Outline	Introduction	Multi-Objective Learning	Results	Conclusion
	000	000000	000000000	

Finding all Local Models in Parallel: Multi-Objective SVM

Ingo Mierswa Al Unit University of Dortmund

Dagstuhl Seminar 2007

3

イロン イヨン イヨン イヨン

Ingo Mierswa AI Unit University of Dortmund Finding all Local Models in Parallel: Multi-Objective SVM

Outline	Introduction	Multi-Objective Learning	Results	Conclusion
Outline				

1 Introduction

Motivation – Finding Local Models with SVM

2 Multi-Objective Support Vector Machines

- Objective 1: Maximizing the Margin
- Objective 2: Minimizing the Number of Training Errors

3 Results

- Results
- Walking on the Pareto Front: From Global to Local Models

4 Conclusion

3

Outline	Introduction ●୦୦	Multi-Objective Learning	Results	Conclusion
Motiva	ition			

• Model = Global Model + Local Model(s) + Noise

- SVM can find both the global and the local models
- Conflicting criteria: training error and model complexity
- Users have to specify a weighting factor C for a trade-off
- Local models: those for higher weights on training error

Solution

Embed multi-objective evolutionary algorithms instead of the quadratic programming approach into SVM.

Outline	Introduction ●○○	Multi-Objective Learning	Results	Conclusion
Motiva	tion			

- Model = Global Model + Local Model(s) + Noise
- SVM can find both the global and the local models
- Conflicting criteria: training error and model complexity
- Users have to specify a weighting factor C for a trade-off
- Local models: those for higher weights on training error

Embed multi-objective evolutionary algorithms instead of the quadratic programming approach into SVM.

Outline	Introduction ●○○	Multi-Objective Learning	Results	Conclusion
Motiva	tion			

- Model = Global Model + Local Model(s) + Noise
- SVM can find both the global and the local models
- Conflicting criteria: training error and model complexity
- Users have to specify a weighting factor C for a trade-off
- Local models: those for higher weights on training error

Embed multi-objective evolutionary algorithms instead of the quadratic programming approach into SVM.

Outline	Introduction ●○○	Multi-Objective Learning	Results	Conclusion
Motiva	tion			

- Model = Global Model + Local Model(s) + Noise
- SVM can find both the global and the local models
- Conflicting criteria: training error and model complexity
- Users have to specify a weighting factor C for a trade-off
- Local models: those for higher weights on training error

Embed multi-objective evolutionary algorithms instead of the quadratic programming approach into SVM.

Outline	Introduction •00	Multi-Objective Learning	Results	Conclusion
Motiva	tion			

- Model = Global Model + Local Model(s) + Noise
- SVM can find both the global and the local models
- Conflicting criteria: training error and model complexity
- Users have to specify a weighting factor C for a trade-off
- Local models: those for higher weights on training error

Embed multi-objective evolutionary algorithms instead of the quadratic programming approach into SVM.

イロト イヨト イヨト イヨト

Outline	Introduction •00	Multi-Objective Learning	Results	Conclusion
Motiva	tion			

- Model = Global Model + Local Model(s) + Noise
- SVM can find both the global and the local models
- Conflicting criteria: training error and model complexity
- Users have to specify a weighting factor C for a trade-off
- Local models: those for higher weights on training error

Embed multi-objective evolutionary algorithms instead of the quadratic programming approach into SVM.

Outline	Introduction ○●○	Multi-Objective Learning	Results	Conclusion
Desired Result				

- The result of multi-objective optimization is not a single solution but a set of solutions (Pareto set)
- These solutions correspond to the optimal solutions for all possible weightings for both criteria

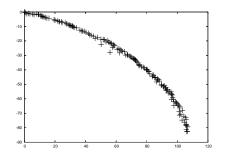


Figure: The Pareto-optimal solutions for two competing criteria

Ingo Mierswa Al Unit University of Dortmund

Finding all Local Models in Parallel: Multi-Objective SVM

マロト イヨト イヨト

Outline	Introduction	Multi-Objective Learning	Results	Conclusion

The Primal SVM Problem

Primal SVM Problem

The basic form of the primal SVM optimization problem is the following:

minimize
$$\frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$

subject to $\forall i : y_i (\langle w, x_i \rangle + b) \ge 1 - \xi_i$
and $\forall i : \xi_i \ge 0$.

з

Outline	Introduction ○○●	Multi-Objective Learning	Results	Conclusion

The Primal SVM Problem

Primal SVM Problem

The basic form of the primal SVM optimization problem is the following:

minimize
$$\frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$

subject to $\forall i : y_i (\langle w, x_i \rangle + b) \ge 1 - \xi_i$
and $\forall i : \xi_i \ge 0$.

Weighting Factor

The parameter C is a user defined weight for the both conflicting parts of the optimization criterion.

з

(4月) (1日) (日)

Outline	Introduction	Multi-Objective Learning	Results	Conclusion
Multiple (Conflicting O	bjectives		

• EA inside SVM allows for a straightforward application of multi-objective selection schemes

 We divide the criteria of the primal SVM optimization problem into two optimization targets while the weighting factor C can be omitted

Goal

Transform both objectives into their dual form in order to allow the efficient optimization of the problems including the usage of kernel functions.

Outline	Introduction 000	Multi-Objective Learning	Results	Conclusion
Multiple (Conflicting O	bjectives		

- EA inside SVM allows for a straightforward application of multi-objective selection schemes
- We divide the criteria of the primal SVM optimization problem into two optimization targets while the weighting factor C can be omitted

Goal

Transform both objectives into their dual form in order to allow the efficient optimization of the problems including the usage of kernel functions.

Outline	Introduction 000	Multi-Objective Learning	Results	Conclusion
Multiple (Conflicting O	bjectives		

- EA inside SVM allows for a straightforward application of multi-objective selection schemes
 - We divide the criteria of the primal SVM optimization problem into two optimization targets while the weighting factor C can be omitted

Goal

Transform both objectives into their dual form in order to allow the efficient optimization of the problems including the usage of kernel functions.

3

Outline	Introduction	Multi-Objective Learning	Results	Conclusion
	000	000000	000000000	

Multiple Conflicting Objectives

Primal Objective 1

$$\begin{array}{l} \text{minimize } \frac{1}{2} ||w||^2 \\ \text{subject to } \forall i : y_i \left(\langle w, x_i \rangle + b \right) \geq 1 - \xi_i \\ \text{and } \forall i : \xi_i \geq 0 \end{array}$$

Primal Objective 2

$$\begin{array}{l} \text{minimize } \sum_{i=1}^{n} \xi_{i} \\ \text{subject to } \forall i : y_{i} \left(\langle w, x_{i} \rangle + b \right) \geq 1 - \xi_{i} \\ \text{and } \forall i : \xi_{i} \geq 0. \end{array}$$

Outline	Introduction	Multi-Objective Learning	Results	Conclusion
	000	• 00 0000	000000000	

Objective 1: Maximizing the Margin

 Introduce positive Lagrange multipliers α for the first set of inequality constraints and multipliers β for the second set of inequality constraints:

$$L_{p}^{(1)} = \frac{1}{2} ||w||^{2} - \sum_{i=1}^{n} \alpha_{i} (y_{i} (\langle w, x_{i} \rangle + b) + \xi_{i} - 1) - \sum_{i=1}^{n} \beta_{i} \xi_{i}$$

• Set the derivatives to 0:

$$\frac{\partial L_p^{(1)}}{\partial w}(w, b, \xi, \alpha, \beta) = w - \sum_{i=1}^n y_i \alpha_i x_i = 0,$$

$$\frac{\partial L_p^{(1)}}{\partial b}(w, b, \xi, \alpha, \beta) = \sum_{i=1}^n \alpha_i y_i = 0,$$

$$\frac{\partial L_p^{(1)}}{\partial \xi_i}(w, b, \xi, \alpha, \beta) = -\alpha_i - \beta_i = 0$$

3

(4月) (1日) (日)

Outline	Introduction	Multi-Objective Learning	Results	Conclusion
	000	000000	000000000	

Plugging the Derivatives into the Primal

 Plugging the derivatives into the primal objective function L⁽¹⁾_p delivers

$$\begin{aligned} \frac{1}{2} \frac{1}{p} &= \frac{1}{2} ||w||^2 - \sum_{i=1}^n -\alpha_i y_i \left\langle \sum_{j=1}^n \alpha_j y_j x_j, x_i \right\rangle + \sum_{i=1}^n \alpha_i \\ &= \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j \left\langle x_i, x_j \right\rangle \end{aligned}$$

- The Wolfe dual must be maximized leading to the first objective of the multi-objective SVM
- Result is very similar to the dual SVM problem stated above but without the upper bound C for the α_i

3

0		÷	Ī	i		•	0	
U	u	Ľ	5	5	5	5	С	

Introduction

Multi-Objective Learning 000000

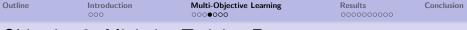
Results

イロト イヨト イヨト イヨト

Conclusion

The First Objective of the MO-SVM

First Objective The first SVM objective (maximize margin) is defined as: maximize $\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_{i} y_{j} \alpha_{i} \alpha_{j} k(x_{i}, x_{j})$ subject to $\alpha_i \geq 0$ for all $i = 1, \ldots, n$ and $\sum_{i=1}^{n} \alpha_i y_i = 0$ i-1



Objective 2: Minimize Training Errors

• We again add positive Lagrange multipliers α and β :

$$L_p^{(2)} = \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i \left(\left(y_i \left\langle w, x_i \right\rangle + b \right) + \xi_i - 1 \right) - \sum_{i=1}^n \beta_i \xi_i$$

• Setting the derivatives to 0 leads to slightly different conditions on the derivatives of $L_p^{(2)}$:

$$\frac{\partial L_p^{(2)}}{\partial w}(w, b, \xi, \alpha, \beta) = -\sum_{i=1}^n y_i \alpha_i x_i = 0,$$
$$\frac{\partial L_p^{(2)}}{\partial b}(w, b, \xi, \alpha, \beta) = \sum_{i=1}^n \alpha_i y_i = 0,$$
$$\frac{\partial L_p^{(2)}}{\partial \xi_i}(w, b, \xi, \alpha, \beta) = 1 - \alpha_i - \beta_i = 0$$

Outline	Introduction	Multi-Objective Learning	Results	Conclusion
	000	0000000	000000000	

Plugging the Derivatives into the Primal

• Plugging the derivatives into the $L_p^{(2)}$ cancels out most terms:

$$L_{p}^{(2)} = \sum_{i=1}^{n} \xi_{i} - \sum_{i=1}^{n} \alpha_{i}\xi_{i} + \sum_{i=1}^{n} \alpha_{i} - \sum_{i=1}^{n} \beta_{i}\xi_{i}$$

• Together with the third derivative we can replace the β_i by $1 - \alpha_i$ leading to

$$L_p^{(2)} = \sum_{i=1}^n \alpha_i \xi_i - \sum_{i=1}^n \alpha_i \xi_i + \sum_{i=1}^n \alpha_i$$
$$L_p^{(2)} = \sum_{i=1}^n \alpha_i$$

 Maximizing the Wolfe dual leads to the second objective of the multi-objective SVM

Second Objective

The second SVM objective (minimize error) is defined as:

maximize
$$\sum_{i=1}^{n} \alpha_i$$

subject to $\alpha_i \ge 0$ for all $i = 1, ..., n$
and $\sum_{i=1}^{n} \alpha_i y_i = 0$

2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Outline	Introduction	Multi-Objective Learning ○○○○○●	Results	Conclusion
Used C	bjectives			

Set of all Objectives

Maximize the terms

$$-\sum_{i=1}^{n}\sum_{j=1}^{n}y_{i}y_{j}\alpha_{i}\alpha_{j}k(x_{i},x_{j}),$$

nd
$$\sum_{i=1}^{n}\alpha_{i}$$

subject to $\alpha_i \geq 0$ for all $i = 1, \ldots, n$

а

The result will be a Pareto front showing all models which are optimal for all possible weightings between both criteria.

3

イロト イヨト イヨト イヨト

Outline	Introduction	Multi-Objective Learning	Results ●000000000	Conclusion
Data Sets				

Data set	n	т	Source	σ	Default
Spiral	1000	2	Synthetical	1.000	50.00
Checkerboard	1000	2	Synthetical	1.000	50.00
Sonar	208	60	UCI	1.000	46.62
Diabetes	768	8	UCI	0.001	34.89
Lupus	87	3	StatLib	0.001	40.00
Crabs	200	7	StatLib	0.100	50.00

All experiments were performed with the machine learning environment YALE¹.

3

¹http://yale.sf.net/

Ingo Mierswa Al Unit University of Dortmund

イロン イヨン イヨン イヨン Finding all Local Models in Parallel: Multi-Objective SVM

Outline	Introduction	Multi-Objective Learning	Results ○●○○○○○○○	Conclusion
Results				

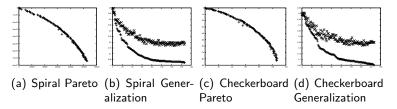
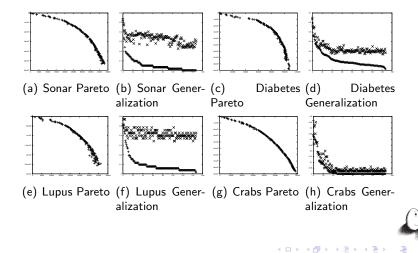


Figure: The results for all data sets. The left plot for each dataset shows the Pareto front delivered by the multi-objective SVM proposed in this paper (x: margin size, y: training error). The right plot shows the training (+) and testing (\times) errors (on a hold-out set of 20%) for all individuals of the resulting Pareto fronts (x: margin size, y: generalization error).

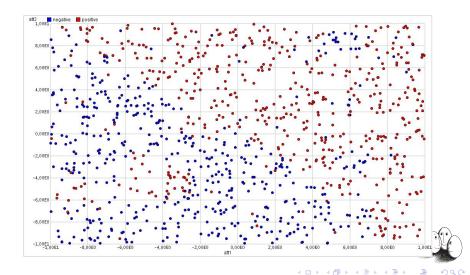
3

Outline	Introduction	Multi-Objective Learning	Results ⊙⊙●○○○○○○○	Conclusion
Results I	1			



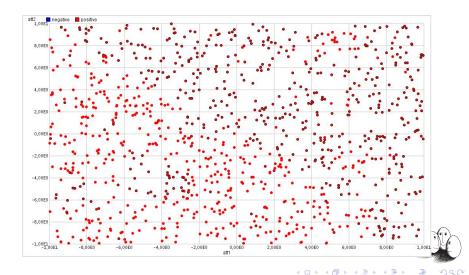
Outline	Introduction 000	Multi-Objective Learning	Results Conclusion	
-				

From Global to Local Models – Data



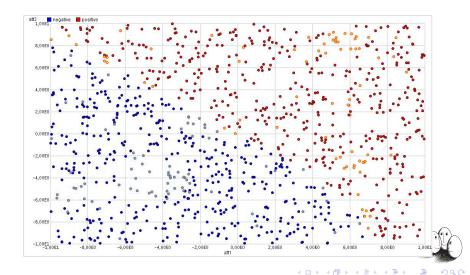
Ingo Mierswa Al Unit University of Dortmund

From Global to Local Models – Largest Margin



Ingo Mierswa Al Unit University of Dortmund

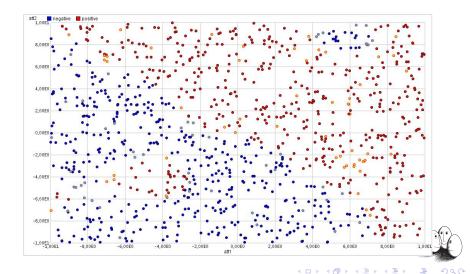
From Global to Local Models – The Global Model



Ingo Mierswa Al Unit University of Dortmund

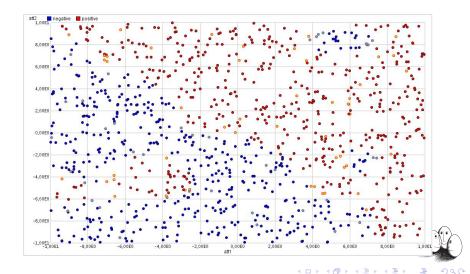
Outline	Introduction	Multi-Objective Learning	Results	Conclusion
	000	0000000	0000000000	

From Global to Local Models



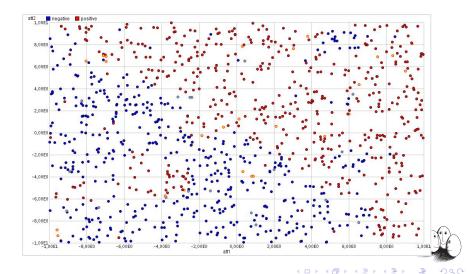
Ingo Mierswa Al Unit University of Dortmund

From Global to Local Models – Best Generalization



Ingo Mierswa Al Unit University of Dortmund

From Global to Local Models – Lowest Training Error



Ingo Mierswa Al Unit University of Dortmund

Outline	Introduction	Multi-Objective Learning	Results	Conclusion
	000	0000000	000000000	

Main Advantage of MO-SVM

- The generalization ability plotted on the right sides clearly shows the location where overfitting occurs
- Please note that these plots could also be generated for usual SVM by iteratively applying the learner for different parameter settings but ...
- ... this will need one learning run for each possible value of C!

Full Knowledge in One Single Run!

The MO-SVM approach has the advantage that all models are calculated in one single run which is far less time-consuming

Outline	Introduction 000	Multi-Objective Learning	Results ○○○○○○○○●	Conclusion
Main A	Advantage of	MO-SVM		

- The generalization ability plotted on the right sides clearly shows the location where overfitting occurs
- Please note that these plots could also be generated for usual SVM by iteratively applying the learner for different parameter settings but . . .
- ... this will need one learning run for each possible value of C!

Full Knowledge in One Single Run!

The MO-SVM approach has the advantage that all models are calculated in one single run which is far less time-consuming

Outline	Introduction 000	Multi-Objective Learning	Results ○○○○○○○○●	Conclusion
Main A	Advantage of I	MO-SVM		

- The generalization ability plotted on the right sides clearly shows the location where overfitting occurs
- Please note that these plots could also be generated for usual SVM by iteratively applying the learner for different parameter settings but ...
- ... this will need one learning run for each possible value of C!

Full Knowledge in One Single Run!

The MO-SVM approach has the advantage that all models are calculated in one single run which is far less time-consuming

Outline	Introduction 000	Multi-Objective Learning	Results ○○○○○○○○●	Conclusion
Main A	Advantage of	MO-SVM		

- The generalization ability plotted on the right sides clearly shows the location where overfitting occurs
 - Please note that these plots could also be generated for usual SVM by iteratively applying the learner for different parameter settings but ...
 - ... this will need one learning run for each possible value of C!

Full Knowledge in One Single Run!

The MO-SVM approach has the advantage that all models are calculated in one single run which is far less time-consuming

Outline	Introduction	Multi-Objective Learning	Results	Conclusion
Conclusio	'n			

- Trade-off between training error and model complexity is now explicitly stated
- The optimization problem of SVM is divided in two parts and both parts are transformed into their dual form
- The optional usage of a hold-out set is suggested in order to guide the user for the final selection of a solution
- All information from the most global to the most local models is gathered in a single run!

3

・ロン ・回 と ・ ヨ と ・ ヨ と

Outline	Introduction	Multi-Objective Learning	Results	Conclusion
Conclusio	n			

- Trade-off between training error and model complexity is now explicitly stated
- The optimization problem of SVM is divided in two parts and both parts are transformed into their dual form
- The optional usage of a hold-out set is suggested in order to guide the user for the final selection of a solution
- All information from the most global to the most local models is gathered in a single run!

3

・ロン ・回 と ・ ヨ と ・ ヨ と

Outline	Introduction	Multi-Objective Learning	Results	Conclusion
Conclusio	n			

- Trade-off between training error and model complexity is now explicitly stated
- The optimization problem of SVM is divided in two parts and both parts are transformed into their dual form
- The optional usage of a hold-out set is suggested in order to guide the user for the final selection of a solution
- All information from the most global to the most local models is gathered in a single run!

-

・ロン ・回 と ・ ヨ と ・ ヨ と

Outline	Introduction	Multi-Objective Learning	Results	Conclusion
Conclusio	n			

- Trade-off between training error and model complexity is now explicitly stated
- The optimization problem of SVM is divided in two parts and both parts are transformed into their dual form
- The optional usage of a hold-out set is suggested in order to guide the user for the final selection of a solution
- All information from the most global to the most local models is gathered in a single run!

3

・ロン ・回 とくほど ・ ほとう