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Abstract The classification of business cycles is currently performed using ei-
ther macro-economic equations or linear discriminant analysis. It is a hard and
important problem to classify in which economic phase we are in. Government
as well as business decisions rely on the assessment of the current business cycle.
In this paper, we investigate how economists can be better supported by a com-
bination of machine learning techniques. We have successfully applied Inductive
Logic Programming (ILP). The application of ILP requires pre-processing in or-
der to establish time and value intervals. To this end, top-down induction of
decision trees is used. The rule sets learned from different experiments were
analysed with respect to correlations in order to find a concept drift or shift.

1 Introduction

The ups and downs of business activities have been observed since a long time
1. Tt is, however, hard to capture the phenomenon by a clear definition. The
National Bureau of Economic Research (NBER) defines business cycles as “re-
current sequences of altering phases of expansion and contraction in the levels
of a large number of economic and financial time series.” This definition points
at the multi-variate nature of business cycles. It does not specify many of the
modeling decisions to be made. There is still room for a variety of concepts.

e What are the indices that form a phase of the cycle? Production, em-
ployment, sales, personal income, and transfer payments are valuable in-
dicators for cyclic economic behavior. Are there others that should be
included?

e What is the appropriate number of phases in a cycle? The number of
phases in a cycle varies in economic models from two to nine. The NBER
model indicates two alternating phases. The transition from one phase
to the next is given by the turning points trough and peak. In the RWI
model, a cycle consists of a lower turning point, an upswing, an upper
turning point, and a downswing. Here, the turning points are phases that
cover several months.

e Are all cycles following the same underlying rules or has there been a drift
of the rules?

! Amstad reports the first definition from Clement Juglar in 1860 [3]. She investigates
several models of the business cycle and discusses their distinctions with respect to dating
turning points of the business cycle.



All modeling decisions are to be (comparatively) validated with respect
to economic theory and to business data. One approach to validation is the
formalization by macro-economic equations. A model of business activities is
calculated ez post and the deviation of the results of the equations from the
observed values assesses the model. For instance, the business cycle model
of the Rheinisch-Westfilisches Institut fiir Wirtschaftsforschung (RWI) only
deviated 1.2 per cent for the spring 2000 state of affairs in Germany [5]. The
main focus here lies on the prediction of level or growth of business activities.
We do not contribute to this approach.

The other approach is an empirical one, in which statistical methods are
adjusted to business data and used for prognoses. Again, the statistical mod-
els are validated on past data. We are concerned with the development and
comparison of methods for the empirical modeling of business cycles. Empiri-
cal methods are particularly demanded for the task of dating turning points or
phases of the business cycle. This task is less clearly defined than the task of
predicting business activities, because business cycles themselves are basically
a theoretical model to explain the variation in business data. In this paper, we
tackle the dating problem:

Dating: Given current (and past) business measurements, in which phase is
the economy currently? In other words, the current measurements are to
be classified into the phases of a business cycle.

Linear discriminant analysis has been proposed as the baseline of empirical
models 2. Univariate rules were learned that used threshold values for separat-
ing phases. The accuracy of the 18 learned rules was 54% in cross validation.
Using this result as the baseline means that the success of any other method
has to be shown in comparison to this accuracy. It has been investigated how
the classification can be enhanced by the use of monthly data [7]. More so-
phisticated statistical models have been developed and achieved 63% accuracy
[11]. However, even this substantial enhancement still reflects how hard it is to
classify business phases correctly.

In this paper, we investigate the applicability of inductive logic programming
to the problem of dating phases of a business cycle. We were given quarterly
data for 13 indicators concerning the German business cycle from 1955 to 1994,
where each quarter had been classified as being a member of one of four phases
[6]. The indicators are:

2Claus Weihs at a workshop on business cycles at the “Rheinisch-Westfilisches Institut fiir
Wirtschaftsforschung” in January 2002



IE real investment in equipment (growth rate)

C real private consumption (growth rate)

Y real gross national product (growth rate)

PC consumer price index (growth rate)

PYD real gross national product deflator (growth rate)
IC real investment in construction (growth rate)

LC unit labour cost (growth rate)

L wage and salary earners (growth rate)

Monl money supply M1
RLD real long term interest rate

RS nominal short term interest rate
GD government deficit
X net exports

We experimented with different discretizations of the indicator values (see
Section 2.1). The discretization into ranges (levels) of values was also used in
order to form time intervals. A sequence of measurements within the same
range is summarized into a time interval. Relations between the different time
intervals express precedence or domination of one indicator’s level to another
ones level. We also compared the two phase with the four phase business cycle.
In summary, the following three models were inspected:

e business cycle with four phases, without time intervals, (Section 2.2)
e business cycle with four phases, time intervals, (Section 2.3).
e business cycle with two phases, without time intervals (Section 2.4).

Particular attention was directed towards the appropriate sample size for the
dating problem. The homogeneity of the data set of business cycles with two
phases was investigated (Section 2.5).

2 Experiments on German Business Cycle Data

Our leading question was whether ILP can support economists in developing
models for dating phases of the business cycle. Given the quarterly data for
13 indicators concerning the German business cycles from 1955 to 1994 where
each quarter is classified as member of one of four phases, we used all but one
cycle for learning rules and tested the rules on the left-out cycle. The leave-one-
cycle-out test assesses the accuracy (how many of the predicted classifications of
quarters corresponded to the given classification) and the coverage (how many
of the quarters received a classification by the learned rules).
For ILP learning, we applied RDT [8] with the following rule schemata:

m1l (Indexl, Value, Phase):
Index1(T,V),Value(V) — Phase(T)

m?2 (Index1,Value,Index2, Phase):
Index1(T,V),Value(V), Index2(T,V) — Phase(T)



m3 (Indexl, Valuel,Index2,Value2,Phase):
Index1(T,V1),Valuel(V1), Index2(T,V2),Value2(V2),opposite(V1,V2) —
Phase(T)

The predicates that fit to instantiate the predicate variable Index are the 13
indicators of the economy (see above). The predicates that fit to instantiate
express the discretization of the real values of the indicators. The phase variable
can be instantiated by down, lip, up, utp for four phases or by down, up for two
phases of the business cycle.

2.1 Discretization

Before ILP can be applied, the originally real-valued time series of indicator
values have to be transferred into discrete-valued temporal facts about this in-
dicators. The goal of discretization is to provide the learning algorithm with
data from which it can generalize maximally. This means, the discretization
must be general enough such that rules learned from one situation can be trans-
ferred to another situation but specific enough such that non-trivial rules can
be found. An example for a too specific discretization is to assign different
values to every observation, an example for a too general discretization is to
assign the same value to every observation. We use the number of generated
facts to judge the quality of a discretization.
Actually, the task of discretization consists of two different subtasks:

Discretization of Values: split the continuous range of possible values into
finitely many discrete values, e.g. by using equidistant thresholds or cal-
culating suitable quantiles. For example, a gross national product of 4.93
in the fifth quarter could be expressed as the fact y(5, high).

Interval segmentation: for a given time series, find a segmentation of the
time points into maximal sub-intervals, such that the values of the series in
this interval share a common pattern, e.g. by approximating the time se-
ries by piecewise constant or piecewise linear functions. For example, the
time series of gross national products Y = (10.53,10.10,9.21,5.17,4.93)
could be described as the temporal facts y(1,3, high),y(4, 5, medium),
but can also be described as y(1, 5, decreasing).

Interval segmentation can be viewed as discretization of the temporal values,
therefore in this chapter we will use the name discretization as a generic term
for both discretization of values and interval segmentation.

The two subtasks are closely intertwined: Discretized data can be very
easily segmented by joining consecutive time points with identical discretization.
Also, segmented data can be discretized by building a discretization based on
the patterns that lead to the segmentation. In this work, we chose the first
approach to discretize the data, first because it is simpler and secondly because
the indicators are already given free of trends (growth rates etc.), so it can
assumed the relevant information lies in the value of the indicator alone.

To improve the quality of the discretization, we can also use the information
that is given by the class of the examples [13]. In this case, we used C4.5 [9],
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Figure 1: Decision tree and its induced discretization into vall ... val4.

Cycle Accuracy | Coverage | No.of learned rules

LOO1 0.125 0.25 13 upswing

LOO2 0.5 1.0 12 upswing

LOO3 0.462 0.462 10 upswing, 2 downswing
LOO4 0.375 1.0 11 upswing

LOO5 0.696 0.696 10 uspwsing, 1 downswing
LOO6 1.0 0.36 1 upswing

Average | 0.526 0.628 total: 60

Figure 2: Results in the four phase model using time points

a decision tree learner, to induce decision trees about the cycle phase based
on only one indicator. The resulting trees were cut off at a given level and
the decisions in this resulting tree were used as discretization thresholds (see
Figure 1). Decision trees of depth 2, i.e. using 4 discrete values, proved to build
a suitable number of facts.

A closer look at the resulting discretization showed that in certain cases,
the indicators had a very high variation, which leads to many intervals that
contained only one time point. In this case, the relevant observation may not be
the value of the indicator, but the fact that this indicator was highly variating,
i.e. that no definite value can be assigned to it. This can be expressed by a new
fact indicator(T1,T2,unsteady), which replaces the facts indicator(T1,T1 +
1,valuey),indicator(T1 + 1,T1 + 2, values), ... ,indicator(T2 — 1, T2, value,,).

2.2 Modeling Four Phases Without Time Intervals

The data correspond to six complete business cycles, made of four phases each.
For the upper and lower turning point phases, no rule could be learned. Only
for the upswing, each learning run delivered rules. For the downswing, only
two learning runs, namely leaving out cycle 3 and leaving out cycle 5, delivered
rules. Misclassifications at the turning points are strikingly more frequent than
in other phases. Figure 2 shows the results.

The results miss even the baseline of 54% in the average. Leaving out the
fifth cycle (from 1974 until 1982) delivers the best result where both, accuracy
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Figure 3: The temporal relations contains and overlaps

and coverage, happen to approach 70%. This might be due to its length (32
quarters), since also in the other experiment dealing with four phases the pre-
diction of upper turning point and upswing is best, when leaving out the fifth
cycle. Since the sixth cycle is even longer (45 quarters), we would expect best
results in LOOG6 which is true for the accuracy in this experiment. In the other
experiment with four phases, the accuracy is best for upswing in LOO6 and
second best for it in LOOb5.

2.3 Modeling Four Phases With Time Intervals

Let us now see, whether time intervals can improve the learning results. We
have used the discretization of the indicator values for the construction of time
intervals. As long as the indicator value stays within the predefined level, the
time interval is continued. As soon as the indicator value exhibits a level change,
the current time interval is closed and the next one is started. We end up with
facts of the form Index(I,Range), and for each time point within the time
interval I a fact stating that this time point 7' (i.e. quarter) lies in the time
interval I: covers(I, T).

We then described the relations between different time intervals by means
of Allen’s temporal logic [2]. From the 13 possible relationships between time
intervals, we chose contains and overlaps. The relation contains(I1,12)
denotes a larger interval 71 in which somewhere the interval I2 starts and ends.
contains(I1, I2) is true for each time point within the larger interval I1.
overlaps(I1, I2) is true for each time point of the interval I1 which starts
before 12 is starting (see Figure 3). We left out the other possible relations,
because they were either too general or too specific to be used in a classification
rule or would violate the constraint, that only information about past events
can be used in the classification 3. The time intervals were calculated before
the training started. The rule schemata were defined such that they link two
indicators with there corresponding time intervals. One rule schema is more
special in that it requires the time intervals of the two indicators to either
overlap or include each other. This more specific rule schema was intended to
find rules for the turning phases, where no rules were learned in the previous

3For example, a relation that would require that the end point of one interval was identical
to the starting point of another interval would be too specific and a relation that would only
require that an interval would happen before another interval, regardless of the amount of
time in between, would be too general.



Cycle Phase Accuracy | Coverage | No. learned rules
LOO1 upswing 0.167 1 73
downswing | - 0 1
utp - 0 0
ltp - 0 2
LOO2 upswing - 0 103
downswing | - 0 3
utp - 0 2
ltp - 0 0
LOO3 upswing 0.461 1 87
downswing | 1 0.200 2
utp 0 0 2
ltp - 0 2
LOO4 upswing 0.167 1 59
downswing | 0.333 1 7
utp - 0 0
ltp - 0 4
LOO5 upswing 0.481 1 88
downswing | 0 0 3
utp - 0 0
Itp 0.75 0.857 4
LOO6 upswing 0.667 0.296 6
downswing | 0.243 1 2
utp - 0 0
ltp - 0 0
Average | upswing 0.388 0,716 69.3
downswing | 0.194 0.500 3
utp 0 0 0.667
Itp 0.75 0.143 2

Figure 4: Results in the four phase model using time intervals

experiment. In fact, rules for the upper turning point, upswing, and downswing
were learned, but no rules could be learned for the upper turning point.

Another intention behind the time interval modeling was to increase the
accuracy of the learned rules. Indeed, rules for the upper turning point could
be learned with the average accuracy of 75% in the leave-one-cycle-out runs.
However, the accuracy for upswing decreased to 34% in the average. Hence,
overall the time interval model did not enhance the results of the time point
model in as much as we expected (see Table 4).

2.4 Modeling Two Phases

Theis and Weihs [10] have shown, that in clustering analyses of German macro-
economic data at most three clusters can be identified. The first two clusters



Cycle Accuracy | Coverage | No. learned rules
LOO1 0,8125 0,795 9 up, 69 down

LOO2 0,588 1,0 17 up, 35 down
LOO3 0,823 0,571 2 up, 15 down

LOO4 0,8 0,35 6 up, 8 down

LOO5 0,869 0,8 10 up, 39 down
LOO6 1,0 0,701 6 up, 41 down
Average | 0,815 0,703 total 50 up, 207 down

Figure 5: Results in the two phase model using time points

roughly correspond to the cycle phases of upswing and downswing and the even-
tual third cluster corresponds to a time period around 1971. This suggests, that
two phases instead of four may be more suited for the description of business
data. It also points at a concept drift (see Section 2.5). In our third experiment
we mapped all time points classified as upper turning point to upswing and all
quarters of a year classified as lower turning point to downswing. We then
applied the rule schemata of the first experiment. An example of the learned
rules is:

ie(T,V1),low(V1),c(T,V2), high(V2) = down(T)
stating that a low investment into equipment together with high private con-
sumption indicates a downswing.

Again, leaving out the fifth or the sixth cycle gives the best results in the
leave-one-cycle-out test. Accuracy and coverage are quite well balanced (see
Table 5).

These learning results are promising. They support the hypothesis that a
two phase model is of advantage for the dating task. Concerning the selection of
indicators, the learning results show that all indicators contribute to the dating
of the phase. However, the short term interest rate does not occur in three of the
rule sets. Consumption (both the real value and the index), net exports, money
supply, government deficit, and long term interest rate are missing in at least
one of the learned rule sets. For the last four cycles, i.e. leaving out cycle 1 or
cycle 2, some indicators predict the upswing without further conditions: high or
medium number of salary earners (), high or medium investment in equipment
(ze), high or medium investment in construction (ic), medium consumption (c),
and the real gross national product (y). It is interesting to note, that a medium
or high real gross national product alone classifies data into the upswing phase
only when leaving out cycle 1,2, or 4. Since RDT performs a complete search,
we can conclude, that in the data of cycle 1 to cycle 4, the gross national product
alone does not determine the upswing phase. Further indicators are necessary
there, for instance money supply (monl) or consumer price index (pc).



2.5 Concept shift

Starting from the two-phase model, we analyzed the homogeneity of the business
cycle data. The learning results from different leave-one-cycle-out experiments
were inspected with respect to their correlation. If the same rule is learned in
all experiments, this means that the underlying principle did not change over
time. If, however, rules co-occur only in the first cycles or in the last cycle, we
hypothesize a concept drift in business cycles. We used the correlation analysis
of the APRIORI algorithm [1], [12].

We want to know whether there are rules that are learned in all training
sets, or, at least, whether there are rules that are more frequently learned than
others. Enumerating all learned rules we get a vector for each training set
(corresponding to a transaction in APRIORI) where the learned rule is marked
by 1 and the others are set to 0. The frequency of learned rules and their co-
occurrence is identified. There is no rule which was learned in all training sets.
Eight rules were learned from three training sets. No co-occurrence of learned
rules could be found. There is one rule, which was learned in four training sets,
namely leaving out cycle 1, cycle 4, cycle 5, or cycle 6:

rid(T, V), (T, V),low(V) — down(T)

stating that the real long term interest rate and the number wage and salary
earners being low indicates a downswing.

We now turn around the question and ask: which training sets share rules?
For answering this question, a vector for each learned rule is formed where those
training sets are marked by 1 which delivered the rule.

e Eighteen rules were shared in the training sets leaving out cycle 5 and
leaving out cycle 6. Four of the rules predict an upswing, fourteen rules
predict a downswing. This means, that cycles 1 to 4 have the most rules
in common. The data from the last quarter of 1958 until the third quarter
of 1974 are more homogeneous than all the data from 1958 until 1994.

e When leaving out cycle 1 or cycle 2, eleven rules occur in both learning
results. This means, that cycles 3 to 6 have second most rules in common.
The data from the second quarter of 1967 until the end of 1994 are more
homogeneous than all data together.

e When leaving out cycle 2 or cycle 3, four rules occur in both learned rule
sets.

e Larger item sets (frequently co-occuring rules) were rarely found: two
rules were shared by learving out cycle 1 or cycle 2 or cycle 4, the one
rule shown above is shared by the training sets leaving out cycle 1, cycle
4, cycle b, or cycle 6.

The rule set analysis shows that cycles 1 to 4 (1958 — 1974) and cycles 3 to 6
(1967 - 1994) are more homogeneous than the overall data set. We wonder what
happened in cycles 3 and 4. The first oil crisis happened at the end of cycle 4
(November 1973 — March 1974). This explains the first finding well. It shows
that our rule set analysis can indeed detect concept drift, where we know that



a drift occured. However, the oil crisis cannot explain why cycles 3 to 6 share
so many rules. The second oil crises occured within cycle 5 (1979 — 1980). We
assume that the actual underlying rules of business cycles may have changed
over time. The concept drift seems to start in cycle 3. The periods of cycles
1 and 2 (1958 — 1967) are characterized by the reconstrucion after the world
war. Investment in construction (ic) and in equipment (ie) is not indicative
in this period, since it is rather high, anyway. A low number of earners (I)
together with a medium range of the gross national product deflator (pyd) best
characterizes the downswing in cycles 1 to 3 — this rule has been found when
leaving out cycles 4 or 5 or 6. Since the unemployment rate was low after the
war, it is particularly expressive for dating a phase in that period. This explains
the second finding of our rule set analysis.

3 Conclusion and Further Work

Machine learning techniques in concert have answered the questions that have
been our starting point(see Section 1).

e ILP offers opportunities for the analysis of business cycle data. It is
easy to interpret the results so that the learned rules can be inspected
by economists easily. The multi-variate nature of ILP and the automatic
selection of most relevant indicators fits the needs of dating problem. Its
performance was at least comparable to statistical methods.

e Decision tree learning could effectively find appropriate ranges that could
be used for discretization. Furthermore, the value ranges could be used
to determine time intervals.

e The two-phase model of the business cycle clearly outperformed the four-
phase model. Where the best average accuracy in the four-phase model
was 53%, the average accuracy of the two-phase model was 82%.

e Rule set analysis in terms of correlations between training set results
shows that cycles 1 — 4 (1958 - 1974), i.e. leaving out cycle five or cycle
six, had more rules in common than other cycles. The second most rules
in common were found when leaving out the first or the second cycle,
that is when training on cycles 3 — 6 (1967 - 1994). Both findings can be
explained in economical terms.

The results could well be further enhanced. We used discretization in a straight-
forward manner by creating the interval segmentation based on the discretiza-
tion of values. This can be extended by using piecewise constant or piecewise
linear regression to get the interval segmentation directly. However, in this
approach it is unclear, how the slope of an approximating linear function can
be interpreted. For our application understandability is a main goal. The dis-
cretization might also consist of more complex patterns like peaks or valleys or
patterns with outliers. Algorithms that find these patterns [4] can be used as
to preprocess the time series.
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The partitioning into two phases was very simple. A more sophisticated
split within the upper and the lower turning phase, respectively, should lead to
enhanced accuracy.

Finally, the concept drift could be the reason for not reaching the level of
accuracy that we are used in other domains. Hence, training seperately cycles
4 to 6 and restricting the leave-one-cycle-out testing to these cycles could also
enhance the learning results.
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