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Abstract

We consider the two-sample homogeneity problem where the information con-

tained in two samples is used to test the equality of the underlying distributions.

For instance, in cases where one sample stems from a simulation procedure mod-

elling the data generating process of the other sample consisting of observed data,

a mere rejection of the null hypothesis is unsatisfactory. Instead, the data analyst

would like to know how the simulation can be improved while changing it as little

as possible. Based on the popular Kolmogorov-Smirnov test and a general nonpara-

metric mixture model, we propose an algorithm which determines an appropriate

correction distribution function describing how the simulation procedure can be

corrected. It is constructed in such a way that complementing the simulation sam-

ple by a given proportion of observations sampled from the correction distribution

does not lead to a rejection of the null hypothesis of equal distributions when the

modi�ed and the observed sample are compared. We prove our algorithm to run

in linear time and evaluate it on simulated and real spectrometry data showing

that it leads to intuitive results. We illustrate its practical performance considering

runtime as well as accuracy in a real world scenario.

1 Introduction

Consider the following scenario: We observe the sample x1, . . . , xn1 ∈ R stemming from an
unknown continuous distribution F . The underlying data generating process is modelled
by a simulation procedure represented by the distribution G. To evaluate the quality of
the simulation, consider n2 simulated observations y1, . . . , yn2 drawn independently from
G. If the simulation procedure works well, G resembles F and thus the samples are
similar.
A standard nonparametric approach to test the equality of F and G is the two-sample
Kolmogorov-Smirnov test. We denote the empirical distribution functions of the samples
by Fe and Ge, respectively, and set N = n1·n2

n1+n2
. Setting M = R the null hypothesis H0 is

rejected if the test statistic

DM(Fe, Ge) =
√
N sup

x∈M
|Fe(x)−Ge(x)|

exceeds an appropriately chosen critical value Kα.
In order to consider the procedure from a di�erent perspective, we de�ne for all x ∈ M
an upper boundary function U setting U(x) = min(1, Fe(x) +

Kα√
N
) for all x ∈ M , and

in analogy de�ne a lower boundary function L by L(x) = max(0, Fe(x) − Kα√
N
). With

these de�nitions the Kolmogorov-Smirnov test does not reject H0 if and only if Ge is an
element of the set

B = {f : R→ [0, 1]|∀x ∈M : L(x) ≤ f(x) ≤ U(x)}

called the con�dence band.
In practice, a mere rejection of H0 is not satisfying, because the data analyst would like
to improve the simulation in case of rejection. Thus, the regions of undersampling re-
spectively oversampling, i.e., the regions where Ge violates L or U , are of great interest.
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In the present work, we introduce a nonparametric mixture model linking G and F by a
distribution H, which represents all discrepancies between F and G. Thus, H provides
valuable information on appropriate modi�cations to G. We propose an algorithm deter-
mining an empirical version of H and the mixing proportion in the mixture model under
reasonable conditions.
There already exist various semi- and nonparametric suggestions on mixture models in
the literature focussing on the estimation of the densities and the number of components
in a mixture model of a given sample. Since these authors consider only single sam-
ples, they have to work in a multidimensional setting. As shown by Hall et al. [5], the
quantities in a nonparametric mixture model with two components are not identi�able
for one- and two-dimensional problems. The methods often rely on adjusted versions of
the EM algorithm [9] or a Newton method [13] and sometimes make use of data trans-
formations [6]. There also exist several nonparametric approaches to problems involving
multiple samples and �nite mixture models, as for example proposed by Kolossiatis et al.
[7]. However, to the authors' knowledge, there is no literature addressing the problem
sketched above in the context of mixture models. We close this gap by proposing a cor-
rection of one sample to resemble another sample based on the corresponding empirical
distribution functions.

The remainder of this report is structured as follows: In Section 2 we propose a nonpara-
metric mixture model related to the two-sample problem. We introduce several desirable
properties of the model parameters and formulate two optimisation problems allowing to
identify them. In Section 2 we present an algorithm to solve the problems introduced
in the second section and provide intuitive explanations of the main ideas of each step
of our algorithm. The proofs of correctness and linear runtime are conducted in Section
4. In Section 5 our procedure is applied to real and simulated data and the results are
illustrated. Section 6 concludes with a summary and an outlook on possible future work.

2 Problem De�nition

In this section a nonparametric mixture model is introduced. It links the distributions
F and G by a third distribution H, which re�ects all discrepancies between F and G. In
order to be able to assess H, the model is transferred to an empirical equivalent. There-
after, several constraints on parameters of the empirical model are motivated allowing to
identify them properly.

To model the problem described in the introduction, we work with the fairly general
two-component mixture model

F = s̃ ·G+ (1− s̃) ·H ,

where the so-called mixture proportion or shrinkage factor s̃ measures the degree of
agreement of F and G while the distribution H represents all dissimilarities between F
and G. Since F is fully described by G, s̃ and H, we are interested in identifying s̃ and H,
because these quantities contain all relevant information for an appropriate modi�cation
of G.
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It is clear that the choice s̃ = 0 and H = F solves the above equation. However, this
solution is not of interest in our setting, because the data analyst wants to correct and
not to discard the current simulation, which is often based on expert knowledge. This
may give more insight into the data generating process itself and is thus preferable. In
the other extreme case, s̃ = 1, the simulation is correct and H is irrelevant. However, for
any s̃ ∈ (0, 1) the corresponding H is unique and demixing F , that is estimating s̃ and
H, provides useful information for improving the simulation.

Since the distributions F and G are not available in practice, we replace the corresponding
distribution functions by the standard empirical estimators Fe and Ge. Combining the
concept of distance used in the Kolmogorov-Smirnov test with the above mixture model,
we propose to identify a shrinkage factor s ∈ [0, 1] and a correction function H such that
the function

F = s ·Ge + (1− s) · H (1)

lies in the con�dence band B and thus the Kolmogorov-Smirnov test would not reject H0

if the distribution functions Ge and F were compared. Since H is a substitute for H, it
should be a distribution function and hence lie in the set

M =

{
f : R→ [0, 1] | f monotone, lim

x→−∞
f(x) = 0

}
.

Obviously, neither s nor H are unique in this situation. Hence, in the following we
set some additional constraints and describe the problem in more detail allowing us to
determine reasonable solutions.

Since we work with empirical distribution functions, all derived quantities are charac-
terized by their values on the joint sample x1, . . . , xn1 , y1, . . . , yn2 . Therefore, instead of
considering all functions H ∈M, we restrict ourselves to those, which may be discontin-
uous only on Z = {z1, . . . , zn1+n2} consisting of the ordered joint sample. We denote this
set of functions byM∗ ⊂M. This restriction is not very strong since the sample sizes in
simulations are often quite large and we also avoid the inclusion of additional observation
values, which would lead to a higher computational e�ort.

Motivated by the fact that the data analyst is interested in making as small changes as
possible concerning the current simulation, we can make the mixture proportion s in the
model identi�able by choosing s maximally such that the mixture F �ts the observed
data. This directly implies a minimal weight 1 − s for the correction function H. We
thus formulate Problem 1:

max
s∈[0,1]

: s

s.t. : ∃H ∈M∗ : s ·Ge + (1− s) · H ∈ B

Note that for s∗ = Kα√
N
and H∗ = 1

1−s∗ · L the property s∗ ·Ge + (1− s∗) · H∗ ∈ B holds.
Thus, the optimal value of s, called sopt in the following, is always greater than 0. Hence,
the simulated data is always properly included in the mixture.
After Problem 1 is solved, the resulting mixture F = sopt · Ge + (1 − sopt) · H lies in
B. Since this does not imply the property lim

x→∞
F(x) = 1, the function H could be an
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improper distribution function. Therefore, there might exist several choices of H solving
Problem 1 given sopt. However, the pointwise minimal function Hmin ∈ M∗ satisfying
Fmin = sopt · Ge + (1 − sopt) · Hmin ∈ B is unique. To �nd a reasonable distribution
function H, we propose to construct H by enlarging Hmin in an adequate way, so that
the �nal mixture is a proper empirical distribution function lying in B.

Before we formulate this enlargement as an optimisation problem, we want to point out
that, quite intuitively, Hmin should not be enlarged for small z ∈ Z. In particular, if
Fmin intersects the upper boundary U , adding mass before the maximal value z ∈ Z
where Fmin(z) equals U(z), zmeq = max

z∈Z
{z|Fmin(z) = U(z)}, leads to violations of U in

zmeq. Note that in case of such an intersection, the global Kolmogorov-Smirnov distance
on M = R between the �nal mixture and Fe will be the radius of the con�dence band,
regardless of the enlargement ofHmin. However, on subsets of R the distance measure can
be improved if Hmin is enlarged appropriately. Hence, we propose to identify znorm, the
smallest value after zmeq such that adding mass after znorm decreases the Kolmogorov-
Smirnov distance restricted to the set Mnorm = {z ∈ Z|z ≥ znorm}. We then add the
probability mass in such a way that the minimal distance D{z≥znorm} is attained. If there
is no intersection between Fmin(z) and U(z), we set zmeq = min {Z} and proceed in the
same way. Using the notations introduced above, �nding a suitable distribution function
H for a given value of sopt can be formalised in Problem 2:

min
H∈M∗

: DMnorm(F , Fe)

s.t. : F = sopt ·Ge + (1− sopt) · H
F ∈ B
H ≥ Hmin

lim
x→∞
H(x) = 1

A solution to Problem 2 is called Hopt. The corresponding �nal mixture is denoted by

Fopt = sopt ·Ge + (1− sopt) · Hopt. (2)

Note that, even with these constraints, the solution to the problem of identifying F ∈ B
may not be unique. Although the shrinkage factor sopt is unique by its maximality
property, there may be several optimal enlargements of Hmin equally appropriate in the
sense of the restricted Kolmogorov-Smirnov distance.

3 The Algorithm

In this section we propose an algorithm solving Problems 1 and 2 introduced in Section
2. At �rst, the main procedure is described. All subsequent subroutines called within the
main algorithm are explained in more detail hereafter. Pseudocode is provided in order
to illustrate the algorithms.

Algorithm 1 is our main procedure to solve Problems 1 and 2. It requires two sample
vectors x ∈ Rn1 , y ∈ Rn2 and a signi�cance level α. At �rst, it calculates the empirical
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distribution functions Fe and Ge of the samples and determines the critical value Kα at
level α. In fact, Kα is the α-quantile of the distribution of K = supt∈[0,1]B(t), where
B(t) is a Brownian bridge [4]. For the typical signi�cance levels α1 = 0.05 and α2 = 0.01
the critical values are Kα1 = 1.358 and Kα2 = 1.628, respectively. The values s and F ,
candidates for the shrinkage factor sopt and the �nal mixture Fopt, are initialised and the
lower bound for performing a binary search is set to s∗, cf. the description of Problem 1.
The upper and lower boundary functions of the con�dence band around Fe, U respectively
L, are computed next. These steps can be considered as preprocessing and are carried
out in the lines 1 and 2. The two-sample Kolmogorov-Smirnov test does not reject the
null hypothesis of equal distributions if the relation L ≤ Ge ≤ U holds. In this case the
empirical distribution functions resemble each other well enough and the algorithm stops
in line 4.

Algorithm 1: Demixing-Algorithm

Input : Observations x ∈ Rn1 , y ∈ Rn2 , signi�cance level α
Output: Optimal shrinkage factor sopt,

optimal correcting function Hopt ∈M∗

1 Z ← (x, y); Kα ← K(α); N ←
√

n1·n2

n1+n2
; lb ← Kα√

N
; s← 1;

2 Fe ← EmpDistrFun(x); Ge ← EmpDistrFun(y); F ← Ge;

L← max
{
0, Ge − Kα√

N

}
;U ← min

{
1, Ge +

Kα√
N

}
;

3 if ∀z ∈ Z : L(z) ≤ F(z) ≤ U(z) then
4 return (s, 0)

5 repeat

6 if ∃z ∈ Z : F(z) > U(z) then
7 (s,F)← Shrink-Down(s,F);
8 if ∃z ∈ Z : F(z) < L(z) then
9 (s,F)← Push-Up(s,F);

10 (lb, s,F)← BinSearch(lb, s,F);
11 until ∀z ∈ Z : L(z) ≤ F(z) ≤ U(z);
12 F ← Normalise(F);
13 H ← (F − s ·Ge)/(1− s);
14 return (s,H);

If the test rejects the null hypothesis, the algorithm carries out certain steps to determine
an optimal mixture within the con�dence band. To solve Problem 1, the following oper-
ations are applied iteratively in the main loop in lines 5 to 11: a candidate F lying above
the upper boundary somewhere has to be shrunk, that is, multiplied by a factor from the
interval (0, 1), in order to correct the violation of U . This problem is addressed in line 7
in the so called Shrink-Down algorithm. On the contrary, a candidate falling below the
lower boundary L must receive additional probability mass in appropriate regions. This
is taken into account in line 9 by calling the Push-Up algorithm. The two operations
are applied, whenever necessary, in the presented order. However, since they have oppo-
site e�ects, some data situations require multiple executions of the Shrink-Down and the

5



Push-Up step. Iteration of these steps generates a decreasing sequence of upper bounds
to sopt. The well-known binary search technique embedded in the demixing algorithm in
line 10 takes another approach by bounding sopt from below and above. It is connected
with the Shrink-Down and Push-Up step by using the current shrinkage factor s learned
from them as an upper bound to sopt. In return, the binary search updates s and F ,
which are then passed to the Shrink-Down and Push-Up steps. The lower bound for the
optimal shrinkage factor, lb, is updated by the binary search itself.
Once the main loop is terminated, the optimal shrinkage factor sopt and the corresponding
minimal correction function Hmin introduced on page 4 are determined and thus Prob-
lem 1 is solved. The normalisation step in line 12 takes care of Problem 2 returning an
optimal mixture Fopt. This allows to identify a reasonable correction function Hopt in line
13 by rearranging equation (2), which is returned afterwards together with the optimal
shrinkage factor sopt.

In the remainder of this section we describe the subroutines of the main algorithm in
detail.

3.1 The Shrink-Down algorithm

This procedure is applied whenever a candidate F exceeds the upper boundary U at some
point. Following the mixture model (1), it is intuitive to solve this problem by computing
the maximal shrinkage value sd ∈ (0, 1) such that sd · F does not violate U any more.
In other words, F is shrunk down. The maximal shrinkage factor to achieve this is

sd = min
z∈Z

{
U(z)
F(z)

}
, where we set a

0
= ∞ for every a > 0. The Shrink-Down subroutine

presented in Algorithm 2 calculates this factor in line 1. Then, the total shrinkage and
the candidate function F are updated accordingly and are eventually returned.

Algorithm 2: Shrink-Down

Input : Current values of F and s
Output: Updated values F and s

1 sd ← min
z∈Z

{
U(z)
F(z)

}
;

2 s← sd · s;
3 F ← sd · F ;
4 return (s,F);

3.2 Push-Up algorithm

The Push-Up step presented in Algorithm 3 is carried out whenever the current candidate
F violates the lower boundary L. In order to increase the values of the mixture in the
problematic regions, probability mass must be added there. Note that F may lie below
the lower boundary of the con�dence band before the smallest value z ∈ Z where F(z)
equals U(z), called zeq = min

z∈Z
{z|U(z) = F(z)}, as well as after that point. However,

these two cases have a crucial di�erence. Adding probability mass before zeq leads to a
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new violation of the upper boundary U in zeq, while adding mass after zeq does not imply
this problem. In order to distinguish between these cases, the algorithm �rst identi�es
zeq in line 1. If the mixture candidate F equals Ge by initialisation, zeq exists because
zeq = max(Z) holds due to F(max(Z)) = Ge(max(Z)) = 1 = U(max(Z)). As we will
argue later in Lemma 4, zeq is also well de�ned after modi�cations of F .
If there are violations of L before zeq, a shrinkage is necessary. Thus, keeping in mind
Problem 1, the maximal shrinkage factor su must be identi�ed, so that the residuals to L
before zeq do not exceed the residual to U in zeq after shrinking. Otherwise, adding ap-
propriate probability mass will cause a violation of U in zeq. More formally, the shrinkage
factor

su = max
s∈[0,1]

{s | ∀z < zeq :

L(z)− s · F(z) ≤ U(zeq)− s · F(zeq)}

must be determined. Basic arithmetic transformations of the constraint yield su =

min
z<zeq

{
F(zeq)−L(z)
F(zeq)−F(z)

}
. After su is determined in line 3, the shrinkage factor s as well as

F are updated.
In order to shift the current candidate F appropriately, �rst the positive residuals to
L denoted by d(z) = max {0, L(z)−F(z)} are computed for all z ∈ Z. These are the
minimal amounts which must be added to F so that the lower boundary L is no longer
violated. The residuals d are added to the current correction term F − s · Ge and the
sum is minimally monotonised, cf. line 7. The result, denoted by H, is added to s · Ge

yielding the new candidate mixture F .

Algorithm 3: Push-Up

Input : Current values of F and s
Output: Updated values F and s

1 zeq ← min
z∈Z
{z |U(z) = F(z)};

2 if ∃z < zeq : F(z) < L(z) then

3 su ← min
z<zeq

{
F(zeq)−L(z)
F(zeq)−F(z)

}
;

4 s← su · s;
5 F ← su · F ;
6 ∀z ∈ Z : d(z)← max{0, L(z)−F(z)};
7 ∀z ∈ Z : H(z)← max

z′≤z
{F(z′)− s ·Ge(z

′) + d(z′)};

8 F ← s ·Ge +H;
9 return (s,F);

3.3 Binary search algorithm

The binary search step presented in Algorithm 4 is called at the end of every iteration
in the main loop. Its input consists of lb and ub, the current lower respectively upper
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bound for sopt. While lb is derived from previous binary search steps, ub is set to the
current value of s. The algorithm computes the average of the given bounds in line 1.
Using this candidate, the minimum monotone step function Hb is computed such that
Fb = sb ·Ge+Hb ≥ L holds, cf. lines 2 and 3. This is done in analogy to the corresponding
lines in the Push-Up step.

If Fb violates the upper boundary U , then, by minimality of Hb, no monotone step
function for the shrinkage factor sb can exist such that the corresponding mixture lies
within the con�dence band B. Therefore, as implied by the monotonicity property proved
in Lemma 1 below, it holds that s > sb > sopt. Thus, in this case the algorithm updates
s to sb as a new upper bound for sopt and sets the current mixture candidate to Fb in
lines 6 and 7. Otherwise, again by Lemma 1, the relation sopt ≥ sb > lb must hold, since
there exists a monotone step function for the shrinkage factor sb leading to a mixture in
B. Thus, sb is a better lower bound to sopt so that lb is updated by sb, while all other
quantities are kept.

Algorithm 4: BinSearch

Input : current lower and upper bounds to sopt, lb respectively ub
Output: Updated values F , s and lb

1 sb ← (lb + ub)/2;
2 ∀z ∈ Z : d(z)← max{0, L(z)− sb ·Ge(z)};
3 ∀z ∈ Z : Hb(z)← max

z≤z′
{du(z′)};

4 Fb ← sb ·Ge(z) +Hb;
5 if ∃z ∈ Z : Fb(z) > U(z) then
6 s← sb;
7 F ← Fb;
8 else

9 lb ← sb;

10 return (lb, s,F);

3.4 Normalisation step

As we will show in Theorem 6 below, Problem 1 is solved when the loop of Algorithm 1
(lines 5 to 11) stops. At this point, the current value of s is the optimal shrinkage factor
sopt, while the current mixture is F = sopt · Ge + (1 − sopt) · Hmin and lies within the
con�dence band. However, as pointed out in the description of Problem 2, F may not be
a proper distribution function since lim

x→∞
F(x) < 1 may hold. This de�ciency is corrected

by the normalisation step presented in Algorithm 5.

To check whether F must be enlarged, the algorithm computes zmeq, the maximal value
z ∈ Z where F(z) equals U(z). When there is no intersection of F and U , the algorithms
sets zmeq = min(Z). If zmeq = max(Z) is satis�ed, the property F(max(Z)) = F(zmeq) =
U(zmeq) = U(max(Z)) = 1 holds, so no further corrections are necessary and F is
returned.
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Algorithm 5: Normalise

Input : Current value of F
Output: Final mixture F

1 if ∀z ∈ Z : F(z) < U(z) then
2 zmeq ← min(Z);

3 else

4 zmeq ← max
z∈Z
{z |U(z) = F(z)};

5 if zmeq 6= max(Z) then
6 znorm ← min

z>zmeq
{z | F(z) < Fe(z)};

7 ∀z ≥ znorm : d(z)← min{Fe(z)−F(z), 1−F(max(Z))};
8 if max

z≥znorm
{−d(z)} ≥ 1−F(max(Z)) then

9 z̃ ← max
z≥znorm

{z | − d(z) ≥ 1−F(max(Z))};

10 znorm ← min
z>z̃
{z | d(z) > 0};

11 ∀z ≥ znorm : Hnorm(z)← max

{
0,

(
max

znorm≤z′≤z
{d(z′)}+ min

z′′≥z
{d(z′′)}

)
/2

}
;

12 ∀z < znorm : Hnorm(z)← 0;
13 F ← F +Hnorm;

14 return (F);

Otherwise, as stated in the motivation to Problem 2, adding any probability mass before
zmeq would lead to a violation of U in zmeq. Since sopt is already determined, such a vio-
lation cannot be repaired by further shrinking as in the Push-Up step. Thus, probability
mass has to be added after zmeq. In fact, the region where mass should be added can
be restricted even further. Therefore, we consider the smallest value z ∈ Z such that
z > zmeq and F(z) < Fe(z) holds and denote it by znorm. Since adding mass between
zmeq and znorm cannot reduce the Kolmogorov-Smirnov distance between Fe and F , we
focus on all z ≥ znorm in the following.

Hence, the deviations d(z) = Fe(z)−F(z) are computed for all z ≥ znorm in line 7. Devi-
ations above the remaining mass 1− F(max(Z)) are decreased to this value. Hereafter,
the algorithm checks whether the maximal increase of F above Fe, the maximum of all
negative deviations −d(z), is greater or equal to the maximal decrease of F below Fe,
namely 1 − F(max(Z)). As long as this is the case, adding probability mass will not
decrease the Kolmogorov-Smirnov distance. Hence, in line 9 the algorithm determines
the last position where the above property holds and updates znorm to be greater than
this position. This yields the set Mnorm = {z ∈ Z|z ≥ znorm}, where a reduction of the
Kolmogorov-Smirnov distance is possible. At the latest, Mnorm is the last region where
F lies below Fe.

In order to compute a distribution functionHnorm, which has to be added to the remaining
region Mnorm, the residuals d are considered on this set. Determining Hnorm there may
be seen as an L∞ isotonic regression problem. Since we work in the setting of distribution
functions, a monotone function should be constructed, which �ts the residuals d(z) best
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in the sense of the L∞-norm. Unweighted isotonic regression problems under the L∞
norm can be e�ciently solved in linear time by a simple approach, which is referred to as
Basic by Stout [12]. This method is applied in line 11 of Algorithm 5. For each residual it
computes the maximum of all previous values and the minimum of all subsequent values
and determines the regression value as the average of these two quantities.

Note that a solution to the isotonic regression may be negative, but the distribution
function Hopt must be nonnegative. However, as we will prove in Lemma 5, setting all of
its negative values to 0 results in an optimal solution to the isotonic regression problem
constraint to nonnegativity. Since no correction is applied before znorm, Hnorm is set to
0 before znorm in line 12. Finally, F is updated and returned.

4 Analysis of the algorithms

In this section theoretical results for the algorithms of Section 3 are provided. Among
other things, we prove a monotonicity property allowing to apply the binary search tech-
nique to Problem 1 and demonstrate that the Shrink-Down and Push-Up step always lead
to upper bounds on sopt proving their correctness. While the �rst part of this section
deals with the correctness of our algorithm, the second one presents its runtime analysis.

4.1 Preliminaries

In the following paragraph we introduce the essential notations used repeatedly in our
proofs. The shrinkage factor of Ge, the correction function and the mixture candidate
after the k-th iteration of the main loop of Algorithm 1 (lines 5 to 11) are denoted by
sk, Hk and Fk = sk · Ge + Hk, respectively. In order to initialise them, we set s0 = 1,
H0 = 0 and F0 = Ge. Let sd,k denote the update of the shrinkage factor determined in
the Shrink-Down step in the k-th iteration. Whenever this update is not computed, we
set sd,k = 1. The update of the shrinkage factor determined in the Push-Up step of the
k-th iteration is called su,k and treated in the same way.

4.2 Correctness of the algorithm

Our �rst result, mainly proving the correctness of the binary search step, shows that the
property of lying within the con�dence band is monotone in s. In other words, for any
s > sopt a corresponding mixture violates a boundary of B, while for s ≤ sopt it is always
possible to �nd a mixture lying in B.

Lemma 1. ∃H ∈M∗ : s ·Ge + (1− s) · H ∈ B ⇔ s ∈ [0, sopt].

10



Proof. First we recall the de�nition of Problem 1 from page 3:

max
s∈[0,1]

: s

s.t. : ∃H ∈M∗ : ∀z ∈ Z :

L(z) ≤ s ·Ge(z) + (1− s) · H(z) ≤ U(z) (3)

whereM∗ denotes the set of all nondecreasing, nonnegative step functions varying on Z
only and converging to 0 for x→ −∞.

Now we introduce an alternative characterization of sopt by Problem A:

max
s∈[0,1]

: s

s.t. : ∀z ∈ Z : s ·Ge(z) ≤ U(z) (4a)

∀z′ < z′′ ∈ Z :

L(z′)− s ·Ge(z
′) ≤ U(z′′)− s ·Ge(z

′′) (4b)

Before we proceed to proving the proposition, we show the equivalence of Problem 1 and
Problem A. For this sake, choose an arbitrary s ∈ [0, 1] such that (3) holds. Then for
all z ∈ Z it follows that s · Ge(z) ≤ U(z) − (1 − s) · H(z) ≤ U(z) by nonnegativity of
(1−s) ·H, which proves that the inequality (4a) holds. Furthermore, choose z′ < z′′ from
Z arbitrarily. Then L(z′)−s ·Ge(z

′) ≤ (1−s) ·H(z′) ≤ (1−s) ·H(z′′) ≤ U(z′′)−s ·Ge(z
′′)

follows by monotonicity of H. Thus (4b) is also respected.

For the other direction let s ∈ [0, 1] respect constraints (4a) and (4b). From (4a) it is
clear that s ·Ge(z) never exceeds the upper boundary. From (4b) we know that correcting
any de�ciency to the lower boundary L is possible without violating the upper boundary
U on subsequent positions. Thus choosing (1− s) · H(z) =

max

{
0,max

z∗≤z
{L(z∗)− s ·Ge(z

∗)}
}

will result in a mixture within the con�dence band.

This means that (3) holds.

We now make use of the above equivalence of Problem 1 and Problem A to prove the
proposition:

∃H ∈M∗ : s ·Ge + (1− s) · H ∈ B ⇔ s ∈ [0, sopt].

If s ∈ (sopt, 1] the property s · Ge + (1− s) · H /∈ B immediately follows by de�nition of
sopt. So let s ∈ [0, sopt] be arbitrarily chosen and note that both constraints (4a) and (4b)
are respected for sopt. From this we can deduce that both conditions must also hold for
s since ∀z ∈ Z : s · Ge(z) ≤ sopt · Ge(z) ≤ U(z) and furthermore for all z′, z′′ ∈ Z with
z′ < z′′ it follows

L(z′)− s ·Ge(z
′) = L(z′)− sopt ·Ge(z

′)− (s− sopt) ·Ge(z
′)

≤ U(z′′)− sopt ·Ge(z
′′)−(s− sopt)︸ ︷︷ ︸

>0

·Ge(z
′)

≤ U(z′′)− sopt ·Ge(z
′′)− (s− sopt) ·Ge(z

′′)

= U(z′′)− s ·Ge(z
′′).
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Hence, L(z′)− s ·Ge(z
′) ≤ U(z′′)− s ·Ge(z

′′) holds.

Since, as argued before, constraints (4a) and (4b) are equivalent to constraint (3), there
exists an H for which the mixture s · Ge + (1 − s) · H lies in B, which completes the
proof.

In the next lemma, the correction function Hk computed in the k-th iteration of the main
loop for the shrinkage factor sk is considered. We prove that Hk is indeed the minimal
function inM∗ resolving violations of the lower boundary L. This result contributes to
the correctness of our construction of Hmin and is used in the following proofs.

Lemma 2. Hk is the minimal function H ∈M∗ satisfying sk ·Ge +H ≥ L.

Proof. Let Hk,min ∈M∗ be the minimal function with the property sk ·Ge+Hk,min ≥ L.
To prove the result we must thus show Hk = Hk,min. Now, the correction function Hk is
either computed in the binary search step or in the Push-Up step. In the �rst case, the
residuals between sk ·Ge and the lower boundary L are determined and then minimally
monotonised, cf. lines 2 and 3 of Algorithm 4. This monotonisation is performed by
considering the maximum of preceding values and is therefore minimal. Hence, this
procedure must yield Hk,min. In the remainder of this proof we thus treat the second
case, namely the computation of Hk in the Push-Up step.

Following the lines 6 to 9 in Algorithm 3, we denote the positive de�ciencies to L after
the shrinking in the Push-Up step of iteration k by dk = max(0, L − sd,k · su,k · Fk−1).
Setting F̃k = sd,k · su,k · Fk−1 + dk, the correction function Hk can be expressed as

Hk = mon
(
F̃k − sk ·Ge

)
. Thereby, mon(f) denotes the minimal monotone function

such that mon(f) ≥ f . This monotonisation is performed analogically to the one in
the binary search step by considering the maximum of preceding values. Note that the
monotonising operator is itself monotone, that is, mon(f1) ≤ mon(f2) holds if f1 ≤ f2.
We show the proposition by induction:

k = 1 : By assumption, H1 is computed in the Push-Up step, so s1 = sd,1 · su,1 holds. In
addition, F0 is de�ned by F0 = Ge. Hence, d1 = max(0, L−sd,1 ·su,1 ·F0) = max(0, L−s1 ·
Ge) ≤ H1,min must hold, since the last inequality holds by de�nition ofH1,min. Because of
F̃1 = s1 ·Ge+ d1 we obtain H1 = mon(F̃1− s1 ·Ge) = mon(d1) ≤ mon(H1,min) = H1,min,
where the inequality follows by the monotonicity of the monotonising operator. Thus
H1 ≤ H1,min is established. To prove the other inequality, note that H1 ∈ M∗ and
H1 = mon(d1) ≥ d1. Hence, H1,min ≤ H1 follows by the de�nition of H1,min. Altogether,
we get H1,min = H1.

k− 1⇒ k : The shrink updates sd,k and su,k are bounded by 1 by construction and thus
the inequality sk ≤ sd,k · su,k · sk−1 ≤ sk−1 holds. Hence, the shrinkage factor sk does not
increase in k and therefore the corresponding minimal correction function Hk,min does
not decrease in k. Thus, we get Hk,min ≥ Hk−1,min ≥ sd,k ·su,k ·Hk−1,min. The correctness
of the (k−1)-th step assumed by the induction principle yields Hk−1,min = Hk−1 resulting
in Hk,min ≥ sd,k ·su,k ·Hk−1. Rewriting sd,k ·su,k ·Fk−1 to sk ·Ge+sd,k ·su,k ·Hk−1 allows to
interpret dk as the minimal function which must be added to sk ·Ge + sd,k · su,k · Hk−1 so
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that the lower boundary L of the con�dence band is not violated any more. Together with
Hk,min ≥ sd,k ·su,k ·Hk−1 established above this implies sd,k ·su,k ·Hk−1+dk ≤ Hk,min. Since
in addition dk is by construction minimally chosen such that F̃k = sd,k ·su,k ·Fk−1+dk ≥ L
holds, we deduce

L− sk ·Ge ≤ F̃k − sk ·Ge = sd,k · su,k · Hk−1 + dk ≤ Hk,min.

Applying the monotonising operator and exploiting its monotonicity this implies

L− sk ·Ge ≤ mon (L− sk ·Ge)

≤ mon (sd,k · su,k · Hk−1 + dk)︸ ︷︷ ︸
=Hk

≤ mon (Hk,min)

= Hk,min, (5)

and therefore Hk ≤ Hk,min. To prove Hk ≥ Hk,min, note that Hk is a function in M∗.
The inequalities (5) imply L ≤ sk · Ge + Hk. So, by de�nition of Hk,min, Hk ≥ Hk,min

follows and thus overall Hk = Hk,min holds.

The next result shows that the Shrink-Down step always leads to overall shrinkage factors
not lower than sopt and therefore may be used as an improved upper bound for sopt in
the binary search procedure.

Lemma 3. If sk > sopt then sd,k+1 · sk ≥ sopt .

Proof. The proposition is trivial for sd,k+1 = 1 so in the following sd,k+1 < 1 is assumed.
This means that the (k+1)-th Shrink-Down step is not skipped but executed. So Fk must
lie above the upper boundary U for some values. Together with the de�nition of sd,k+1,
this ensures the existence of a zeq ∈ Z such that sd,k+1 · Fk(zeq) = U(zeq) holds. In the
following we consider the two possible cases for the correction function Hk = Fk−sk ·Ge:

Hk(zeq) = 0 : In this case, using the de�nition of zeq and Fk, we deduce

U(zeq) = sd,k+1 · Fk(zeq)
= sd,k+1 · (sk ·Ge(zeq) +Hk(zeq))

= sd,k+1 · sk ·Ge(zeq)

< Ge(zeq),

where the last inequality follows since 0 < sd,k+1 < 1, 0 < sk ≤ 1 and 0 < Ge(zeq). The
latter is satis�ed, because otherwise 0 = Ge(zeq) and Hk(zeq) = 0 immediately imply
0 = U(zeq), which is a contradiction to the positivity of U .

The calculations above show that the function Ge lies above the upper boundary U in zeq
before any shrinking. However, the �rst Shrink-Down step would solve this problem and
because of Hk(zeq) = 0 there cannot be a new violation of U in zeq in subsequent steps.
Hence, k = 0 and consequently sk = 1 must hold. The proposition sk · sd,k+1 = sd,1 ≥ sopt
holds in this case, since sd,1 is by construction the maximal shrinkage factor for avoiding
violations of U before adding any correction function.
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Hk(zeq) > 0 : Let H̃ ∈ M∗ be the minimal function one must add to sd,k+1 ·sk ·Ge in order
to correct violations of the lower boundary L. Due to sd,k+1 ≤ 1 we get sd,k+1 · sk ·Ge ≤
sk · Ge and thus H̃ ≥ Hk holds by minimality of Hk shown in Lemma 2. This allows to
prove

U(zeq) = sd,k+1 · Fk(zeq)
= sd,k+1 · (sk ·Ge(zeq) +Hk(zeq))

< sd,k+1 · sk ·Ge(zeq) +Hk(zeq)

≤ sd,k+1 · sk ·Ge(zeq) + H̃(zeq) .

Thus, sd,k+1 · sk · Ge + H̃ violates the upper boundary of the con�dence band and thus
does not lie in B. By minimality of H̃ Lemma 1 yields sd,k+1 · sk > sopt, which completes
the proof.

The following proposition concerns the additional shrinkage performed in the Push-Up
step. Similarly to Lemma 3 it states that a Push-Up step cannot lead to factors below
sopt and therefore the correctness of using the overall shrinkage factor to improve the
upper bound on sopt.

Lemma 4. If sd,k+1 · sk > sopt then su,k+1 · sd,k+1 · sk ≥ sopt.

Proof. The statement is immediately given for su,k+1 = 1. It is also clear in case of k = 0
by construction of the shrink update su,1 . So in the following let su,k+1 < 1 and k ≥ 1
hold. We prove the proposition by contradiction so assume

sd,k+1 · sk > sopt > sd,k+1 · su,k+1 · sk . (6)

Consider the preceding candidate Fk. Fk /∈ B must hold, because otherwise the algorithm
would have stopped after k steps. Furthermore Fk ≥ L is guaranteed by construction of
the Push-Up and binary search steps. Therefore Fk must violate the upper boundary U
in the assumed case k ≥ 1. Thus, a Shrink-Down step was executed before the current
Push-Up step. Hence, the point

zeq = min
z∈Z
{z|sd,k+1 · Fk(z) = U(z)}

is well de�ned, as pointed out in the description of the Push-Up step. The assumption
su,k+1 < 1 implies that a Push-Up step is carried out and ∃z ∈ Z : z < zeq. By de�nition
of zeq, each z < zeq satis�es sd,k+1 · Fk(z) < U(z) ≤ U(zeq) and hence we deduce that

∀z < zeq : sd,k+1 · Fk(z)− U(zeq) < 0. (7)

Now consider the point

z′ = max

{
argmax
z<zeq

(L(z)− sd,k+1 · su,k+1 · Fk(z))
}
.

By the de�nition of

su,k+1 = max
s∈[0,1]

{s|∀z < zeq : L(z)− s · sd,k+1 · Fk(z) ≤ U(zeq) · (1− s)}

14



it follows that

L(z′)− su,k+1 · sd,k+1 · Fk(z′) = U(zeq) · (1− su,k+1). (8)

Also consider z′′ = min

{
argmax
z≤zeq

Hk(z)

}
. Using the minimal property of Hk proved in

Lemma 2, for k ≥ 1 one can deduce Fk(z′′) = L(z′′), which implies z′′ < zeq. For all
z ≤ z′′ we obtain

L(z)− su,k+1 · sd,k+1 · Fk(z) ≤ Fk(z)− su,k+1 · sd,k+1 · Fk(z)
= (1− su,k+1 · sd,k+1) · Fk(z)
≤ (1− su,k+1 · sd,k+1) · Fk(z′′)
= Fk(z′′)− su,k+1 · sd,k+1 · Fk(z′′)
= L(z′′)− su,k+1 · sd,k+1 · Fk(z′′),

where the �rst inequality holds because of Fk ≥ L by construction of Fk. Combining
this result with the already mentioned fact that z′′ < zeq holds, we get z

′ ≥ z′′. Together
with the monotonicity of Hk and the de�nition of z′′ we deduce

Hk(z
′) = Hk(z

′′) = Hk(zeq). (9)

We now combine (6), (7), (8) and (9) to prove the proposition. By Lemma 3 and sopt >
s∗ > 0 shown on page 3 the inequality sd,k+1 · sk > 0 holds. Thus, we can de�ne
su2 =

sopt
sd,k+1·sk

and inequality (6) implies

1 ≥ su2 > su,k+1, (10)

which allows us to show

L(z′)− su2 · sd,k+1 · Fk(z′)
= L(z′)− su,k+1 · sd,k+1 · Fk(z′) + su,k+1 · sd,k+1 · Fk(z′)− su2 · sd,k+1 · Fk(z′)
(8)
= U(zeq) · (1− su,k+1) + su,k+1 · sd,k+1 · Fk(z′)− su2 · sd,k+1 · Fk(z′)
= U(zeq)− su2 · sd,k+1 · Fk(z′) + su,k+1 · (sd,k+1 · Fk(z′)− U(zeq))︸ ︷︷ ︸

< 0 by (7)

(10)
> U(zeq)− su2 · sd,k+1 · Fk(z′) + su2 · (sd,k+1 · Fk(z′)− U(zeq))
= U(zeq) · (1− su2).

So all in all we obtain

U(zeq) · (1− su2) < L(z′)− su2 · sd,k+1 · Fk(z′). (11)
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Hence we get

U(zeq) = U(zeq) + su2 · (sd,k+1 · Fk(zeq)− U(zeq))︸ ︷︷ ︸
= 0 by de�nition of zeq

= U(zeq) · (1− su2) + su2 · sd,k+1 · Fk(zeq)
(11)
< L(z′)− su2 · sd,k+1 · Fk(z′) + su2 · sd,k+1 · Fk(zeq)
= L(z′)− su2 · sd,k+1 · (sk ·Ge(z

′) +Hk(z
′))

+su2 · sd,k+1 · Fk(zeq)
= L(z′)− su2 · sd,k+1 · sk︸ ︷︷ ︸

= sopt

·Ge(z
′) + su2 · sd,k+1 · (Fk(zeq)−Hk(z

′))

≤ Hopt(z
′) + su2 · sd,k+1 · (sk ·Ge(zeq) +Hk(zeq)−Hk(z

′)︸ ︷︷ ︸
= 0 by (9)

)

≤ Hopt(zeq) + sopt ·Ge(zeq)

where we also used sopt ·Ge+Hopt ≥ L, which holds by de�nition of Hopt. Thus, the upper
boundary U is violated for sopt, which contradicts its de�nition, so that the proposition
follows.

The next result justi�es the way we correct a solution to the unconstrained isotonic re-
gression problem in line 8 of Algorithm 5. To be more precise, we show that setting its
negative values to zero leads to the same L∞-norm as in the constrained problem and
therefore yields an optimal solution to the latter. Keep in mind that the unconstrained
isotonic regression problem is solved by the Basic approach [12], which computes the
maximum of all previous values and the minimum of all subsequent values for each ob-
servation and determines the regression value as the average of these two quantities.

Lemma 5. Let x ∈ Rd be arbitrary. Denote by xL the optimal solution of the L∞
isotonic regression of x computed by the Basic approach [12] and de�ne the new vector
xL0 = max(xL, 0) by component wise comparison to 0. Let xLc be an optimal solution of
the L∞ isotonic regression of x with the constraint of nonnegativity. Then xL0 is also an
optimal solution to the constraint problem, i.e. L∞(x, xLc) = L∞(x, xL0) holds.

Proof. We show the statement considering the cases min(x) ≥ 0 and min(x) < 0 con-
secutively. At �rst, assume that min(x) ≥ 0 holds. Then, by construction of xL,
we can deduce xL ≥ 0. Thus, xL0 is equal to xL and, as a nonnegative vector, sat-
is�es L∞(x, xLc) ≤ L∞(x, xL0). Since introducing constraints to a problem cannot
lead to a better value of the objective function in the optimum, it must hold that
L∞(x, xLc) ≥ L∞(x, xL) = L∞(x, xL0). Together this yields the result restricted to the
case min(x) ≥ 0.

We now consider the case min(x) < 0. Since the negative values of xL set to zero
in xL0 result in a maximal deviation of −min(x) to x, we can write L∞(x, xL0) =
max(L∞(x, xL),−min(x)). In addition, min(x) < 0 and xLc ≥ 0 imply L∞(x, xLc) ≥
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−min(x), so that we deduce

L∞(x, xL0) = max(L∞(x, xL),−min(x))

≤ max(L∞(x, xL), L∞(x, xLc))

= L∞(x, xLc),

where the last step follows, because a constraint problem cannot lead to a solution with
a better value of the objective function compared to the corresponding unconstrained
problem. Thus, L∞(x, xL0) ≤ L∞(x, xLc) holds. The converse inequality L∞(x, xL0) ≥
L∞(x, xLc) follows from the de�nition of xLc, since xL0 ≥ 0. Both together yield the
result restricted to the case min(x) < 0, which completes the proof.

Using the above results we prove the correctness of our algorithm in the following theorem.

Theorem 6. Algorithm 1 returns sopt and a corresponding solution Hopt both optimal in
the sense of Problems 1 and 2, respectively.

Proof. Lemma 1 shows that for s > sopt no mixture can lie within the con�dence band
B while for s ≤ sopt there always exists a mixture lying in B. By the monotonicity
of this property the binary search step converges to sopt. Lemmas 3 and 4 allow to
update the upper bound of the binary search by the values of the shrinkage factor after
each Shrink-Down and Push-Up step. Hence, these steps further reduce the range of
possible candidates for sopt while never excluding sopt and therefore the correct sopt is still
determined. Lemma 2 implies, that the correcting function Hk after termination of the
main loop of Algorithm 1 is the function Hmin introduced on page 4, which is required
for solving Problem 2. Having found the set Mnorm in the lines 5 to 10 of Algorithm
5, we use Lemma 5 to see that the corrected solution to the unconstrained L∞ isotonic
regression problem is an optimal solution to the constrained problem. Thus, it is a valid
solution Hopt, which completes the proof.

4.3 Runtime analysis

For the runtime analysis we introduce a precision parameter ε. Note that ε never appears
in our pseudo code or actual implementation. Instead, think of it as the machine preci-
sion, which might depend on the physical architecture, operating system or programming
environment. Note that the main loop of Algorithm 1 in lines 5 to 11 runs until the mix-
ture F is in the con�dence band up to an additive deviation of ε. In other words, the
loop stops when ∀z ∈ Z the property L(z)− ε ≤ F(z) ≤ U(z)+ ε holds. In the following
theorem we prove that this condition is met after a constant number of iterations yielding
an overall runtime linear in the input size and logarithmic in 1

ε
.

Theorem 7. Let ε ∈ (0, 1) be a �xed machine precision parameter. On an input of
n = n1 + n2 observations, Algorithm 1 runs in time O

(
n · log2

(
1
ε

))
.

Proof. First note that the Shrink-Down, the Push-Up, the binary search step and the
normalisation step can be implemented in linear, i.e. O(n) time. Particularly, the so-
lution to the isotonic regression subproblem (line 8 in Algorithm 5) can be computed

17



in linear time as noted by Stout [12]. Therefore, it remains to bound the number of
iterations of the loop in lines 5 to 11 of the main algorithm. The search interval for
s is initialized to [s∗, 1] ⊂ [0, 1] and halved at the end of every iteration where the bi-
nary search step is performed. The Shrink-Down and Push-Up steps can only further
decrease the upper bound and consequently the size of the search interval. Therefore,

after dlog2
(
2
ε

)
e iterations the size of the interval decreases to at most 2−dlog2(

2
ε)e < ε

2
. So,

after dlog2
(
2
ε

)
e iterations every value between the upper and lower boundary lies within

additive precision ε
2
to sopt. Consider an s ∈ [sopt − ε

2
, sopt +

ε
2
] and let Hs ∈ M∗ be the

minimal function such that s · Ge + (1 − s) · Hs ≥ L holds. Using s ≥ sopt − ε
2
we see

that s · Ge ≥
(
sopt − ε

2

)
· Ge = sopt · Ge − ε

2
· Ge ≥ sopt · Ge − ε

2
holds. The property

s ·Ge ≥ sopt ·Ge − ε
2
implies (1− s) · Hs ≤ (1− sopt) · Hopt +

ε
2
and we deduce

s ·Ge + (1− s) · Hs

≤
(
sopt +

ε

2

)
·Ge + (1− sopt) · Hopt +

ε

2
≤ sopt ·Ge + (1− sopt) · Hopt + ε

≤ U + ε,

because sopt ·Ge+(1− sopt) ·Hopt ≤ U holds by de�nition of sopt and Hopt. An analogous
argument shows s·Ge+(1−s)·Hs ≥ L−ε. Thus, the stopping criterion L−ε ≤ F ≤ U+ε
is met after dlog2

(
2
ε

)
e iterations and the result follows.

5 Application

In this section we evaluate the algorithm by applying it to simulated and real data sets.
We compare the runtime of our algorithm to alternative procedures on arti�cial data,
investigate its capability to estimate the disagreement of the distributions in a �nite
Gaussian mixture case and examine its performance in case of false rejections of the
null hypothesis. Furthermore, the algorithm is illustrated on spectrometry data from a
biological domain.

5.1 Experimental setup

For our empirical evaluation we implemented all algorithms using the statistical software
R [10], version 2.15.1-gcc4.3.5. The R-package BatchExperiments by Bischl et al. [1] was
used to run the experiments in a batch and to distribute the computations to the cores
of our computer. The computations were conducted on a 3.00GHz Intel Xeon E5450
machine with 15GB of available RAM running a SuSE EL 11 SP0 Linux distribution.
Our datasets consist of equally sized sample pairs generated for several sample sizes.
Due to its central role in statistics we focus on the Gaussian distribution and consider
the popular setting of a �nite Gaussian mixture. Therefore, in each of these cases,
one dataset is sampled from a standard Gaussian distribution. The other sample also
consists of observations sampled from the standard Gaussian distribution to a fraction
of s. The remaining observations stem from a second Gaussian distribution with mean

18



µ and standard deviation σ. To cover a broad range of situations, the parameters s,
µ and σ are varied for each sample pair. More precisely, s is drawn from the uniform
distribution on the interval [0.6, 0.8], µ is generated by the normal distribution with mean
2 and standard deviation 1 and σ is drawn from the gamma distribution with shape and
scale parameter both equal to 1. Thus, the expectations of s, µ and σ are 0.7, 2 and
1, respectively. Our demixing algorithms are supposed to notice that the samples do
not share the same underlying distribution and recommend to add observations from a
distribution with a mean near µ and a standard deviation near σ in a proportion of about
(1-s) to the sample drawn from the standard Gaussian distribution. All statistical tests
conducted in this simulation experiment as well as in the remainder of this section are
carried out at a signi�cance level of α = 0.05.

Before we present the results of the simulation, the setting is illustrated for n1 = n2 =
10 000 in Figure 1. In the upper row, kernel density estimations of the provided samples
are presented. Demixing the samples using Algorithm 1 leads to the shrinkage factor
sopt = 0.640, which is a good approximation of the true mixture proportion s = 0.623.
Inverse transform sampling [3] allows us to generate a third sample with 10 000 observa-
tions from the correction distribution characterised by Hopt. Its empirical mean 3.36 and
standard deviation 0.676 are also close to the sampled µ = 3.312 and σ = 0.747. The
corresponding kernel density estimation shown on the right in the lower row is almost
symmetrical and unimodal. Hence, the correction distribution represents the deviation
between the underlying distributions of the �rst and the second sample quite well. The
�nal mixture distribution proposed by Algorithm 1, which is the sum of the weighted dis-
tribution of the second sample and the weighted correction, is given by the corresponding
estimated density in the lower right corner. The curve resembles the one of the �rst
sample as desired.

5.2 Runtime and performance evaluation

In order to assess the runtime of Algorithm 1 we compare its performance with two alter-
native approaches. The �rst alternative algorithm, called binary search procedure in the
following, determines the optimal shrinkage factor sopt relying only on the binary search.
In contrast to Algorithm 1, the Shrink-Down and Push-Up steps are not conducted.
Comparing this modi�ed version to our algorithm makes it thus possible to evaluate the
impact of the Shrink-Down and Push-Up step. Keep in mind that both steps are in
principle not necessary to obtain a correct solution to Problem 1 and 2 but are supposed
to accelerate the computation.

The second new algorithm applied is an intuitive and simple brute force approach based
on the equivalence of Problem 1 and Problem A presented in Lemma 1. It initially sets
s = 1 and checks constraints (4a) and (4b) of Problem A one by one. Whenever a
violation is detected it updates s to the maximal value which ensures feasibility. Thus,
a decreasing sequence of candidate values is generated, which eventually reaches sopt.
The computation time of this approach grows quadratically in the sample sizes, because
all pairs z′, z′′ ∈ Z with z′ < z′′ must be considered in order to identify the maximal
shrinkage factor for constraint (4b). Keep in mind that all three algorithms lead to the
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Figure 1: Kernel density estimations for two samples, the computed mixture and the
correction distribution in the experimental setup.

same results but di�er in the way they determine the shrinkage factor sopt, which has a
great impact on their computation time.

The average runtimes over 50 repetitions of the simulations described above are presented
in Table 1 in seconds. We consider sample sizes n1 = n2 ∈ {2 000,
4 000, 6 000, 8 000, 10 000}.

2 000 4 000 6 000 8 000 10 000

Alg1 0.089 0.179 0.291 0.389 0.523
BS 0.552 1.114 1.721 2.292 2.851
BF 67.027 268.280 603.327 1074.198 1674.667

Table 1: Average runtimes for Algorithm 1 (Alg1), the binary search procedure (BS) and
the intuitive brute force method (BF) for di�erent sample sizes.

The brute force procedure is much slower than the other methods and the di�erence
grows dramatically for larger samples due to its quadratic computation time, as opposed
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to the other, linear algorithms.

Although Algorithm 1 performs better than its reduced version in terms of runtime, the
computation times of these two methods are quite small and hence may be a�ected by
background activities of the operating system and other processes running on the execut-
ing computer. To minimise this noise, we discard the brute force method and apply the
remaining two approaches for higher sample sizes using the same simulation procedure as
before. We now consider n1 = n2 ∈ {25 000, 50 000, 75 000, 100 000, 125 000, 150 000}
and present the average runtimes in Figure 2.
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Figure 2: Average runtimes of Algorithm 1 (red) and the binary search procedure (black)
for di�erent sample sizes in seconds.

The runtime for both algorithms grows linear in the sample size and is by a factor of
approximately 4.6 smaller for Algorithm 1 than for the binary search procedure. This
demonstrates that the Shrink-Down and Push-Up steps lead to large savings in compu-
tation time and are therefore very valuable for large data sets.

In order to further evaluate the performance of the demixing procedure, we proceed
as in the example above: for each sample pair in the above simulation we consider
the shrinkage factor sopt determined by Algorithm 1 as well as the empirical mean and
standard deviation of a third sample of size 1 000 generated using the inverse transform
sampling procedure [3] from the information contained in Hopt. Averaging over the 50
repetitions for each sample size leads to the results presented in Table 2. Keep in mind
that these are independent of the applied algorithm.

The results suggest that demixing leads to an overestimation of the expected mixing pro-
portion 0.7, which decreases quite slowly as the sample size grows. This is not surprising,
since by de�nition sopt is the maximal shrinkage factor such that the corresponding mix-
ture lies in the con�dence band. Therefore, as the sample size grows, the radius of the
con�dence band becomes smaller and hence sopt converges towards s. The estimated
mean and standard deviation behave similarly by slowly approaching 2, the expected
value of µ, and 1, the expected value of σ. Thus, the correction distributions proposed
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25 000 50 000 75 000 100 000 125 000 150 000

sopt 0.744 0.738 0.735 0.733 0.732 0.730
Mean 2.177 2.154 2.135 2.118 2.117 2.101
SD 0.879 0.894 0.907 0.910 0.907 0.920

Table 2: Determined shrinkage factors sopt and estimations of the mean and the stan-
dard deviation of the correction distribution for di�erent sample sizes averaged over 50
repetitions.

by the methods re�ect the discrepancies between the sample pairs quite well for large
sample sizes.

5.3 Estimated shrinkage factors under the null hypothesis

The null hypothesis H0 states that the analysed samples stem from the same distri-
bution. In this situation, the Kolmogorov-Smirnov test rejects the null hypothesis by
mistake in about an α-fraction of the cases, where α is the prede�ned signi�cance level.
In these cases, a reasonable procedure comparing the samples in the mixture frame-
work should recognise their similarity. Thus, a shrinkage factor near 1 is desirable af-
ter a false rejection of the null hypothesis. To check the performance of our method
under H0, equally sized dataset pairs are generated for the sample sizes n1 = n2 ∈
{ 50, 100, 500, 1 000, 5 000, 10 000}. All samples stem from the standard Gaussian
distribution. Other distributions like the exponential and the t-distribution were also
considered and led to comparable results. For each sample size, dataset pairs are simu-
lated until the Kolmogorov-Smirnov test rejects in 1000 cases. These 1000 dataset pairs
are passed to Algorithm 1, which determines corresponding shrinkage factors. All of them
are less than 1 by construction. The results are presented via boxplots in Figure 3.

Even for small sample sizes the majority of shrinkage values are greater than 0.9. In-
creasing the sample size further reduces the amount of small shrinkage values. Thus, our
method performs as desired: If no modi�cations are actually necessary, the algorithm
proposes to perform none or only small modi�cations to the current samples.

5.4 Application to real data

Algorithm 1 is used to evaluate data from a bioinformatics application. The real data
consists of so called ion mobility spectrometry (IMS) measurements which are used to
detect volatile organic compounds in the air or in exhaled breath. Motivated by the
need to process such measurements in real-time as they arrive one-by-one, it is a usual
approach to �nd and annotate major peaks in the data. In this way the original in-
formation is summarised in a compressed representation. In an e�ort to automate and
speed-up the computations, D'Addario et al. [2] propose to approximate the measure-
ments by �nite mixtures of translated probability density functions, whose parameters
are estimated using a variant of the EM algorithm. The computations are performed on
a set of measurements leading to a two dimensional problem, where both dimensions are
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Figure 3: Shrinkage factors determined by Algorithm 1 for varying sample sizes after a
false rejection of the null hypothesis H0 : P = Q, where P is the standard Gaussian
distribution.

modelled independently by mixtures of inverse Gaussian densities.
Focussing on one of the dimensions and conditioning on the other, we obtain 6000 spec-
trograms consisting of 12500 data points each, stemming from 10 minutes of IMS mea-
surement [cf. 8]. In this data, we identify 187 groups of spectrograms belonging to the
same peak models, respectively. In order to evaluate the models, we apply our algorithm
at a signi�cance level of �ve percent to samples of size 1000 generated from each spec-
trogram and the corresponding mixture model. Both of these are regarded as probability
density functions up to some normalising constants.

In general our method suggests that the models �t the spectrograms quite well, since in
152 of the 187 groups the mean shrinkage factor of the spectrograms is above 0.8. In
addition, we identify some interesting groups of spectrograms. The shrinkage factors of
two of these are shown in Figure 4. Keep in mind that the spectrogram index represents
the second dimension of the data we condition on. In both groups the model consists of
a single inverse Gaussian density.

The results for group A suggest that the �rst half of the measurements are modelled
quite well, but for increasing spectrogram indices the approximation is getting worse
and worse. This shows that the model in the second dimension is not appropriate. If
it consists of a single inverse Gaussian density, two components would probably lead
to better approximations, since they allow to model both halves of the spectrograms
with a density function, respectively. In contrast to that, the shrinkage factors for group
B indicate a su�cient number of components used in the second dimension. However,
the �tted density mixture seems too wide. The approximation could be substantially
improved by excluding the spectrograms on the left and on the right from this group and
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Figure 4: Shrinkage factors of two groups of spectrograms determined by Algorithm 1.

treating them by further models.

We also illustrate the method using a single spectrogram from the data set. The upper
row of Figure 5 provides a kernel density estimation for the measurement 1157 and its
model. Since all four plots are given on the same scale, the two peaks in the model
are more narrow and di�er much more in height than the ones in the original data. In
addition, the peak on the left is missing. Although it looks small in this scale, it appears
noteworthy when compared to the other two or examined on a larger scale. In the second
row on the right a kernel estimation for the correction distribution characterised by Hopt

is presented. It is based on 1000 observations generated by inverse transform sampling
[3]. As expected, the correction distribution puts mass on the very right peak in order to
�x the height proportions between the peaks on the right. In addition it generates the
left peak missing in the model. The plot in the lower left corner shows the estimations of
the modelled and the correction distribution weighted by the determined shrinkage value
0.76 and the remaining mass 0.24, respectively, as well as the kernel estimation for the
�nal mixture, which is the sum of the weighted estimations. The proposed mixture is
still a somewhat narrow, but the proportions of the peak heights as well a the small peak
are better represented compared to the original model.

6 Conclusion

This technical report deals with the nonparametric two sample homogeneity problem. A
widely-used tool to test the equality of the distributions corresponding to the two samples
is the Kolmogorov-Smirnov test. We develop an algorithm which, in case of a rejection
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Figure 5: Kernel density estimations for a spectrogram based on the measurements, the
corresponding inverse Gaussian model, the determined mixture of the model and the
correction distribution are presented on the same scale.

by this test, determines how one of the samples should be modi�ed to resemble the other.
More precisely, an appropriate mixing proportion as well as an empirical distribution
function are identi�ed. Mixing the determined proportion of data generated by the
corresponding correction distribution with the sample to modify, leads to a distribution
which �ts the other sample well in the sense of the Kolmogorov-Smirnov test. The method
is especially of interest in applications, where the aim is to design a simulation to model
an observed data generating process. In such a case, the information provided in the
determined correction distribution may be used to improve the simulation.

The algorithm proceeds in an iterative manner applying several correction steps linked
with a modi�ed binary search technique. The constructed distribution function is shown
to be optimal in a reasonable sense and the runtime of the algorithm is proved to be of
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linear order. In our experience it converges in three iterations in the majority of all cases
independent of the sample sizes. The algorithm proposes none or only slight corrections
in cases where both datasets stem from the same distributions. The Shrink-Down and
Push-Up steps applied in addition to the standard binary search algorithm lead to large
savings in computation time. The correction distributions proposed in simulations as well
as for a real data example are intuitive and adequate. Since the procedure is completely
nonparametric, it is widely applicable and in particular not only useful in the setting of
Gaussian mixtures considered in the simulations.

There are several possibilities to extend the presented ideas in future work. On the
one hand, instead of focussing on distribution functions, a density based approach to
the demixing problem could also be of interest, since working with densities is often
even more intuitive than using distribution functions and there exists a broad literature
on mixture models dealing with density estimation. On the other hand, one could use
alternative test procedures for distribution functions besides the Kolmogorov-Smirnov
test to construct the con�dence bands. Although the Kolmogorov-Smirnov test is quite
popular, related tests like the Anderson-Darling and the Cramér von Mises test detect
di�erences between two distributions more often in certain settings [cf. 11] and could thus
lead to better demixing results. In this work we focused on the Kolmogorov-Smirnov test
since the simple shape of the corresponding con�dence band allows for �nding an e�cient
algorithm solving the demixing problem. The extension to analytically more sophisticated
distance measures where our proofs do not carry over in a straightforward manner is a
challenging as well as promising open problem for future work.
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