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Abstract

In this paper we embed evolutionary computation into statistical
learning theory. First, we outline the connection between large mar-
gin optimization and statistical learning and see why this paradigm
is successful for many pattern recognition problems. We then embed
evolutionary computation into the most prominent representative of
this class of learning methods, namely into Support Vector Machines
(SVM). In contrast to former applications of evolutionary algorithms
to SVM we do not only optimize the method or kernel parameters.
We rather use evolution strategies in order to directly solve the posed
constrained optimization problem. Transforming the problem into the
Wolfe dual reduces the total runtime and allows the usage of kernel
functions just as for traditional SVM. We will show that evolutionary
SVM are at least as accurate as their quadratic programming coun-
terparts on eight real-world benchmark data sets in terms of general-
ization performance. They always outperform traditional approaches
in terms of the original optimization problem. Additionally, the pro-
posed algorithm is more generic than existing traditional solutions
since it will also work for non-positive semidefinite or indefinite kernel
functions. The evolutionary SVM variants frequently outperform their
quadratic programming competitors in cases where such an indefinite
Kernel function is used.

1 Introduction

In this paper we will discuss how evolutionary algorithms can be used to solve
large margin optimization problems. We explore the intersection of three
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highly active research areas, namely machine learning, statistical learning
theory, and evolutionary algorithms. While the connection between statis-
tical learning and machine learning was analyzed before, embedding evolu-
tionary algorithms into this connection will lead to a more generic algorithm
which can deal with problems today’s learning schemes cannot cope with.

Supervised machine learning is often about classification problems. A set
of data points is divided into several classes and the machine learning method
should learn a decision function in order to decide into which class an unseen
data point should be classified.

The maximization of a margin between data points of different classes,
i. e. the distance between a decision hyperplane and the nearest data points,
interferes with the ideas of statistical learning theory. This allows the defini-
tion of an error bound for the generalization error. Furthermore, the usage
of kernel functions allows the learning of non-linear decision functions. We
focus on Support Vector Machines (SVM) as they are the most prominent
representatives for large margin problems. Since SVM guarantee an optimal
solution for the given data set they are currently one of the mostly used
learning methods. Furthermore, many other optimization problems can also
be formulated as large margin problem [34]. The relevance of large margin
methods can be measured by the number of submissions to the main machine
learning conferences over the past years1.

Usually, the optimization problem posed by SVM is solved with quadratic
programming. However, there are some drawbacks. First, for kernel func-
tions which are not positive semidefinite no unique global optimum exists.
In these cases quadratic programming is not able to find satisfying solutions
at all. Moreover, most implementations do not even terminate [8]. There
exist several useful non-positive kernels [15], among them the sigmoid ker-
nel which simulates a neural network [4, 31]. A more generic optimization
scheme should allow such non-positive kernels without the need for omitting
the more efficient dual optimization problem [22].

Former applications of evolutionary algorithms to SVM include the op-
timization of method and kernel parameters [6, 27], the selection of optimal
feature subsets [7], and the creation of new kernel functions by means of ge-
netic programming [10]. The latter is particularly interesting since it cannot
be guaranteed that the resulting kernel functions are again positive semidef-
inite.

Replacing the traditional optimization techniques by evolution strategies
or particle swarm optimization can tackle the problems mentioned above. We

1More than 30% of all accepted papers for ICML 2005 dealt with SVM and other large
margin methods.
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will extract as much information as possible from the optimization problem
at hand and develop and compare different search point operations. First,
we will show that the proposed implementation leads to as good results
as traditional SVM on a broad variety of real-world benchmark data sets.
Additionally, the optimization is more generic since it also allows for non-
positive semidefinite kernel functions.

1.1 Outline

In Section 2 we give a short introduction into the concept of regularized risk
minimization and the ideas of statistical learning theory. We will also discuss
an upper bound for the generalization error. This allows us to formalize the
optimization problem of large margin methods in Section 3. We will intro-
duce SVM for the classification of given data points in Section 3.1 and extend
the separation problem to non-separable data sets (see Section 3.2) with non-
linear hyperplanes (see Section 3.3). In Section 4 we will discuss the effect of
non-positive semidefinite Kernels and former strategies to handle the prob-
lems introduced by this type of base functions. The constrained optimization
problem developed in the previous sections will be solved by evolution strate-
gies and particle swarm optimization which is described in Section 5. We
discuss several enhancements and a new type of mutation before we evaluate
the proposed methods on synthetical and real-world benchmark data sets in
Section 6.

2 Regularized Risk Minimization

In this section, we discuss the idea of regularized risk minimization. Machine
learning methods following this paradigm have a solid theoretical foundation
and it is possible to define bounds for prediction errors.

Let the instance space be defined as Cartesian product X = X1×. . .×Xm

of attributes Xi ⊆ R. Let Y be another set of possible labels. X and Y
are random variables obeying a fixed but unknown probability distribution
P (X, Y ). Machine Learning tries to find a function f(x, γ) which predict the
value of Y for a given input x ∈ X. The function class f depends on a vector
of parameters γ, e. g. if f is the class of all polynomials, γ might be the
degree. We define a loss function L(Y, f(X, γ)) in order to penalize errors
during prediction [9]. Every convex function with arity 2, positive range,
and L(x, x) = 0 can be used as loss function [30]. This leads to a possible
criterion for the selection of a function f , the expected risk :
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Definition 1 Let X be a vector of random variables and Y another random
variable obeying a fixed but unknown probability distribution P (X, Y ). For a
loss function L(Y, f(X, γ)) the expected risk is defined as

R(γ) =

∫

L(y, f(x, γ))dP (x, y).

Since the underlying distribution is not known we are not able to calculate
the expected risk. However, instead of estimating the probability distribution
in order to allow this calculation, we directly estimate the expected risk by
using a set of known data points T = {(x1, y1) , . . . , (xn, yn)} ⊆ X × Y . T is
usually called training data. Using this set of data points we can calculate
the empirical risk :

Definition 2 Let T = {(x1, y1) , . . . , (xn, yn)} ⊆ X × Y be an item set and
let L(Y, f(X, γ)) be a a loss function. The empirical risk is defined as

Remp(γ) =
1

n

n
∑

i=1

L (yi, f (xi, γ)) .

If training data is sampled according to P (X, Y ), the empirical risk approx-
imates the expected risk if the number of samples grows:

lim
n→∞

Remp(γ) = R(γ).

It is, however, a well known problem that for a finite number of samples the
minimization of Remp(γ) alone does not lead to a good prediction model [36].
For each loss function L, each candidate γ, and each set of tuples T ′ ⊆ X×Y
with T ∩ T ′ = ∅ exists another parameter vector γ′ so that L(y, f(x, γ)) =
L(y, f(x, γ′)) for all x ∈ T and L(y, f(x, γ)) > L(y, f(x, γ′)) for all x ∈
T ′. Therefore, the minimization of Remp(γ) alone does not guarantee the
optimal selection of a parameter vector γ for other samples according to the
distribution P (X, Y ). This problem is often referred to as overfitting.

At this point we use one of the main ideas of statistical learning theory.
Think of two different functions perfectly approximating a given set of train-
ing points. The first function is a linear function, i. e. a simple hyperplane
in the considered space Rm. The second function also hits all training points
but is strongly wriggling in between. Naturally, if we had to choose between
these two approximation functions, we tend to select the more simple one,
i. e. the linear hyperplane in this example. This derives from the observa-
tion that more simple functions behave better on unseen examples than very
complicated functions. Since the mere minimization of the empirical risk
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according to the training data is not appropriate to find a good generaliza-
tion, we incorporate the capacity2 of the used function into the optimization
problem (see Figure 1). This leads to the minimization of the regularized
risk :

Definition 3 Let Ω be strictly monotonic increasing function. The regu-

larized risk is defined as

Rreg(γ) = Remp(γ) + λΩ(γ).

This risk functional is also known as structural risk since it takes the struc-
tural complexity into account. Ω is a function which measures the capacity
of the function class f depending on the parameter vector γ (see [29] for
more details). Since the empirical risk is usually a monotonically decreasing
function of Ω, we use λ to manage the trade-off between training error and
capacity. Methods minimizing this type of risk function are known as shrink-
age estimators [11]. We refer to the idea of taking the structural complexity
into account as regularization and to λ as regularization parameter.

2.1 Bound on the Generalization Performance

For certain functions Ω, the regularized risk is an upper bound for the em-
pirical risk. The capacity of the function f for a given γ can for example be
measured with help of the Vapnik-Chervonenkis dimension (VC dimension)
[36, 37]. The VC dimension is defined as the cardinality of the biggest set of
tuples which can separated with help of f in all possible ways. For example,
the VC dimension of linear hyperplanes in an m-dimensional space is m + 1.
Using the VC dimension as a measure for capacity leads to a probabilistic
bound for the regularized risk [36]. Let f be a function class with finite VC
dimension h and f(γ) the best solution for the empirical risk minimization
for T with |T | = n. Now choose some η such that 0 ≤ η ≤ 1. Then for losses
smaller than some number B, the following bound holds with probability
1 − η:

R(γ) ≤ Remp(γ) + B

√

h
(

log 2l
h

+ 1
)

− log η

4

l
.

Surprisingly, this bound is independent of P (X, Y ). It only assumes that
both, the seen and the unseen data points, are independently sampled ac-
cording to some P (X, Y ). Please note that this bound also no longer contains

2Although not the same, the capacity of a function resembles a measurement of the
function complexity. In our example we measure the ability to “wriggle”. More details in
[36].
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Figure 1: The simultaneous minimization of empirical risk and model com-
plexity gives a hint which function should be used in order to generalize the
given data points.

a weighting factor λ or any other trade-off at all. The existence of a guar-
anteed error bound is the reason for the great success of regularized risk
minimization in a wide range of applications.

3 Large Margin Methods

As discussed in the previous section, we need to use a class of functions
whose capacity can be controlled. In this section we will discuss a special
form of regularized risk minimization, namely large margin approaches. All
large margin methods have one thing in common: they embed regularized
risk minimization by maximizing a margin between a linear function and the
nearest data points. The most prominent large margin method for classifi-
cation tasks is the Support Vector Machine (SVM).

3.1 Support Vector Machines

We constrain the number of possible values of Y to 2, without loss of gener-
ality these values should be −1 and +1. In this case, finding a function f in
order to decide which of both predictions is correct for an unseen data point
is referred to as classification learning for the classes −1 and +1. We start
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with the simplest case: learning a linear function from perfectly separable
data. As we shall see in Section 3.2 and 3.3, the general case - non-linear
functions derived from non-separable data - leads to a very similar problem.

If the data points are linearly separable, a linear hyperplane must exist
in the input space Rm which separates both classes.

Definition 4 A separating hyperplane is defined as

H = {x|〈w, x〉 + b = 0} ,

where w is normal to the hyperplane, |b|/||w|| is the perpendicular distance of
the hyperplane to the origin (offset or bias), and ||w|| is the Euclidean norm
of w.

The vector w and the offset b define the position and orientation of the
hyperplane in the input space. These parameters correspond to the function
parameters γ discussed above. After the optimal parameters w and b were
found, the prediction of new data points can be calculated as

f(x, w, b) = sgn (〈w, x〉 + b) ,

which is one of the reasons why we constrained the classes to −1 and +1.
Figure 2 shows some data points and a separating hyperplane. If all given

data points are correctly classified by the hyperplane the following must hold:

∀i : yi (〈w, xi〉 + b) ≥ 0. (1)

Of course, an infinite number of different hyperplanes exist which perfectly
separate the given data points. However, one would intuitively choose the
hyperplane which has the biggest amount of safety margin to both sides of
the data points. Normalizing w and b in a way that the point(s) closest to
the hyperplane satisfy |〈w, xi〉 + b| = 1 we can transform equation (1) into

∀i : yi (〈w, xi〉 + b) ≥ 1.

We can now define the margin as the perpendicular distance of the nearest
point(s) to the hyperplane. Consider two points x1 and x2 on opposite sides of
the margin. That is 〈w, x1〉+b = +1 and 〈w, x2〉+b = −1 and 〈w, (x1−x2)〉 =
2. The margin is then given by 1/||w||.

It can be shown that the capacity of the class of separating hyperplanes
decreases with increasing margin [29]. Maximizing the margin of a hyper-
plane therefore formalizes the regularized risk minimization discussed in the
previous section (regularization). Instead of maximizing 1/||w|| we could also
minimize 1

2
||w||2 which will result into more simple equations later. This leads

to the following optimization problem:
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Figure 2: A simple binary classification problem for two classes −1 (empty
bullets) and +1 (filled bullets). The separating hyperplane is defined by the
vector w and the offset b. The distance between the nearest data point(s)
and the hyperplane is called margin.

Problem 1 The SVM problem for linearly separable data is defined as

minimize 1
2
||w||2 (2)

subject to ∀i : yi (〈w, xi〉 + b) ≥ 1. (3)

Function (2) is the original objective function and the constraints from equa-
tion (3) are called inequality constraints. They form a constrained optimiza-
tion problem. We will use a Lagrangian formulation of the problem. This
allows us to replace the inequality constraints by constraints on the Lagrange
multipliers which are easier to handle. The second reason is that after the
transformation of the optimization problem, the training data will only ap-
pear in dot products. This will allow us to generalize the optimization to the
non-linear case (see Section 3.3). We will now introduce positive Lagrange
multipliers αi, i = 1, . . . , n, one for each of the inequality constraints. The
Lagrangian has the form

LP (w, b, α) =
1

2
||w||2 −

n
∑

i=1

αiyi (〈w, xi〉 + b) . (4)
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Finding a minimum of this function requires that the derivatives

∂LP (w,b,α)
∂w

= w −
n
∑

i=1

αiyixi

∂LP (w,b,α)
∂b

=
n
∑

i=1

αiyi

are zero, i. e.

w =
n
∑

i=1

αiyixi (5)

0 =
n
∑

i=1

αiyi. (6)

The Wolfe dual, which has to be maximized, results from the Lagrangian by
substituting (5) and (6) into (4), thus

LD(w, b, α) =

n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

yiyjαiαj 〈xi, xj〉 .

This leads to the dual optimization problem which must be solved in order to
find a separating maximum margin hyperplane for given set of data points:

Problem 2 The dual SVM problem for linearly separable data is defined as

maximize
n
∑

i=1

αi −
1
2

n
∑

i=1

n
∑

j=1

yiyjαiαj 〈xi, xj〉

subject to αi ≥ 0 for all i = 1, . . . , n

and
n
∑

i=1

αiyi = 0.

From an optimal vector α∗ we can calculate the optimal normal vector w∗

using equation (5). The optimal offset can be calculated with help of equation
(3). Please note, that w is a linear combination of those data points xi

with αi 6= 0. These data points are called support vectors, hence the name
support vector machine. Only support vectors determine the position and
orientation of the separating hyperplane, other data points might as well be
omitted during learning. In Figure 2 the support vectors are marked with
circles. The number of support vectors is usually much smaller than the total
number of data points.
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3.2 Non-separable Data

We now consider the case that the given set of data points is not linearly
separable. The optimization problem discussed in the previous section would
not have a solution since in this case constraint (3) could not be fulfilled
for all i. We relax this constraint by introducing positive slack variables
ξi, i = 1, . . . , n. Constraint (3) becomes

∀i : yi (〈w, xi〉 + b) ≥ 1 − ξi.

In order to minimize the number of wrong classifications we introduce a cor-
rection term C

∑n

i=1 ξi into the objective function. The optimization prob-
lems then becomes

minimize 1
2
||w||2 + C

n
∑

i=1

ξi

subject to ∀i : yi (〈w, xi〉 + b) ≥ 1 − ξi.

The factor C determines the weight of wrong predictions as part of the ob-
jective function. As in the previous section we create the dual form of the
Lagrangian. The slacking variables ξi vanish and we get the following opti-
mization problem:

Problem 3 The dual SVM problem for non-separable data is defined as

maximize
n
∑

i=1

αi −
1
2

n
∑

i=1

n
∑

j=1

yiyjαiαj 〈xi, xj〉

subject to 0 ≤ αi ≤ C for all i = 1, . . . , n

and
n
∑

i=1

αiyi = 0.

It can easily be seen that the only difference to the separable case is the
additional upper bound C for all αi.

3.3 Non-linear Learning with Kernels

The optimization problem described with the equations in Problem 3 will
deliver a linear separating hyperplane for arbitrary data sets. The result is
optimal in a sense that no other linear function is expected to provide a better
classification function on unseen data according to P (X, Y ). However, if the
data is not linearly separable at all the question arises how the described
optimization problem can be generalized to non-linear decision functions.
Please note that the data points only appear in the form of dot products
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Figure 3: After the transformation of all data points into the feature space
H the non-linear separation problem can be solved with a linear separation
algorithm. In this case a transformation in the space of polynomials with
degree 2 was chosen.

〈xi, xj〉. A possible interpretation of this dot product is the similarity of these
data points in the input space R

m. Now consider a mapping Φ : R
m → H

into some other Euclidean space H (called feature space) which might be
performed before the dot product is calculated. The optimization would
depend on dot products in this new space H , i. e. on functions of the form
〈Φ (xi) , Φ (xj)〉. A function k : Rm × Rm → R with the characteristic

k (xi, xj) = 〈Φ (xi) , Φ (xj)〉

is called kernel function or kernel. Figure 3 gives a rough idea how trans-
forming the data points can help to solve non-linear problems with the op-
timization in a (higher dimensional) space where the points can be linearly
separated.

A fascinating property of kernels is that for some mappings Φ a kernel k
exists which can be calculated without actually performing Φ. Since often
the dimension of H is greater than the dimension m of the input space and
H sometimes is even infinite dimensional, the usage of such kernels is a very
efficient way to introduce non-linear decision functions into large margin
approaches. Prominent examples for such efficient non-linear kernels are
polynomial kernels with degree d

k (xi, xj) = (κ〈xi, xj〉 + δ)d ,
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radial basis function kernels (RBF kernels)

k (xi, xj) = e−
||xi−xj ||

2

2σ2

for a σ > 0, and the sigmoid kernel

k (xi, xj) = tanh (κ 〈xi, xj〉 − δ)

which can be used to simulate a neural network. κ and δ are scaling and
shifting parameters. Since the RBF kernel is easy interpretable and often
yields good prediction performance, it is used in a wide range of applications.
We will also use the RBF kernel for our experiments described in section 6 in
order to demonstrate the learning ability of the proposed evolutionary SVM.

We replace the dot product in the objective function by kernel functions
and achieve the final optimization problem for finding a non-linear separation
for non-separable data points:

Problem 4 (Final SVM Problem) The dual SVM problem for non-linear
hyperplanes for non-separable data is defined as

maximize
n

∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

yiyjαiαjk (xi, xj)

subject to 0 ≤ αi ≤ C for all i = 1, . . . , n

and
n

∑

i=1

αiyi = 0.

4 Learning with Non-Positive Semidefinite

Kernels

It has been shown for positive (semi-)definite kernel functions k, i. e. its
kernel matrix K is positive definite, that the objective function is concave
[3].

Definition 5 Let X be a set of items. A kernel function k with kernel matrix
entries Kij = k(xi, xj) is called positive semidefinite if the following
applies

c∗Kc ≥ 0 for all c ∈ C
n

where c∗ is the conjugate transpose of c.
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The kernel satisfies Mercer’s condition in this case [18] and can be seen as
dot product in some Hilbert space (this space is usually referred to as Kernel
Reproducing Hilbert Space (RKHS) [29], see below). If the objective function
is concave, it has a global unique maximum which usually can be found by
means of a gradient descent. However, in some cases a specialized kernel
function must be used to measure the similarity between data points which
is not positive definite, sometimes not even positive semidefinite [15]. While
positive definite kernels – just as the regular dot product – resemble a simi-
larity measure, these non-positive semidefinite kernels (or indefinite kernels)
can be considered as a (partial) distance measure. For such non-positive
semidefinite (non-PSD) kernel functions the usual quadratic programming
approaches might not be able to find a global maximum in a feasible time
since the optimization problem is no longer concave.

One may ask why a solution for non-positive semidefinite kernels would
be interesting at all. There are several reasons for studying the effect of
non-PSD kernel functions on the optimization problem3. First, the test for
Mercer’s condition can be a challenging task which often cannot be solved by
a practitioner. Second, some kernel functions are interesting in spite that it
can be shown that they are not positive semidefinite, e.g. the sigmoid kernel
function k (xi, xj) = tanh (κ 〈xi, xj〉 − δ) of neural networks or a fractional
power polynomial. Third, promising empirical results were reported for such
non-PSD or indefinite kernels [16]. Finally, several approaches of learning the
kernel function were proposed where the result not necessarily must again be
positive semidefinite even if only definite kernel functions were used as base
functions [17].

Before we discuss former approaches to learn SVM functions for such non-
PSD kernels, we state some of the most important non-positive semidefinite
kernel functions for two instances xi and xj :

Epanechnikov:
(

1 −
||xi − xj ||

2

σE

)d

for
||xi − xj ||

2

σE

≤ 1

Gaussian Combination:

exp

(

−||xi − xj ||
2

σgc1

)

+ exp

(

−||xi − xj ||
2

σgc2

)

− exp

(

−||xi − xj ||
2

σgc3

)

Multiquadric:
√

||xi − xj ||2

σM

+ c2

3For a deeper discussion of the applications of non-PSD kernels see [23].
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4.1 Learning in Reproducing Kernel Hilbert Spaces

In this section, we will give a short discussion about the connection between
regularization and the feature space induced by the kernel. As we have seen
before, the key idea of regularization is to restrict the function class f of
possible minimizers of the empirical risk such that f becomes a compact set.
In case of kernel based learners, we have to consider the space into which the
function Φ of the kernel function maps the data points. This feature space is
called Reproducing Kernel Hilbert Space (RKHS) and is defined as follows:

Definition 6 Let X be a non-empty set and H be a Hilbert space of functions
f : X → R and let k be a positive semidefinite kernel function. If the
following does hold

1. 〈f, k(x, ·)〉 = f(x) for all f inH

2. H = span {k(x, ·)|x ∈ X} where X is the completion of the set X

then H is called a Reproducing Kernel Hilbert Space.

The function f is a projection on the kernel functions of x, hence we can say
that the function can be reproduced by the kernel functions which explains
the name. The importance of RKHS lies in the following theorem [14] which
is known as Representer Theorem:

Theorem 1 (Representer Theorem) Let H be a RKHS with kernel k.
Denote by Ω a strictly monotonic increasing function, by X a set, and by L
an arbitrary loss function. Then each minimizer f ∈ H of the regularized
risk admits a representation of the form

f(x) =

n
∑

i=1

αik(xi, x).

The significance of this theorem is that although we might be trying to
solve an optimization problem in an infinite-dimensional space H it states
that the solution lies in the span of m kernels, in particular those which
are centered on the training points. We have already seen that these kernel
extensions correspond to the support vectors of support vector machines, i.e.
the training points yielding αi 6= 0. The complete learning problem is hence
formalized as a minimization over a class of functions defined by the RKHS
corresponding to a certain kernel function. This is motivated by the fact that
in a RKHS the minimization of a regularized loss functional can be seen as
a projection problem [29].
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4.2 Learning in Reproducing Kernel Krĕın Spaces

The minimization problem in RKHS can be efficiently solved by transforming
the constrained optimization problem into its dual Lagrangian form. How-
ever, in Definition 6 of the RKHS a positive definite kernel function is used.
Therefore, we cannot simply transfer this minimization idea to the case of
non-PSD or indefinite kernel functions.

In [23] the theoretical foundation for many indefinite kernel methods is
discussed. Instead of associating these kernel functions with a RKHS, a gen-
eralized type of functional space must be used, namely Reproducing Kernel
Krĕın Spaces (RKKS). Learning in these spaces share many of the properties
of learning in RKHS, such as orthogonality and projection. Since the kernels
are indefinite, the loss over this functional space is no longer just minimized
but stabilized. This is a direct consequence of the fact that the dot product
defined in Krĕın spaces no longer must be positive. A Krĕın space is defined
as follows:

Definition 7 Let K be a vector space and 〈·, ·〉K an associated dot product.
K is called Krĕın space if there exist two Hilbert spaces H+, H− spanning
K such that

• All f ∈ K can be decomposed into f = f+ + f−, where f+ ∈ H+ and
f− ∈ H− and

• ∀f, g ∈ K : 〈f, g〉K = 〈f+, g+〉H+
− 〈f−, g−〉H−

.

In analogy to the RKHS defined above we can also define Reproducing Ker-
nel Krĕın Spaces (RKKS) depending on arbitrary kernel functions including
indefinite ones [1]. The analysis of the learning problem in a RKKS gives a
similar Representer Theorem as the one stated above [23]. The main differ-
ence is that the problem of minimizing a regularized risk functional becomes
one of finding the stationary point of a similar functional. Moreover, the
solution need not to be unique. The generic formulation is given as follows:

Theorem 2 (RKKS Representer Theorem) Let K be an RKKS with
kernel k. Denote by L a loss function, by Ω a strictly monotonic functional,
and by C{f, X} a continuous functional imposing a set of constraints on f .
Then if the optimization problem

stabilize L(y, f(x, γ)) + Ω (〈f, f〉K)

subject to C{f, X} ≤ d
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has a saddle point f , it admits an expansion of the form

f(x) =

n
∑

i=1

αik(xi, x).

In contrast to the optimization in RKHS this optimization does unfortu-
nately not allow the transformation into the dual problem. Therefore, in
each optimization iteration one must recalculate all kernel calculations and
dot products during the calculation of the loss function anew. Hence, the
RKKS optimization problem might be stated as

stabilize f∈K

1

n

n
∑

i=1

(yi − f(xi))
2

subject to f ∈ L ⊂ span{αik(xi, ·)}

where L is a subspace of the complete search space [23]. If this problem should
be solved, it can clearly be seen that for non-PSD or indefinite kernels we have
to deal with the original constrained optimization problem. This problem
cannot be solved as efficiently as the dual form known from positive definite
SVM. Moreover, the solution need not to be unique any more [23]. SVM
based on learning in Krĕın spaces are therefore hardly feasible for real-world
problems.

4.3 Learning with Relevance Vector Machines

Since learning in Krĕın spaces is much harder than learning in Hilbert spaces,
we will discuss an alternative approach derived from sparse Bayesian learning
in this section. The Relevance Vector Machine (RVM) [35] produces sparse
solutions using an improper hierarchical prior and optimizing over hyper
parameters. One might define these hyper parameters as the parameters
of a Gaussian Process’ covariance function. The main purpose of RVM is
the direct prediction of probabilistic values instead of crisp classifications.
For SVM, complex post processing steps like Platt’s scaling [24] must be
performed in order to derive probabilistic predictions. Even then, examples
could be constructed where such post processing approaches will fail. In
contrast, the RVM is based on a probabilistic framework which directly allows
to predict the correct values. During the last years, additional research was
done to further improve these probabilistic RVM predictions [25].

The main advantage to us, however, is the fact that Relevance Vector
Machines depend on basis functions which do not need to fulfill Mercer’s
condition, hence they do not need to be positive semidefinite.
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The RVM is, like the SVM, a sparse linear model, i. e. a linear combina-
tion of a set of basis functions Φi(x):

f(x) =
n

∑

i=1

αiΦi(x).

The prior on the weights is independent Gaussian, p(α|A) ∼ N (0, A−1),
with separate precision hyper parameters A = diag[a1, . . . , an]. The output
noise is assumed to be zero mean i.i.d. Gaussian of variance σ2 such that
p(y|X, α, σ2) ∼ N(f, σ2I). Learning is achieved by maximizing the marginal
likelihood

p(y|X, A, σ2) =

∫

p(y|X, α, σ2)p(α|A)dα.

Sparsity is achieved since most of the parameters ai usually become infi-
nite during the optimization. The corresponding basis functions are then
removed. The remaining basis functions on training vectors are called rele-
vance vectors. Please refer to [35] for more details.

It should be pointed out that it is a common choice to use the same
basis function Φ(x) for all training examples, often a RBF kernel with fixed
parameter σ. There is, however, no need for such a fixed basis function
and indeed it is even possible to use basis functions which would not lead
to a positive semidefinite kernel matrix. Therefore, we use a RVM in our
comparison experiments for non-positive semidefinite kernel functions.

5 Evolutionary Computation for Large Mar-

gin Optimization

Since traditional SVM are not able to optimize for non-positive semidefinite
kernel functions and RVM are not feasible for real-world problems, it is a very
appealing idea to replace the usual quadratic programming approaches by an
evolution strategies (ES) optimization [2]. The used optimization problem is
the dual problem for non-linear separation of non-separable data developed in
the last sections (Problem 4). Of course it would also be possible to directly
optimize the original form of our optimization problem depicted in Problem
1. That is, we could directly optimize the weight vector w and the offset b. As
mentioned before, there are two drawbacks: first, the costs of calculating the
fitness function would be much higher for the original optimization problem
since the fulfillment of all n constraints must be recalculated for each new
hyperplane. It is a lot easier to check if all 0 ≤ αi ≤ C apply. Instead
of this we would have to apply the mapping Φ explicitely for each training
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example (which would not be possible for infinite mappings like the mapping
of the RBF kernel) and we would have to calculate the dot product in ∀i :
yi (〈w, xi〉 + b) ≥ 1 from equation (3) each iteration anew. Second, it would
not be possible to allow non-linear learning with efficient kernel functions in
the original formulation of the problem. Finally, the kernel matrix K with
Kij = k (xi, xj) can be calculated beforehand and the training data is never
used during optimization again. This further reduces the needed runtime for
optimization since the kernel matrix calculation is done only once and no dot
product calculations are necessary during the optimization.

This is a nice example for a case, where transforming the objective func-
tion beforehand is both more efficient and allows enhancements which would
not have been possible before. Transformations of the fitness functions be-
came a very interesting topic recently in evolutionary algorithms research
[33].

5.1 evoSVM

We developed a support vector machine based on evolution strategies opti-
mization (evoSVM). Individuals are the real-valued vectors α and mutation
is performed by adding a Gaussian distributed random variable with stan-
dard deviation C/10. In addition, a variance adaptation is conducted during
optimization (1/5 rule [26]). Crossover probability is high (0.9). We use
tournament selection with a tournament size of 0.25 multiplied by the popu-
lation size. The initial individuals are random vectors with 0 ≤ αi ≤ C. The
maximum number of generations is 10000 and the optimization is terminated
if no improvement occurred during the last 10 generations. The population
size is 10. In addition to the evoSVM described here, we also tried different
mutation schemes and a support vector machine based on Particle Swarm
Optimization [13]. Please refer to [19] for further information on the different
results.

6 Experiments and Results

In this section we try to evaluate the proposed evolutionary optimization
SVM. We compare our implementation to the quadratic programming ap-
proaches usually applied to large margin problems. The experiments demon-
strate the competitiveness in terms of the original optimization problem, the
classification error minimization, the runtime, and the robustness.

In order to compare the evolutionary SVM described in this paper with
standard SVM implementations, we also applied two other SVM on all data
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sets. Both SVM use a slightly different optimization technique based on
quadratic programming. The used implementations were mySVM [28] and
LibSVM [5]. The latter is an adaptation of the widely used SV M light [12].
Especially for the non-PSD case we also applied a RVM learner [35] on all
data sets which should provide better results for this type of kernel func-
tions. All experiments were performed with the machine learning environ-
ment Yale [20]4.

6.1 Data Sets

We apply the discussed evoSVM as well as the other SVM implementations on
two synthetical and six real-world benchmark data sets. The data set Spiral
consists of two intertwingling spirals of different classes. For checkerboard,
the data set consists of two classes layed out in a 8 × 8 checkerboard. In
addition, we use six benchmark data sets from the UCI machine learning
repository [21] and the StatLib data set library [32], because they already
define a binary classification task, consist of real-valued numbers only and do
not contain missing values. Therefore, we did not need to perform additional
preprocessing steps which might introduce some bias. The properties of all
data sets are summarized in Table 1. The default error corresponds to the
error a lazy default classifier would make by always predicting the major class.
Classifiers must produce lower error rates in order to learn at all instead of
just guessing.

We use a RBF kernel for all SVM and determine the best parameter value
for σ with a grid search parameter optimization for mySVM. This ensures
a fair comparison since the parameter is not optimized for the evolutionary
SVM. Possible parameters were 0.001, 0.01, 0.1, 1 and 10. The optimal value
for each data set is also given in Table 1. For the non-PSD experiments
we used an Epanechnikov kernel function with parameters σE and d. The
optimized values are also given in Table 1.

6.2 Comparison for the Objective Function

The first question is if the evolutionary optimization approach is able to
deliver comparable results with respect to the objective function, i.e. the
dual optimization problem 4. We applied all SVM implementations on all
data sets and calculated the value for the objective function.

In order to determine the objective function values of all methods we
perform a k-fold cross validation. That means that the data set T is divided

4http://yale.sf.net/
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Data set n m Source σ σE d Default

Spiral 500 2 Synthetical 1.000 11.40 8.80 50.00

Checkerboard 300 2 Synthetical 1.000 9.75 3.00 50.00

Liver 346 6 UCI 0.010 218.61 4.74 42.03

Sonar 208 60 UCI 1.000 5.23 9.00 46.62

Diabetes 768 8 UCI 0.001 998.99 2.56 34.89

Lawsuit 264 4 StatLib 0.010 195.56 8.30 7.17

Lupus 87 3 StatLib 0.001 896.28 6.27 40.00

Crabs 200 7 StatLib 0.100 29.37 2.61 50.00

Table 1: The evaluation data sets. n is the number of data points, m is
the dimension of the input space. The kernel parameters σ, σE , and d were
optimized for the comparison SVM learner mySVM. The last column contains
the default error, i. e. the error for always predicting the major class.

into k disjoint subsets Ti. For each i ∈ {1, . . . , k} we use T\Ti as training set
and the remaining subset Ti as test set. If Fi is the value for the objective
function on the training set T\Ti we calculate the average value

F =
1

k

k
∑

i=1

Fi

|Ti|
(7)

over all training sets in order to measure the performance and a standard
deviation. In our experiments we choose k = 20, i. e. for each method the
average and standard deviation of 20 different runs is reported.

Table 2 shows the results. It can clearly be seen that for all data sets
the evoSVM approach delivers statistically significant higher values than the
other SVM approaches in comparable time.

6.3 Comparison for Positive Kernels

In this section we examine the generalization performance of all SVM imple-
mentations for a regular positive semidefinite kernel function (a radial basis
function kernel).

We again use k-fold cross validation for the calculation of the generaliza-
tion error. This time, we calculate Ei as the number of wrong predictions on
test set Ti which leads to the average classification error of

E =
1

k

k
∑

i=1

Ei

|Ti|
(8)
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Data set Algorithm Objective Function T[s]

evoSVM 99.183 ± 5.867 11

Spiral mySVM −283.699 ± 7.208 6

LibSVM −382.427 ± 12.295 7

evoSVM 94.036 ± 1.419 4

Checkerboard mySVM −114.928 ± 1.923 2

LibSVM −127.462 ± 1.595 3

evoSVM 103.744 ± 7.000 5

Liver mySVM −1301.563 ± 84.893 3

LibSVM −1640.546 ± 80.228 3

evoSVM 48.436 ± 2.937 3

Sonar mySVM −558.333 ± 31.249 2

LibSVM −491.039 ± 26.196 2

evoSVM 209.491 ± 14.003 10

Diabetes mySVM −90.856 ± 3.566 8

LibSVM −108.242 ± 3.886 7

evoSVM 80.024 ± 18.623 3

Lawsuit mySVM −8790.429 ± 308.996 1

LibSVM −9061.420 ± 303.227 1

evoSVM 29.074 ± 2.582 1

Lupus mySVM −603.404 ± 52.356 1

LibSVM −504.564 ± 41.593 1

evoSVM 32.413 ± 1.231 2

Crabs mySVM −90.856 ± 3.566 1

LibSVM −108.242 ± 3.886 1

Table 2: Comparison of the different implementations with regard to the
objective function (the higher the better). The results are obtained by a
20-fold cross validation, the time is the cumulated time for all runs.
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We again use k = 20 in our experiments.
Table 3 summarizes the results for C = 1. This value corresponds to

1/ (1 −
∑

Kii) which is a successful heuristic for determining C proposed
by [9]. It can clearly be seen that the evoSVM leads to classification errors
comparable to those of the quadratic programming counterparts (mySVM
and LibSVM).

The reason for slightly higher errors in some of the predictions of the
quadratic programming approaches is probably a too aggressive termination
criterion. Although this termination behavior further reduces runtime for
mySVM and LibSVM, the classification error is often increased. On the
other hand, for the cases, where the evoSVM yields higher errors, the reason
probably is a higher degree of overfitting due to the better optimization of
the dual problem (please refer to Section 6.2). This can easily be augmented
by lower values of C.

Please note that the standard deviations of the errors achieved with
the evolutionary SVM are similar to the standard deviations achieved with
mySVM or LibSVM. We can therefore conclude that the evolutionary op-
timization is as robust as the quadratic programming approaches and dif-
ferences mainly derive from different subsets for training and testing due to
cross validation instead of the used randomized heuristics.

6.4 Comparison for Non-positive Kernels

We compared the different implementations and a relevance vector machine
on all data sets for a non positive kernel function. The Epanechnikov kernel
was used for this purpose with kernel parameters as given in Table 1. These
parameters are optimized for the SVM implementation mySVM in order to
ensure fair comparisons. Table 4 summarizes the results, again for C = 1
which is also the heuristically best value for the Epanechnikov kernel.

It should be noticed that the runtime of the Relevance Vector Machine
implementation is not feasible for real-world applications. Even on the com-
paratively small data sets the RVM needs more than 60 days in some of the
cases for all of the twenty learning runs. Although very competitive com-
pared to the other SVM approaches, the RVM was unfortunately not able to
deliver the best results for any of the data sets.

It can also be noticed that the evoSVM variant frequently outperforms the
competitors on all data sets. While the LibSVM was hardly able to generate
models better than the default model the mySVM delivers surprisingly good
predictions even for the non-PSD kernel function. However, especially for
the data sets Spiral, Checkerboard, Liver, Sonar, and Crabs the results of
the evoSVM are significantly better than all competitors.
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Data set Algorithm Error T[s]

evoSVM 16.40 ± 4.54 11

Spiral mySVM 17.20 ± 4.58 6

LibSVM 17.80 ± 3.94 7

evoSVM 22.67 ± 4.90 4

Checkerboard mySVM 24.00 ± 6.29 2

LibSVM 23.00 ± 5.04 3

evoSVM 33.92 ± 6.10 5

Liver mySVM 31.31 ± 5.86 3

LibSVM 33.33 ± 4.51 3

evoSVM 16.40 ± 9.61 3

Sonar mySVM 14.50 ± 9.61 2

LibSVM 13.98 ± 7.65 2

evoSVM 25.52 ± 4.30 10

Diabetes mySVM 23.83 ± 4.46 8

LibSVM 24.48 ± 4.81 7

evoSVM 31.00 ± 11.08 3

Lawsuit mySVM 29.50 ± 5.56 1

LibSVM 36.72 ± 2.01 1

evoSVM 23.89 ± 14.22 1

Lupus mySVM 24.17 ± 12.87 1

LibSVM 24.17 ± 12.87 1

evoSVM 3.50 ± 3.91 2

Crabs mySVM 3.00 ± 2.45 1

LibSVM 3.50 ± 3.91 1

Table 3: Comparison of the different implementations with regard to the
classification error (the lower the better). The results are obtained by a
20-fold cross validation, the time is the cumulated time for all runs.
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Data set Algorithm Error T[s]

evoSVM 16.00 ± 4.38 4

Spiral mySVM 46.20 ± 6.56 6

LibSVM 51.00 ± 1.00 2

RVM 19.80 ± 3.16 2942468

evoSVM 23.00 ± 3.56 1

Checkerboard mySVM 40.33 ± 4.99 1

LibSVM 45.33 ± 1.63 1

RVM 38.00 ± 7.48 336131

evoSVM 31.29 ± 5.90 3

Liver mySVM 38.32 ± 7.84 1

LibSVM 42.03 ± 1.46 1

RVM 40.58 ± 1.75 203093

evoSVM 15.40 ± 3.66 3

Sonar mySVM 46.62 ± 1.62 2

LibSVM 46.62 ± 1.62 2

RVM 29.79 ± 7.29 105844

evoSVM 32.68 ± 4.77 3

Diabetes mySVM 32.54 ± 2.82 4

LibSVM 34.89 ± 0.34 6

RVM 32.76 ± 1.89 5702491

evoSVM 29.89 ± 10.71 2

Lawsuit mySVM 30.93 ± 10.66 2

LibSVM 36.72 ± 2.01 2

RVM 37.89 ± 3.83 106697

evoSVM 31.81 ± 11.64 2

Lupus mySVM 34.44 ± 18.51 2

LibSVM 40.00 ± 6.33 1

RVM 33.06 ± 10.07 5805

evoSVM 4.00 ± 4.90 1

Crabs mySVM 11.00 ± 7.35 1

LibSVM 50.00 ± 0.00 1

RVM 13.50 ± 7.43 150324

Table 4: Comparison of the different implementations with regard to the
classification error (the lower the better) for a non-positive semidefinite ker-
nel function (Epanechnikov). The results are obtained by a 20-fold cross
validation, the time is the cumulated time for all runs.
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The following is a brief summarization of the empirical results:

• The evolutionary optimization scheme frequently yields better values
for the original objective function.

• The evolutionary optimization scheme lead to comparable results in
similar time with respect to classification performance.

• For the case of non-positive semidefinite kernel functions, the evolution-
ary optimization scheme clearly outperform both traditional support
vector machines and a relevance vector machine.

7 Conclusion

In this paper, we connected evolutionary computation with statistical learn-
ing theory. The idea of large margin methods was very successful in many
applications from machine learning and data mining. We used the most
prominent representative of this paradigm, namely Support Vector Machines,
and employed evolution strategies in order to solve the constrained optimiza-
tion problem at hand.

An interesting property of large margin methods is that the runtime for
fitness evaluation is reduced by transforming the problem into the dual prob-
lem. In our case, the algorithm is both faster and provides space for other
improvements like incorporating a kernel function for non-linear classification
tasks. This is a nice example how a transformation into the dual optimization
problem can also be exploited by evolutionary algorithms.

With respect to the objective function, the evolutionary SVM always
outperform their quadratic counterparts. With respect to the generalization
ability (prediction accuracy), this leads to at least as accurate results as for
their competitors. We can conclude that evolutionary algorithms proved as
reliable as other optimization schemes for this type of problems. Beside the
inherent advantages of evolutionary algorithms (e. g. parallelization, multi-
objective optimization of training error and capacity) it is now also possible
to employ non-positive semidefinite or indefinite kernel functions which would
lead to unsolvable problems for other optimization techniques. As the exper-
iments have shown, a SVM based on evolutionary computation is the first
practical solution for this type of problem.
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