
optimal subset of features, that is capable of describing target concept. Furthermore, as
already stated above, non-stationarity is one of the typical characteristics when it comes
to time series forecasting problems. Hence, we devise an adaptive learning framework for
multivariate time series forecasting. The first aspect of this work is to ensure, that the
model is being trained on the right, i.e. the most relevant, subset of features. The second
aspect is to constantly monitor changes in the underlying interdependencies (i.e. spatial
dimension) as well as in the model’s performance (i.e. temporal dimension), as more data
is being discovered. The third aspect is adaptivity: the model should be retrained every
time there is any change in either spatial or temporal aspects.

The framework operates in an online fashion, i.e. it sequentially processes incoming
instances, one at a time, and uses sliding windows on training data for drift detection within
both dimensions. This ensures the inclusion of the closest examples to the target one in
the computation of similarity between the features and estimated error of the model. The
size of the sliding window is a user-defined hyperparameter. The concept drift detection
and adaptation ensures, that the validity window of the model trained on the specific input
is automatically determined.

Fundamentally, the framework can be split into two components: input feature selection
and model performance monitoring. The detailed diagram of the framework is shown
below.

25
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Figure 5.1: Feature Selection-Drift Detection Framework.

5.1 Feature Selection

The key goal of feature selection is to find those highly relevant features, which are closely
related to the target concept. In this work, we make use of two characteristics of inter-
dependent time series: relevance and redundancy. The importance is estimated based on
the similarity with the target time series. The task of this step is to examine which of the
candidate time series are best suited for the defined forecasting task. Formally, it can be
defined as follows:

5.1.1 Definition. (Feature Selection) Find vector v 2 {0, 1}M :

v[m] =

(
1, if F [m] is relevant and non-redundant
0, otherwise

where F is matrix of time series features of spatial dimension M � 1. Initially, all vector
values are assigned to 0.

5.1.1 Similarity

In the first stage, the procedure selects Top-k features most similar to the target one, where
k is a user-defined hyperparameter. Due to the varying nature of the time series data, we
evaluate different distance and similarity measures presented in Section 2. We normalize
the distance-based similarity between 0 and 1 to make the comparison of two measures
less complicated.

In fast-evolving environments recent observation are assumed to be more representative
for the upcoming situation than old data. For this reason, we constraint the selection to
the most recent data, by using the sliding window, which includes the n last instances.
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This strategy helps to increase the accuracy of the computed measures while keeping the
computational resources low. Hence, the similarity between candidate time series a and
target time series b can be described like

s(a, b) = g(a(t�n+1):t, b(t�n+1):t)

where g is a similarity function and t index of the last observed instance. After that, we
sort the features in descending order based on their similarity score and select the Top-k
most important ones. The vector values of the selected features are set to 1.

5.1.2 Redundancy

In order to ensure diversity within the selected subset of features, we propose to investigate
the relation between Top-k selected time series and remove redundancies. This can be
achieved by time series clustering. In time series clustering, each feature series consisting
of a large amount of data-points can be seen as a single object. As a result, we obtain
groups of time series features categorized by their similarity measure and can now select
one representative per cluster. In this work, we compared the performance of k-means
clustering using two similarity functions: Euclidean and DTW distances.

The main assumption behind it: if two time series are similar in the original space,
then their representations should be similar in the embedded space too [2]. The feature
vector value of the representatives is assigned to 1, otherwise the assigned value is 0. The
cluster representative is the time series closest to the cluster center.

After that, the final selected subset of features and past observations of the target
variable are used to train the initial model.

5.2 Drift Detection

The next component of the framework is a Concept Drift Detection unit. It can be divided
into two separate steps: drift detection within underlying dependencies in the data and
error-based drift detection. In both cases, the model adapts to change by retraining. The
term dependencies stands for the inter-dependent relationship between single time series
within one dataset.

5.2.1 Drift Detection based on the Dependencies

As we have already mentioned, the distribution of the time series data may follow non-
stationary concepts. In this work, we inspect the presence of non-stationarity in the de-
pendencies for a predefined Region of Interest (ROI) for a target variable. ROI is defined
by the Top-k random processes yi, 8i 2 K, selected in the first stage of the procedure. This
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non-stationarity condition for current ROI is based on the following assumption: if the dis-
tance between the two most dissimilar processes within current ROI significantly deviates
over time, the drift within dependencies has occurred. This condition can be tested using
Hoeffding Bound [15] on the sequentially incoming data using sliding window:

5.2.1 Condition. Let M i
t 2 Rk⇥k be a similarity matrix of a selected ROI, where n is the

number of last observed instance. Let ⌫ and ⌫
t indicate the minimum similarity coefficients

at (t � 1) and t correspondingly. The drift in underlying dependencies is suspected, if the
following condition is violated:

|⌫t�1 � ⌫
t| 6

r
ln(1/�)

2n

where n is the number of observed instances and � is a user-defined hyperparameter.
The violation of this condition will trigger an alarm in the procedure and force update
of the feature vector v computed on the most recent data. Hence, this will cause the
retraining of the model using a new selection.

5.2.2 Error-based Drift Detection

One of the most important evaluation metrics, when talking about time series forecasting,
is estimated forecasting error. It indicates the difference between the real values and the
values induced by the forecasting function f . The increase in the estimated prediction error
would signal a possible change in the relationship between the input data and outdated
model, due to outdated data, forcing the update of the model’s parameters. For this reason,
we have employed the well-known drift detection method, namely Page-Hinkley Test. Page-
Hinkley Test ensures the detection of drifts in the normal behavior of a stochastic process
established by the model [12]. The formal definition of the Page-Hinkley Test was given in
3.3. We present the pseudocode of the Page-Hinkley Test below. ⌫ and % are user-defined
hyperparameters, where ⌫ defines the tolerable change in the estimated error and % is a
threshold. A larger % value might help to avoid detecting false alarms, but can also miss
some drifts [12]. Moreover, the error e is monitored upon a sliding window of fixed size on
the recent data. The size of the sliding window has to be adjusted before the procedure.
The entailed alert at time t triggers the update of the current model and restarts the
Page-Hinkley Test from the beginning.
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Algorithm 1 PageHinkleyTest
Input: Error at instance t: et; Admissible Change ⌫; Threshold %

Output: Drift at time t : alertt

1: /* Initialize CUSUM and the error estimator */
2: E(0) 0; cusumT  0; MT  1

3: for i 2 {1...1} do
4: alertsi = 0

5: E(i) E(i� 1) + et

6: cusumT (t) cusum(i� 1) + et � E(t)
t � ⌫

7: MT  min(MT , cusumT (t))

8: if (cusumT (t)�Mt) > % then
9: return alertt = 1

10: end if
11: end for

The steps of the proposed framework are detailed in the pseudocode below. The inputs
of the algorithm are initial training subset of time series features Ftrain, target time series
ttrain, ttest used for training, parameter k for feature selection; user-defined hyperparam-
eters s similarity function and clust clustering method. Parameters w and e indicate the
size of the sliding windows for computation of similarity and estimated error.

In step 2, the initialization of similarity matrix S
M⇥M and error vector E is done.

Steps 6 and 7 are repeated for every candidate time series from the initial training data:
the similarity between the target time series ttrain and candidate feature ftrain 2 Ftrain

is computed on the last w observations and stored in the similarity matrix S. Step 9
performs the Top-k selection and clustering using the clust method on the data available
for training. Fselected is a reduced number of time series features, topk and finalSelection

are the vectors of 0 and 1, defining selected top-K time series and cluster representatives
correspondingly. In step 11, the initial model is trained on the selected subset of features
and target time series. In step 12, the online time series processing starts. At first, the
newly arrived instance is added to the training set, the window is moved to time (t + 1)

and similarities are recomputed. In step 19, the algorithm selects si, j 2 S, for which topki

is assigned to 1. This subset is denoted as current ROI. In steps 20 and 21, the minimum
similarity measures at time-instances i and (i � 1) are extracted. Step 22 computes the
Hoeffding bound on the extracted minimums and, if needed, triggers the alarm. In steps
23-25, the algorithm recomputes the feature selection on the most recent data, given that
the alarm was triggered in step 22.

When (i � e) > 1, the error drift detection component is activated, where i stands
for current time and e for the size of sliding window for error estimation. For each newly
observed instance fi, the algorithm computes the estimated error on the window of size e
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using the user-defined error method: RMSE or SMAPE. The error measures are stored in
form of a time series of errors. When the error time series has more than two instances
available, the algorithm performs the Page-Hinkley test. If the threshold % is reached, the
test will output an alert about the possible concept drift and reinitialize the test, if alert
was returned.

In steps 34-36, the algorithm checks, if the drift was detected only in the model’s
performance, in order to update the Fselected on the most recent data. The drift in the
dependencies would mean, that the Fselected has already been updated on the newest data
with updated finalSelection vector. Steps 37-39 ensure the update of the model’s param-
eters based on the assumption about the drift in dependencies and estimated performance
of the model.
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Algorithm 2 DetectAndAdapt
Input: Ftrain;Ftest; ttrain; ttest; k; s; clust;w; e

Output: M

1: Initialization:
2: Initialize similarity matrix and error vector: S; E
3: Initialize alerts: alertDependencies, alertError

4: Stage 1: Feature selection
5: for ftrain 2 Ftrain do
6: Compute the similarity s(ftrain, ttrain) on the last w observations:
7: S(1, train) s(ftrain, ttrain)

8: end for
9: Fselected, topk, finalSelection DoSelection(Ftrain, S, k)

10: Stage 2: Model initialization
11: M  train(Fselected, ttrain)

12: for (each new instance fi) do
13: Ftrain, ttrain  Add the newly arrived instance fi to the training set
14: Stage 3: Drift detection within dependencies
15: for ftrain 2 Ftrain do
16: Compute the similarity s(ftrain, ttrain) on the last w observations:
17: S(i+ 1, train) s(ftrain, ttrain)

18: end for
19: Subset Top-k similarities, selected in 9, from S: Ssubset

20: min1 min(Ssubset(i� 1))

21: min2 min(Ssubset(i))

22: alertDependecies DependenciesCheck(min1,min2)

23: if alertDependecies == 1 then
24: Fselected, topk, finalSelection DoSelection(Ftrain, S, k, clust)

25: end if
26: if (i-e)>1 then
27: Stage 4: Drift detection in model’s performance
28: Compute the training error erri on the time window e

29: E(i) erri

30: if (i� e) > 2 then
31: alertError  PageHinkleyTest(E)

32: end if
33: end if
34: if (alertError == 1)&&(alertDependecies! = 1) then
35: Do the old selection finalSelection on the updated dataset Ftrain: Fselected

36: end if
37: if (alertError == 1)k(alertDependecies == 1) then
38: M  train(Fselected, ttrain)

39: end if
40: end for
41: return M
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Algorithm 3 DoSelection
Input: Training data Ftrain; Similarity matrix S; k; clust
Output: Fselected; topk; finalSelection

1: Select Top-k features from Ftrain with the highest similarity measure from S: FkTrain,
topk

2: Compute the clusters of FkTrain using defined method clust and select cluster repre-
sentatives: Fselected, finalSelection

3: return Fselected, topk, finalSelection

Algorithm 4 DependenciesCheck
Input: Min.Similarity at time t mint; Min.Similarity at time (t+1) mint+1;

Number of observations W

Output: Alert at time t+ 1

1: dif  mint �mint+1

2: alert 0

3: if |dif | >
q

ln(1/�)
2W then

4: alert 1

5: end if
6: return alert



Chapter 6

Experiments

In the following chapter we experimentally evaluate our method Drift-Aware Online Time
Series Forecasting (DOTSF) and outline the main contributions of the framework by an-
swering the following questions:

1. How good is the performance of DOTSF compared to the classic time series forecast-
ing methods and its own variants?

2. What is the impact of different similarity and clustering strategies across different
datasets?

3. Is there any difference in terms of accuracy of proposed approach upon different
models?

4. How scalable is the DOTSF compared to the uniformed drift detection methods like
periodic retraining, and is there any win in terms of computational resources?

We also compare the proposed method with some variants of itself to evaluate, which part
of the concept drift detection component influences the model’s accuracy the most.

6.1 Experimental Setup

The time series are preprocessed before the training, using time series embedding. Time
series embedding results into a following embedded feature space Xt�kand the target vector
yk:

Xt�k =

0

BBBBBBBBBB@

y
1
t�k1+1 · · · y

1
t

...
...

...
y
i
t�ki+1 · · · y

i
t

...
...

...
y
M
t�kM+1 · · · y

M
t

1

CCCCCCCCCCA

yk =

0

BBBBBBBB@

y
1
t+1
...

y
i
t+1
...

y
M
t+1

1

CCCCCCCCA

33



34 CHAPTER 6. EXPERIMENTS

where k is the size of embedding dimension, M is the spacial dimension of time series and
t is the dimension of features. For evaluation we have used 6 real world multivariate time
series from various expert domains. The list of all datasets is presented in Appendix A. In
each experiment scenario, the time series data was split to 75% for training, and 25% for
testing. The embedding dimension of 10 and 5 were applied to different kinds of models.

Figure 6.1: One iteration of online data processing. Training data is colored in blue, testing data

in green. w is the length of the sliding window.

We calculated RMSE on the predictions of the testing data. Below is the summary of
hyperparameters of the framework and the chosen values for the experimental setup:

Parameter Value
Number of top-k most similar fea-
tures

25% of the initial number of features

K for k-means clustering computed using silhouette method
Maximum number of clusters for
DTW-clustering

Half of top-k features

Hoeffding bound � 0.95
Admissible change ⌫ 0.005
Page-Hinkley Test threshold % 0.025
Size of sliding window w 200
Size of sliding window e 20
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We evaluate our framework on the following models:

Abbreviation Description
RF10 Random Forest with embedding dimension 10
RF5 Random Forest with embedding dimension 5
CNN10 Convolutional Neural Network with embedding dimension

10
GBM5 Gradient Boosting Machine with embedding dimension 5
SVM.poly5 Support Vector Machine with polynomial kernel and embed-

ding dimension 5
SVM.laplace5 Support Vector Machine with laplacian kernel and embed-

ding dimension 5
PLS5 Partial Least Squares Regression with embedding dimension

5
PPR10 Projection Pursuit Regression with embedding dimension 10
MARS5 Multivariate Adaptive Regression Splines with embedding

dimension 5
MLP5 Multilayer Perceptron with embedding dimension 5
LSTM5 Bidirectional Long Short-Term Memory Network with em-

bedding dimension 5

The performance of our framework is compared against classic machine learning methods
used for handling time series data, i.e. offline training and periodic retraining (PR). In
offline learning, the model is trained once and tested on the available testing data. In peri-
odic retraining, the model is updated after fixed periodic interval n. n is a hyperparameter,
which in our evaluation was set to 25% of the available test data. In order to outline the
impact of single components of the proposed framework, we compare our method with
some variants of itself:

Offline-Sel-Similarity/Clustering: Uses proposed feature selection to train the
model offline.

PR-Sel-Similarity/Clustering: Uses proposed feature selection to retrain the model
periodically.

DOTSF-Error-Similarity/Clustering: Performs only error-based drift detection in
online time series processing.

DOTSF-Sel-Error-Similarity/Clustering: Performs pre-selection of the features
and error-based drift detector on the model, trained on the reduced dataset.

DOTSF-Dependencies-Similarity/Clustering: Uses proposed feature selection
and tracks the concept drift only upon the selected dependencies. ’Similarity/Clustering’
indicates the corresponding combination of the similarity and clustering measures for
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each model. The following notation also relates to the DOTSF itself, i.e., ’DOTSF-
Similarity/Clustering’.

6.2 Results

In this section we present and discuss the results derived from the experiments listed above.
We have tested feature selection using various pairwise combinations of similarity and clus-
tering approaches, including:

Similarity Clustering
Euclidean distance

k-means clustering
Fourier-based distance
Manhattan distance

DTW-clusteringPearson correlation
Spearman correlation

Table 6.1: Similarity/Clustering methods.

In order to get a good overview of the test results, we keep three variation of similarity-
clustering combination per model family. The first combination is Euclidean-DTW, which
is chosen due to its popularity of the measures in the research work and serves as a baseline
for the final comparison. The second combination is the trade-off between all the models:
the one with lowest RMSE upon all the models and test data, i.e., Manhattan-Kmeans.
The third one is chosen based on the lowest RMSE upon all the tests for each model indi-
vidually. However, if the third choice coincides with either one of the first pairs, then the
method with the next lowest RMSE will be chosen.

Tables 6.5 - 6.15 present the paired comparison of the proposed framework against the
baseline methods and variants of the framework for each model. We perform the non-
parametric Wilcoxon Signed Rank test [34] to compute wins and losses of our method
against the methods named above using the RMSE scores. The rightmost column contains
the average rank gained by each method and the standard deviation of the rank upon all
the datasets. A rank of 1 indicates the best performing model on all multivariate time
series. We also calculated the mean of the average rank and the mean of the standard
deviation across all the forecasting models. The results are presented in the Table 6.2. "-
Similarity/Clustering" stands for the selection method, chosen for each model individually.

Our method has a clear advantage over compared baseline methods in every model
family. Both baseline methods, offline and periodic retraining, tend to be more accurate
when being trained on a pre-selected subset of time series, using proposed selection method.
However, these methods still show a big difference in the average rank compared to DOTSF.



6.2. RESULTS 37

Method Avg.rank
Offline 8.4±1.1
PR 7.7±0.9
Offline-Sel-Similarity/Clustering 6.7±0.7
DOTSF-Error 6.0±0.7
PR-Sel-Similarity/Clustering 5.9±0.8
DOTSF-Dependencies-Similarity/Clustering 5.2±0.5
DOTSF-Euclidean/DTW 4.4±0.8
DOTSF-Sel-Error-Similarity/Clustering 4.1±0.9
DOTSF-Manhattan/Kmeans 3.6±0.6
DOTSF-Similarity/Clustering 2.9±0.6

Table 6.2: Mean of the average rank and mean of the standard deviation per method, calculated

across all the forecasting models.

The two competitive approaches to our method are its own variants: DOTSF-Sel-Error-
Similarity/Clustering and DOTSF-Dependencies-Similarity/Clustering. DOTSF-Error shows
the worst results between all the variants of the DOTSF. This proves a fact, that time series
selection plays a key role in the time series forecasting. Based on the example of the SVM
with laplacian kernel (see Table 6.9), we can see a clear advantage of our method over the
methods, which use only one of the drift detection components, i.e., either input-based or
error-based drift detection. For this example the DOTSF-Spearman/Kmeans has gained
6 out of 6 wins over the DOTSF-Error and DOTSF-Dependencies-Spearman/Kmeans,
4 out of 6 wins over the DOTSF-Dependencies-Spearman/Kmeans. However, DOTSF-
Dependencies-Fourier/Kmeans and DOTSF-Sel-Error-Fourier/Kmeans performed signifi-
cantly better than DOTSF-Fourier/Kmeans when being tested for the PLS with embedding
dimension 5 (see Table 6.11).

Yet, there is a clear overall superiority of our method DOTSF-Similarity/Clustering,
when using all the proposed components, i.e. time series selection and drift detection
within spatial and temporal aspects of the model. Regarding Question 1, our results
show that DOTSF-Similarity/Clustering evidently outperforms the baselines for time series
forecasting and other combinations of itself.

We also compared the particular selection variant for each model individually to two
fixed variants upon all the forecasting models. Euclidean similarity measure and DTW-
Clustering are considered to be a baseline for time series forecasting. However, the exper-
iments have shown that the averagely best performing similarity/clustering combination
tended to be Manhattan-Kmeans. The superiority of the k-Means clustering over DTW-
clustering can be explained by the usage of sliding window. Sliding window assures that
two time series are similar-sized. Both Euclidean-DTW and Manhattan-Kmeans perform
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better than customized method twice in each case. The average rank of the Euclidean-
DTW is higher than customized and averagely good upon all the models methods. The
observations in Table 6.2 answer the Question 2, which regards the impact of chosen
similarity and clustering metrics for time series selection. There is no universal selection
method which can be applied to every kind of data as some of the underlying assump-
tions(e.g., stationarity) about the time series are not always met. Furthermore, the choice
of the sliding window size also plays a crucial role when selecting the right similarity and
clustering metrics.

To investigate the performance of the DOTSF-Similarity/Clustering across different
models, we summarize the DOTSFs with the best performing selection method in the
Table 6.3.

Method Avg.rank
GBM5 10.8±0.4
SVM.laplace5 9.0±0.9
SVM.poly5 8.8±1.0
LSTM5 8.0±2.2
CNN10 7.5±2.0
RF10 5.5±1.4
RF5 5.0±0.6
MLP5 4.7±1.5
PPR10 3.5±1.4
MARS5 1.8±0.8
PLS5 1.3±0.5

Table 6.3: Mean of the average rank and mean of the standard deviation per model for a fixed

selection algorithm DOTSF-Manhattan/Kmeans.

From the table it is obvious, that some models perform significantly better than
the others. This proves a fact of nonexistence of a model with equally good performance
among every kind of time series. This answers the Question 3 regarding the impact of
the chosen forecasting model.

The Question 4 asks about the impact of informed drift detection on the scalability of
the proposed method. This question can be answered by comparing the average runtime of
DOTSF-Similarity/Clustering to the average time of uninformed drift detection methods
like PR and PR-Sel-Similarity/Clusterng. In the Table 6.4, we see that the average runtime
of the periodic retraining is more than 1.5 times greater than the runtime of our method.
The runtime has high deviation due to the variety of the models and the datasets of
different sizes used for the evaluation.

We also present the RMSE for each model and dataset in Appendix A.
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Method Avg. runtime in sec.
DOTSF-Similarity/Clustering 14.54±29.31
PR 25.49±47.14
PR-Sel-Similarity/Clustering 12.79±26.36

Table 6.4: The runtime comparison between DOTSF and uninformed drift detectors, i.e. PR and

PR-Sel.

Method
Our Method

Losses Wins Avg.rank
Offline 1 5 9.0±1.5
PR 1 5 6.8±2.6
Offline-Sel-Pearson/Kmeans 0 6 8.7±1.7
PR-Sel-Pearson/Kmeans 2 4 6.5±1.4
DOTSF-Error 1 5 4.6±2.1
DOTSF-Sel-Error-Pearson/Kmeans 3 3 3.6±1.9
DOTSF-Dependencies-Pearson/Kmeans 2 4 6.6±2.1
DOTSF-Euclidean/DTW 3 3 2.3±1.4
DOTSF-Manhattan/Kmeans 3 3 3.6±2.2
DOTSF-Pearson/Kmeans - - 3.4±2.6

Table 6.5: RF10.

Method
Our Method

Losses Wins Avg.rank
Offline 0 6 9.1±1.4
PR 0 6 6.7±1.0
Offline-Sel-Pearson/Kmeans 0 6 9.4±0.7
PR-Sel-Pearson/Kmeans 0 6 7.4±0.9
DOTSF-Error 1 5 4.8±1.9
DOTSF-Sel-Error-Pearson/Kmeans 3 3 3.6±2.5
DOTSF-Dependencies-Pearson/Kmeans 1 5 6±2.0
DOTSF-Euclidean/DTW 4 2 2.3±1.0
DOTSF-Manhattan/Kmeans 4 2 2.8±1.3
DOTSF-Pearson/Kmeans - - 3±1.3

Table 6.6: RF5.



40 CHAPTER 6. EXPERIMENTS

Method
Our Method

Losses Wins Avg.rank
Offline 1 5 6.5±2.4
PR 0 6 8.2 ±2.7
Offline-Sel-Fourier/Kmeans 3 3 3.7±1.8
PR-Sel-Fourier/Kmeans 2 4 4.2±2.7
DOTSF-Error 0 6 5.7±2.5
DOTSF-Sel-Error-Fourier/Kmeans 3 3 3.0±0.7
DOTSF-Dependencies-Fourier/Kmeans 3 3 4.1±1.3
DOTSF-Euclidean/DTW 1 5 7.2±1.9
DOTSF-Manhattan/Kmeans 1 5 7.2±1.9
DOTSF-Fourier/Kmeans - - 2.5±1.5

Table 6.7: CNN10.

Method
Our Method

Losses Wins Avg.rank
Offline 1 5 5.8±2.9
PR 1 5 7.3±2.4
Offline-Sel-Fourier/Kmeans 1 5 7.8±2.2
PR-Sel-Fourier/Kmeans 1 5 7±2.5
DOTSF-Error 2 4 4.1±2.2
DOTSF-Sel-Error-Fourier/Kmeans 0 6 5±2.1
DOTSF-Dependencies-Fourier/Kmeans 1 5 8.1±1.6
DOTSF-Euclidean/DTW 3 3 3.5±2
DOTSF-Manhattan/Kmeans 3 3 3.5±3.2
DOTSF-Fourier/Kmeans - - 3±2.4

Table 6.8: GBM5.
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Method
Our Method

Losses Wins Avg.rank
Offline 0 6 9.5±0.5
PR 0 6 9.5±0.5
Offline-Sel-Spearman/Kmeans 0 6 6.9±1.3
PR-Sel-Spearman/Kmeans 0 6 7.3±0.8
DOTSF-Error 0 6 5.7±1.4
DOTSF-Sel-Error-Spearman/Kmeans 2 4 3.8±2.1
DOTSF-Dependencies-Spearman/Kmeans 0 6 4.6±1.5
DOTSF-Euclidean/DTW 3 3 2.8±1.3
DOTSF-Manhattan/Kmeans 2 4 2.7±1.6
DOTSF-Spearman/Kmeans - - 2.2±1.5

Table 6.9: SVM.laplace5.

Method
Our Method

Losses Wins Avg.rank
Offline 1 5 8.3±3.1
PR 1 5 8.3±2.7
Offline-Sel-Manhattan/DTW 0 6 6.4±0.9
PR-Sel-Manhattan/DTW 0 6 7.0±1.1
DOTSF-Error 1 5 6.0±2.8
DOTSF-Sel-Error-Manhattan/DTW 1 5 4.0±2.7
DOTSF-Dependencies-Manhattan/DTW 1 5 5.4±1.7
DOTSF-Euclidean/DTW 2 4 3.0±1.7
DOTSF-Manhattan/Kmeans 2 4 4.0±3.2
DOTSF-Manhattan/DTW - - 2.5±1.4

Table 6.10: SVM.poly5.
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Method
Our Method

Losses Wins Avg.rank
Offline 0 6 9.8±0.6
PR 0 6 9.0±0.6
Offline-Sel-Fourier/Kmeans 4 2 4.1±0.8
PR-Sel-Fourier/Kmeans 1 5 4.8±1.6
DOTSF-Error 0 6 8.1±0.7
DOTSF-Sel-Error-Fourier/Kmeans 5 1 3.6±0.7
DOTSF-Dependencies-Fourier/Kmeans 5 1 3.6±1.3
DOTSF-Euclidean/DTW 1 5 6.2±2.6
DOTSF-Manhattan/Kmeans 5 1 2.5±2.4
DOTSF-Fourier/Kmeans - - 3.5±1.7

Table 6.11: PLS5.

Method
Our Method

Losses Wins Avg.rank
Offline 1 5 8.3±3.4
PR 1 5 7.3±1.8
Offline-Sel-Spearman/Kmeans 0 6 7.5±2.4
PR-Sel-Spearman/Kmeans 0 6 6.5±2.3
DOTSF-Error 1 5 5.7±2.8
DOTSF-Sel-Error-Spearman/Kmeans 3 3 2.8±1.4
DOTSF-Dependencies-Spearman/Kmeans 2 4 5.6±2.3
DOTSF-Euclidean/DTW 1 5 4.8±1.5
DOTSF-Manhattan/Kmeans 1 5 4.0±2.9
DOTSF-Spearman/Kmeans - - 2.4±2.1

Table 6.12: PPR10.
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Method
Our Method

Losses Wins Avg.rank
Offline 1 5 8.0±1.6
PR 2 4 5.6±2.9
Offline-Sel-Pearson/Kmeans 1 5 8.2±2.3
PR-Sel-Pearson/Kmeans 1 5 5.8±2.5
DOTSF-Error 2 4 5.4±2.4
DOTSF-Sel-Error-Pearson/Kmeans 2 4 5.6±1.0
DOTSF-Dependencies-Pearson/Kmeans 5 1 3.8±3.1
DOTSF-Euclidean/DTW 3 3 4.8±2.2
DOTSF-Manhattan/Kmeans 3 3 4.9±2.1
DOTSF-Pearson/Kmeans - - 3.0±1.6

Table 6.13: MARS5.

Method
Our Method

Losses Wins Avg.rank
Offline 0 6 9.5±0.8
PR 0 6 8.5±2.3
Offline-Sel-Euclidean/Kmeans 0 6 5.6±1.4
PR-Sel-Euclidean/Kmeans 2 4 3.4±2.3
DOTSF-Error 0 6 7.2±1.5
DOTSF-Sel-Error-Euclidean/Kmeans 2 4 5.0±3.3
DOTSF-Dependencies-Euclidean/Kmeans 2 4 4.1±2.2
DOTSF-Euclidean/DTW 0 6 6.2±1.6
DOTSF-Manhattan/Kmeans 3 3 3.2±1.9
DOTSF-Euclidean/Kmeans - - 2.2±0.5

Table 6.14: MLP5.
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Method
Our Method

Losses Wins Avg.rank
Offline 2 4 7.6±3.1
PR 1 5 6.7±1.4
Offline-Sel-Spearman/Kmeans 3 3 4.5±2.9
PR-Sel-Spearman/Kmeans 1 5 5.0±2.6
DOTSF-Error 1 5 8.4±1.5
DOTSF-Sel-Error-Spearman/Kmeans 3 3 4.2±3.2
DOTSF-Dependencies-Spearman/Kmeans 2 4 4.8±1.8
DOTSF-Euclidean/DTW 2 4 6.3±3.6
DOTSF-Manhattan/Kmeans 4 2 3.3±2.9
DOTSF-Spearman/Kmeans - - 4.2±1.9

Table 6.15: LSTM5.
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Further Discussion

In this thesis, we have presented an online adaptive multivariate time series forecasting
framework. Our method performs a dynamic time series selection and updates the model in
an informed way based on the drift detection algorithm within temporal and spatial aspects.
We have shown that the proposed method was able to outperform the baseline time series
forecasting approaches. The two-stage time series selection ensures the inclusion of the
most relevant time series and exclusion of the redundant ones by the means of clustering.
This generates a low-dimensional training input that includes important and diverse time
series to obtain an accurate forecast of the model. We have also demonstrated, that the
right combination of similarity and clustering methods plays a crucial role in the time series
selection. As a future research, we aim to address the aspect of automatic adjustment to
the best similarity/clustering combination, e.g., by the means of meta-learning.

The integrated drift detection component assures the adaption based on the information
about the change in the dependencies of input data and the change in the model’s estimated
performance over time. The motivation behind the drift-aware adaptation mechanism is
to update the model and/or selected time series only when the drift is detected. Thus,
avoiding the potential exhaustion of computational resources, which is often an issue when
employing periodic retraining. Based on the conducted experiments, the periodic retraining
needed on average 1.5 more times than our method.

We monitor the drifts using the sliding window approach of the fixed size. However, the
approach of monitoring the error can be studied more in future research work by extending
it to adaptive windowing. The adaptive windowing solves the following optimization prob-
lem: adjust the window size so, that the estimated generalization error on new examples is
minimized. This technique may help to reduce the number of false alarms, thus, improving
the general accuracy of the model.
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The evaluation of the experiments has shown the main advantages of our method over
the classic time series forecasting approaches. The time series from different fields were used
in the conducted experiments. Further studies could involve a more exhaustive evaluation
of the proposed approach on a wider variety of time series.
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Appendix

Nr. Time Series Data Source Size F
D1 Appliances energy prediction data UCI Machine Learning Repository 2000 29
D2 Daily Bitcoin exchange price Kaggle 1000 9
D3 Marketing data Kaggle 104 7
D4 Russel-Stock Market Data UCI Machine Learning Repository 1985 82
D5 S&P-Stock Market Data UCI Machine Learning Repository 1985 82
D6 NASDAQ-Stock Market Data UCI Machine Learning Repository 1985 82

Table A.1: The summary of datasets used for the evaluation.

Method D1 D2 D3 D4 D5 D6
Offline 0.0033 0.0466 0.0886 0.0727 0.0923 0.1141
PR 0.0032 0.0445 0.0835 0.0430 0.0498 0.0627
Offline-Sel-Euclidean/Kmeans 0.0030 0.0481 0.0820 0.0808 0.1061 0.1138
PR-Sel-Euclidean/Kmeans 0.0030 0.0449 0.0793 0.0488 0.0553 0.0589
DOTSF-Error 0.0032 0.0446 0.0697 0.0368 0.0276 0.0349
DOTSF-Sel-Error-Euclidean/Kmeans 0.0030 0.0452 0.0638 0.0420 0.0200 0.0295
DOTSF-Dependencies-Euclidean/Kmeans 0.0028 0.0481 0.0714 0.0527 0.0366 0.0620
DOTSF-Euclidean/DTW 0.0026 0.0431 0.0637 0.0316 0.0278 0.0305
DOTSF-Manhattan/Kmeans 0.0027 0.0475 0.0585 0.0354 0.0281 0.0298
DOTSF-Euclidean/Kmeans 0.0028 0.0475 0.0714 0.0288 0.0217 0.0285

Table A.2: RMSE for each dataset and method respectively applied to RF10.
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Method D1 D2 D3 D4 D5 D6
Offline 0.0030 0.0499 0.0841 0.0707 0.0895 0.1114
PR 0.0028 0.0461 0.0755 0.0441 0.0460 0.0616
Offline-Sel-Euclidean/Kmeans 0.0033 0.0468 0.0805 0.0778 0.1004 0.1092
PR-Sel-Euclidean/Kmeans 0.0031 0.0445 0.0778 0.0457 0.0518 0.0594
DOTSF-Error 0.0030 0.0426 0.0727 0.0383 0.0263 0.0315
DOTSF-Sel-Error-Euclidean/Kmeans 0.0031 0.0442 0.0693 0.0289 0.0188 0.0271
DOTSF-Dependencies-Euclidean/Kmeans 0.0026 0.468 0.0679 0.0506 0.0356 0.0569
DOTSF-Euclidean/DTW 0.0026 0.0429 0.0620 0.0286 0.0262 0.0274
DOTSF-Manhattan/Kmeans 0.0025 0.0444 0.0653 0.0325 0.0248 0.0273
DOTSF-Euclidean/Kmeans 0.0026 0.0444 0.0666 0.0272 0.0214 0.0281

Table A.3: RMSE for each dataset and method respectively applied to RF5.

Method D1 D2 D3 D4 D5 D6
Offline 0.0321 0.1534 0.0931 0.1030 00243 0.0646
PR 0.0486 0.1828 0.1123 0.0892 0.0732 0.0922
Offline-Sel-Euclidean/Kmeans 0.0271 0.0879 0.0412 0.0612 0.0233 0.0290
PR-Sel-Euclidean/Kmeans 0.0544 0.0694 0.0498 0.0399 0.0210 0.0648
DOTSF-Error 0.0674 0.1345 0.0931 0.0309 0.0243 0.0249
DOTSF-Sel-Error-Euclidean/Kmeans 0.0418 0.0748 0.0412 0.0328 0.0233 0.0249
DOTSF-Dependencies-Euclidean/Kmeans 0.0349 0.0879 0.0412 0.0612 0.0233 0.0290
DOTSF-Euclidean/DTW 0.0749 0.0767 0.0433 0.0696 0.0198 0.0722
DOTSF-Manhattan/Kmeans 0.0268 0.0746 0.0633 0.0536 0.0305 0.0546
DOTSF-Euclidean/Kmeans 0.0454 0.0697 0.0412 0.0294 0.0233 0.0239

Table A.4: RMSE for each dataset and method respectively applied to CNN10.
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Method D1 D2 D3 D4 D5 D6
Offline 0.2145 0.9710 1.1056 0.3321 0.3471 0.3952
PR 0.2164 0.9885 1.0274 0.3332 0.3485 0.4007
Offline-Sel-Euclidean/Kmeans 0.2148 1.0105 0.9148 0.3340 0.3525 0.3956
PR-Sel-Euclidean/Kmeans 0.2164 0.9999 0.9265 0.3323 0.3511 0.3981
DOTSF-Error 0.2226 0.9356 0.8704 0.2415 0.2063 0.2389
DOTSF-Sel-Error-Euclidean/Kmeans 0.2227 0.9679 0.8125 0.2417 0.2157 0.2400
DOTSF-Dependencies-Euclidean/Kmeans 0.2207 1.0105 0.9149 0.3340 0.3525 03956
DOTSF-Euclidean/DTW 0.2191 0.8631 0.8440 0.2481 0.2179 0.2326
DOTSF-Manhattan/Kmeans 0.2246 0.9005 0.7880 0.2399 0.2106 0.2375
DOTSF-Euclidean/Kmeans 0.2226 0.9005 0.7738 0.2396 0.2121 0.2380

Table A.5: RMSE for each dataset and method respectively applied to GBM5.

Method D1 D2 D3 D4 D5 D6
Offline 0.2053 0.3896 0.9889 0.5492 0.5430 0.5885
PR 0.2047 0.3887 0.9918 0.5515 0.5457 0.5884
Offline-Sel-Euclidean/Kmeans 0.1815 0.2158 0.7528 0.3607 0.4488 0.4767
PR-Sel-Euclidean/Kmeans 0.1959 0.2250 0.7673 0.3565 0.4409 0.4874
DOTSF-Error 0.1352 0.2638 0.6621 0.1299 0.1364 0.1539
DOTSF-Sel-Error-Euclidean/Kmeans 0.1698 0.2361 0.5585 0.0810 0.1060 0.0865
DOTSF-Dependencies-Euclidean/Kmeans 0.0745 0.2158 0.7211 0.0861 0.1586 0.1530
DOTSF-Euclidean/DTW 0.0921 0.2145 0.5764 0.0960 0.0682 0.0630
DOTSF-Manhattan/Kmeans 0.1543 0.2117 0.4796 0.0822 0.1115 0.0435
DOTSF-Euclidean/Kmeans 0.0513 0.1423 0.5960 0.0721 0.1024 0.1085

Table A.6: RMSE for each dataset and method respectively applied to SVM.laplace5.



50 APPENDIX A. APPENDIX

Method D1 D2 D3 D4 D5 D6
Offline 0.2028 0.1718 1.0206 0.4616 0.4519 0.04931
PR 0.2028 0.1746 1.0154 0.4643 0.4530 0.4796
Offline-Sel-Euclidean/Kmeans 0.1086 0.2060 0.9823 0.0920 0.0814 0.0999
PR-Sel-Euclidean/Kmeans 0.1053 0.2153 0.9784 0.0920 0.0817 0.1000
DOTSF-Error 0.1477 0.1513 0.7910 0.0796 0.0980 0.1137
DOTSF-Sel-Error-Euclidean/Kmeans 0.0868 0.2965 0.7577 0.0409 0.0305 0.0423
DOTSF-Dependencies-Euclidean/Kmeans 0.1086 0.2060 0.7120 0.0920 0.0814 0.0999
DOTSF-Euclidean/DTW 0.0790 0.2011 0.7303 0.0710 0.0332 0.0336
DOTSF-Manhattan/Kmeans 0.0797 0.3316 0.6188 0.0529 0.0567 0.0503
DOTSF-Euclidean/Kmeans 0.0884 0.1913 0.7126 0.0407 0.0305 0.0425

Table A.7: RMSE for each dataset and method respectively applied to SVM.poly5.

Method D1 D2 D3 D4 D5 D6
Offline 0.0032 0.0336 0.0830 0.0475 0.0318 0.0246
PR 0.0035 0.0336 0.0761 0.0226 0.0132 0.0191
Offline-Sel-Euclidean/Kmeans 0.0016 0.0331 0.0639 0.0123 0.0082 0.0105
PR-Sel-Euclidean/Kmeans 0.0016 0.0329 0.0606 0.0123 0.0082 0.0106
DOTSF-Error 0.0032 0.0336 0.0722 0.0186 0.0146 0.0175
DOTSF-Sel-Error-Euclidean/Kmeans 0.0016 0.0331 0.0589 0.0123 0.0082 0.0105
DOTSF-Dependencies-Euclidean/Kmeans 0.0016 0.0331 0.0639 0.0123 0.0082 0.0105
DOTSF-Euclidean/DTW 0.0016 0.0321 0.0738 0.0143 0.0098 0.0147
DOTSF-Manhattan/Kmeans 0.0016 0.0331 0.0535 0.0122 0.0082 0.0104
DOTSF-Euclidean/Kmeans 0.0016 0.0331 0.0589 0.0123 0.0082 0.0105

Table A.8: RMSE for each dataset and method respectively applied to PLS5.
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Method D1 D2 D3 D4 D5 D6
Offline 0.0032 0.0420 0.0553 0.0564 0.0743 0.0947
PR 0.0027 0.0402 0.0594 0.0338 0.0400 0.0526
Offline-Sel-Euclidean/Kmeans 0.0018 0.0347 0.0672 0.0575 0.0651 0.0943
PR-Sel-Euclidean/Kmeans 0.0019 0.0336 0.1110 0.0305 0.0375 0.0480
DOTSF-Error 0.0032 0.0381 0.0553 0.0256 0.0235 0.0271
DOTSF-Sel-Error-Euclidean/Kmeans 0.0018 0.0329 0.0556 0.0184 0.0207 0.0236
DOTSF-Dependencies-Euclidean/Kmeans 0.0016 0.0347 0.0634 0.0427 0.0284 0.0507
DOTSF-Euclidean/DTW 0.0018 0.0376 0.0599 0.0222 0.0202 0.0240
DOTSF-Manhattan/Kmeans 0.0017 0.0349 0.0898 0.0189 0.0152 0.0224
DOTSF-Euclidean/Kmeans 0.0016 0.0329 0.0634 0.0215 0.0152 0.0213

Table A.9: RMSE for each dataset and method respectively applied to PPR10.

Method D1 D2 D3 D4 D5 D6
Offline 0.0018 0.0322 0.1369 0.0128 0.0142 0.0149
PR 0.0018 0.0322 0.1035 0.0191 0.0105 0.0110
Offline-Sel-Euclidean/Kmeans 0.0018 0.0323 0.1044 0.0128 0.0143 0.0151
PR-Sel-Euclidean/Kmeans 0.0018 0.0322 0.0994 0.0189 0.0105 0.0110
DOTSF-Error 0.0018 0.0322 0.1001 0.0128 0.0128 0.0135
DOTSF-Sel-Error-Euclidean/Kmeans 0.0018 0.0322 0.0784 0.0128 0.0128 0.0135
DOTSF-Dependencies-Euclidean/Kmeans 0.0018 0.0323 0.0550 0.0126 0.0085 0.0109
DOTSF-Euclidean/DTW 0.0018 0.0322 0.0586 0.0126 0.0128 0.0135
DOTSF-Manhattan/Kmeans 0.0018 0.0322 0.0489 0.0128 0.0128 0.0135
DOTSF-Euclidean/Kmeans 0.0018 0.0322 0.0550 0.0126 0.0085 0.0109

Table A.10: RMSE for each dataset and method respectively applied to MARS5.
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Method D1 D2 D3 D4 D5 D6
Offline 0.0134 0.0394 0.1759 0.1051 0.1124 0.1027
PR 0.0137 0.0404 0.1204 0.0408 0.0474 0.0429
Offline-Sel-Euclidean/Kmeans 0.0044 0.0361 0.1212 0.0269 0.0466 0.0299
PR-Sel-Euclidean/Kmeans 0.0021 0.0351 0.1240 0.0209 0.0203 0.0268
DOTSF-Error 0.0092 0.0395 0.1214 0.0321 0.0296 0.0377
DOTSF-Sel-Error-Euclidean/Kmeans 0.0033 0.0364 0.1278 0.0352 0.0167 0.0189
DOTSF-Dependencies-Euclidean/Kmeans 0.0020 0.0361 0.1154 0.0236 0.0466 0.0299
DOTSF-Euclidean/DTW 0.0031 0.0361 0.1437 0.0297 0.0301 0.0344
DOTSF-Manhattan/Kmeans 0.0034 0.0359 0.1148 0.0283 0.0199 0.0221
DOTSF-Euclidean/Kmeans 0.0020 0.0359 0.1154 0.0235 0.0171 0.0234

Table A.11: RMSE for each dataset and method respectively applied to MLP5.

Method D1 D2 D3 D4 D5 D6
Offline 1.0000 0.1483 1.0000 1.0000 0.4873 1.0000
PR 0.6270 0.1122 0.2832 1.0000 1.0000 1.0000
Offline-Sel-Euclidean/Kmeans 0.0966 0.0619 0.1004 0.0354 1.0000 0.0292
PR-Sel-Euclidean/Kmeans 0.0786 0.8832 0.0796 0.6015 0.7934 0.6105
DOTSF-Error 1.0000 0.7173 1.0000 1.0000 0.9750 1.0000
DOTSF-Sel-Error-Euclidean/Kmeans 0.0901 0.0583 0.6775 0.0354 1.0000 0.0276
DOTSF-Dependencies-Euclidean/Kmeans 0.0499 0.0619 0.7387 0.6540 0.7929 0.5080
DOTSF-Euclidean/DTW 0.0343 1.0000 0.0871 0.6543 1.0000 1.0000
DOTSF-Manhattan/Kmeans 0.0302 0.0521 0.6828 0.7483 0.0229 0.0303
DOTSF-Euclidean/Kmeans 0.0570 0.7178 0.0887 0.0361 0.6473 0.2695

Table A.12: RMSE for each dataset and method respectively applied to LSTM5.
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