
Journal of Machine Learning Research ? (2007) ?–? Submitted 11/05; Revised 10/06; Published ??

Integrating Naı̈ve Bayes and FOIL∗

Niels Landwehr1 LANDWEHR@INFORMATIK.UNI-FREIBURG.DE

Kristian Kersting1 KERSTING@INFORMATIK.UNI-FREIBURG.DE
1Department of Computer Science
Albert-Ludwigs-University Freiburg
Georges-Köhler-Allee 79
79110 Freiburg, Germany
Luc De Raedt2,1 LUC.DERAEDT@CS.KULEUVEN.BE
2Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200 A
B-3001 Heverlee, Belgium

Editor: Stefan Wrobel

Abstract
A novel relational learning approach that tightly integrates the naı̈ve Bayes learning scheme with
the inductive logic programming rule-learner FOIL is presented. In contrast to previous combina-
tions that have employed naı̈ve Bayes only for post-processing the rule sets, the presented approach
employs the naı̈ve Bayes criterion to guide its search directly. The proposed technique is imple-
mented in the NFOIL and TFOIL systems, which employ standard naı̈ve Bayes and tree augmented
naı̈ve Bayes models respectively. We show that these integrated approaches to probabilistic model
and rule learning outperform post-processing approaches. They also yield significantly more accu-
rate models than simple rule learning and are competitive with more sophisticated ILP systems.
Keywords: rule learning, naı̈ve Bayes, statistical relational learning, inductive logic programming

1. Introduction

The study of learning schemes that lie at the intersection of probabilistic and logic or relational
learning has received a lot of attention recently (De Raedt and Kersting, 2003; Getoor and Taskar,
2007). Whereas typical approaches upgrade existing probabilistic learning schemes to deal with
relational or logical data (such as Probabilistic Relational Models (Getoor et al., 2001) or Stochastic
Logic Programs (Muggleton, 1996)), we start from an inductive logic programming system and
extend it with a probabilistic model. More specifically, we start with the simplest approaches from
both domains, the inductive logic programming system FOIL (Quinlan, 1990) and naı̈ve Bayes, and
integrate them in the NFOIL system. As the strong independence assumption of naı̈ve Bayes can
be problematic in some domains, we furthermore investigate a generalization of naı̈ve Bayes known
as tree augmented naı̈ve Bayes in the TFOIL system. Indeed, this methodology could be extended
to learning full Bayesian networks; however, the advantage of combining such simple learning

∗. This is a significant extension of a paper that appeared in the Proceedings of the Twentieth National Conference on
Artificial Intelligence (Landwehr et al., 2005).

c©2007 Niels Landwehr and Kristian Kersting and Luc De Raedt.

LANDWEHR, KERSTING, DE RAEDT

schemes is that the resulting probabilistic logical or relational model is easier to understand and to
learn.

In relational learning or inductive logic programming, one typically induces a set of rules (so-
called clauses). The resulting rule-set then defines a disjunctive hypothesis, as an instance is clas-
sified as positive if it satisfies the conditions of one of the rules. On the other hand, a probabilistic
model defines a joint probability distribution over a class variable and a set of “attributes” or “fea-
tures”, and the type of model constrains the joint probability distributions that can be represented.
A straightforward but powerful idea to integrate these two approaches is to interpret the clauses or
rules as propositional “features” over which a joint probability distribution can be defined. Using
naı̈ve Bayes as the probabilistic model, this translates into the statement that “clauses are indepen-
dent”. This idea is not really new. It has been pursued by Pompe and Kononenko (1995) and Davis
et al. (2004). However, in these existing approaches for combining ILP and naı̈ve Bayes, one learns
the model in two separate steps. First, the features or clauses are generated (for example using an
existing inductive logic programming system such as ILP-R (Pompe and Kononenko, 1995)) and
then the probability estimates for the naı̈ve Bayes are determined. This actually corresponds to a
static propositionalization approach, where the propositionalized problem is learned using naı̈ve
Bayes.

We propose a different and novel approach, in which feature construction is tightly integrated
with naı̈ve Bayes. The advantage of such a dynamic propositionalization is that the criterion ac-
cording to which the features are generated is that of naı̈ve Bayes. Our intention in this paper is
to investigate how dynamic propositionalization compares to static propositionalization approaches
that use naı̈ve Bayes only to post-process the rule set. More precisely, we will investigate:

(Q1) Is there a gain in predictive accuracy of a dynamic propositionalization approach over its ILP
baseline?

(Q2) If so, is the gain of dynamic propositionalization over its baseline larger than the gain of static
propositionalization approaches?

(Q3) Can performance be improved by using a more expressive probabilistic model, such as tree
augmented naı̈ve Bayes?

(Q4) Is a dynamic propositionalization based on a simple rule learner competitive with advanced
ILP approaches?

(Q5) Relational naı̈ve Bayes methods such as 1BC2 (Flach and Lachiche, 2004) essentially employ
all clauses within a given language bias as features in a probabilistic model and thus perform
static propositionalization. Does dynamic propositionalization employ fewer features and
perform better than these approaches?

To answer Questions Q1–Q5, we present the NFOIL and TFOIL systems. The former is the
first system reported in the literature that tightly integrates feature construction and naı̈ve Bayes (De
Raedt and Kersting, 2004; Landwehr et al., 2005). It guides the structure search by the probabilis-
tic score of naı̈ve Bayes. This contrasts with static propositionalization approaches, in which the
criteria employed for feature generation and classification are different.

NFOIL essentially performs a covering search in which one feature (in the form of a clause) is
learned after the other, until adding further features does not yield improvements. The search heuris-
tic is based on class conditional likelihood and clauses are combined with naı̈ve Bayes. TFOIL is an

2

INTEGRATING NAÏVE BAYES AND FOIL

extension of NFOIL that employs a tree augmented naı̈ve Bayes, that is, it relaxes the naı̈ve Bayes
assumption to allow additional probabilistic dependencies between clauses.

Recently, two other approaches that integrate the search for structural rules and a probabilistic
model have been proposed. For STRUCTURAL LOGISTIC REGRESSION (Popescul et al., 2003),
aggregated SQL queries are used as features in a logistic regression model. The authors propose an
integrated search algorithm; however, the higher computational cost of training a logistic regression
model allows for a limited search only. In the experimental evaluation, the implementation of
Structural Logistic Regression only searches for clauses with up to two literals, where the first
literal is fixed in advance. Furthermore, no experimental comparison to static propositionalization
approaches is provided. In 2005, Davis et al. presented the SAYU system, which also learns a set
of first-order rules that are combined in a probabilistic model. Clauses are selected according to
the area under the precision-recall curve. The parameters of the probabilistic model are estimated
to maximize the likelihood. Unlike naı̈ve Bayes and NFOIL, SAYU does not handle multi-class
problems (cf. the discussing of related work in Section 7).

The rest of the paper is organized as follows. Section 2 introduces some basic concepts from in-
ductive logic programming and the simple first-order rule learning algorithm FOIL. In Section 3, we
lift FOIL’s problem setting to the probabilistic case and introduce a combined probabilistic/logical
model for this setting. Section 4 shows how the NFOIL algorithm for learning such a model can
be obtained by modifying certain components of the FOIL algorithm. Section 5 discusses how to
extend the NFOIL algorithm to incorporate tree augmented naı̈ve Bayes, resulting in the TFOIL
system. In Section 6 we experimentally evaluate the proposed methods on benchmark datasets from
four different domains and specifically investigate how it compares to static propositionalization
approaches. Finally, we conclude and touch upon related work.

2. FOIL: First Order Inductive Learning

The problem that we tackle in this paper is a probabilistic formulation of the traditional inductive
logic programming (ILP) problem. In ILP, the goal is to induce first-order clausal hypotheses from
a relational description of a set of labeled examples and background knowledge. As an illustrating
example, consider the task of inducing a theory that distinguishes between mutagenic and non-
mutagenic chemical compounds based on the description of their structure (cf. the well-known
mutagenicity problem (Srinivasan et al., 1996)):

Example 1 Consider the following background theory B:

atom(189, d189 1, c, 22,−0.11) bond(189, d189 1, d189 2, 7)
atom(189, d189 2, c, 22,−0.11) bond(189, d189 2, d189 3, 7)
atom(189, d189 3, c, 27, 0.02) bond(189, d189 3, d189 4, 7)
.

atom(189, d189 26, o, 40,−0.38) bond(189, d189 18, d189 26, 2)

and the example mutagenic(189). A possible hypothesis for this domain is

mutagenic(X)← atom(X, A, o, 40, C), bond(X, B,A, 2)
mutagenic(X)← atom(X, A, c, 22, C), atom(X, B,E, 22, 0.02), bond(X, A,B, 7)

3

LANDWEHR, KERSTING, DE RAEDT

In the example, atom/5 and bond/4 are predicates (of arity 5 and 4 respectively) that identify
relations, numbers and lower-case strings like 189, c, d189 1 are constants that identify objects and
upper-case letters like X, A,B,C are logical variables. Logical atoms are predicates together with
their arguments, for example bond(189, d189 1, d189 2, 7). Definite clauses, such as

mutagenic(X)← atom(X, A, o, 40, C), bond(X, A,B, 2),

consist of a head mutagenic(X) and a body atom(X, A, o, 40, C), bond(X, A,B, 2). The logi-
cal atoms in the body are also called literals. Facts are definite clauses with an empty body, e.g.,
atom(189, d189 1, c, 22,−0.11). A definite clause is called ground if it does not contain any vari-
ables. A hypothesis is a set of clauses. A hypothesis is said to entail an example given the back-
ground knowledge if the example is a logical consequence of the definite clauses in the hypothesis
and background knowledge. In the example, mutagenic(189) is entailed by the hypothesis given
the background knowledge.

(Probabilistic) inductive logic programming problems can be formalized in a general way as
follows (De Raedt and Kersting, 2004):

Given

• a background theory B, in the form of a set of definite clauses h← b1, · · · , bn;

• a set of examples E, in the form of ground facts, classified into classes C;

• a language of clauses L, which specifies the clauses that are allowed in hypotheses;

• a covers(e,H,B) function, which returns the classification covers(e,H,B) of an example
e, w.r.t. a hypothesis H , and the background theory B;

• a score(E,H, B) function, which specifies the quality of the hypothesis H w.r.t. the data E
and the background theory;

Find
arg max

H⊂L
score(E,H, B) .

Traditional approaches to inductive logic programming (Muggleton and De Raedt, 1994) tackle
a concept-learning problem, in which there are typically two classes, and the goal is to find a com-
plete and consistent concept-description. This can be formalized within our framework by making
the following choices for covers and score:

• covers(e,H,B) = positive if B ∪H |= e (i.e., e is entailed by B ∪H);
otherwise, covers(e,H,B) = negative;

• score(E,H, B) = training set accuracy (or a related measure).

Using this definition of coverage, the hypothesis given in Example 1 covers the example
mutagenic(189) together with the background knowledge. This setting is incorporated in many
well-known inductive logic programming systems such as FOIL (Quinlan, 1990), GOLEM (Mug-
gleton and Feng, 1990), PROGOL (Muggleton, 1995) and TILDE (Blockeel and De Raedt, 1997).

4

INTEGRATING NAÏVE BAYES AND FOIL

Algorithm 1 Generic FOIL algorithm.
Initialize H := ∅
repeat

Initialize c := p(X1, · · · , Xn)←
repeat

for all c′ ∈ ρ(c) do
compute score(E,H ∪ {c′}, B)

end for
let c be the c′ ∈ ρ(c) with the best score

until stopping criterion
add c to H
E := update(E,H)

until stopping criterion
output H

FOIL, like many inductive logic programming systems, follows a greedy and incremental ap-
proach to induce a hypothesis. Such an algorithm is described in Algorithm 1. It repeatedly searches
for clauses that score well with respect to the data set and the current hypothesis and adds them to
the hypothesis. In the update function, the set of training examples can be updated after a clause has
been learned. In the inner loop, the algorithm greedily searches for a clause that scores well. To this
aim, it employs a general-to-specific hill-climbing search strategy. To generate the specializations of
the current clause c, a so-called refinement operator ρ under θ-subsumption is employed. A clause
c1 θ-subsumes a clause c2 if and only if there is a substitution θ such that c1θ ⊆ c2. A substitution
is a set {V1/t1, . . . , Vl/tl} where the Vi are different variables and the ti are terms, and the applica-
tion of the substitution replaces the variables V1, . . . , Vl by the corresponding terms t1, . . . , tl. The
most general clause is p(X1, · · · , Xn) ← where p/n is the predicate being learned and the Xi are
different variables. The refinement operator specializes the current clause h ← b1, · · · , bn. This
is typically realized by either adding a new literal l to the clause yielding h ← b1, · · · , bn, l or by
applying a substitution θ yielding hθ ← b1θ, · · · , bnθ.

This type of algorithm has been successfully applied to a wide variety of problems in inductive
logic programming. In classical FOIL, it is further simplified to a separate-and-conquer approach:
examples that are covered by a learned clause are removed from the training data, and the score of
a clause can be computed without respect to the current hypothesis; that is, score(E,H ∪ {c′}, B)
simplifies to score(E, c′, B). Many different scoring functions and stopping criteria have been
employed. The original FOIL algorithm uses information gain based on the number of positive and
negative tuples bound to clauses as the scoring function (Quinlan, 1990), and a stopping criterion
based on the minimum description length principle (Rissanen, 1978). MFOIL, a variant of FOIL
that was particularly designed to cope with noise in the training data, uses the m-estimate for scoring
clauses and a significance-based stopping criterion (Lavrač and Džeroski, 1994).

3. Integrating Naı̈ve Bayes and FOIL: Problem Specification

Let us now discuss how to integrate the naı̈ve Bayes method in FOIL’s problem specification. This
will be realized by modifying the covers and score functions in the inductive logic programming

5

LANDWEHR, KERSTING, DE RAEDT

setting. All other elements, such as the examples, background theory and language of clauses L will
– in principle – be untouched. However, the set of clauses defining a hypothesis is augmented with a
set of parameters that quantify the probabilistic model. For easy of exposition, we will first discuss
this for the case that the clauses are combined using naı̈ve Bayes, that is, the NFOIL system. The
extension to the tree-augmented naı̈ve Bayes model (TFOIL) will be presented in Section 5.

3.1 A Probabilistic covers Function

In the setting of learning from probabilistic entailment (De Raedt and Kersting, 2004), the notion of
coverage is replaced by a probability. We will use P to denote a probability distribution as in P(x),
and P to denote a probability value as in P (x), where x is a state of the random variable x.

The probabilistic covers relation is then defined as the likelihood of the example, conditioned
on the hypothesis and the background theory:

covers(e,H,B) = P (e | H,B), (1)

where B is defined as before and H = (HC ,Hλ) is an augmented hypothesis, consisting of a clause
set HC and an associated probabilistic model Hλ. An example e is of the form p(X1, · · · , Xn)θ =
true or p(X1, · · · , Xn)θ = false. Abusing notation—when the context is clear—we will some-
times refer to the example as θ, and say that the random variable p (class label) takes on the value
pθ (true or false) for example θ.

We now still need to define P (e | H,B). The key idea for realizing this is that we interpret the
clauses in H together with the example e as queries or features. More formally, let H contain a set
of clauses defining the predicate p. Then for each clause c of the form

p(X1, · · · , Xn)← b1, · · · , bn

we view the query qc =← b1, · · · , bn as a boolean feature or attribute. Applied to an example θ these
queries become instantiated, qcθ =← b1θ, · · · , bnθ, and either succeed or fail in the background
theory B. As for the class label, we will say that qcθ is the observed (boolean) value of the random
variable qc.

Example 2 Assume that the background theory is given as in Example 1, and the query qc under
consideration is

← atom(X, A, o, 40, C), bond(X, B,A, 2)

For the example θ = {X/189}, the instantiated clause

← atom(189, A, o, 40, C), bond(189, B, A, 2)

succeeds in the background theory, so the boolean random variable qc takes on value qcθ = true
for this example.

The probabilistic model Hλ of H specifies a distribution over the random variables p and qc. The
observed (boolean) value of qc is qcθ. We now define

P (e | H,B) = Pλ(pθ|q1θ, · · · , qkθ)

=
Pλ(q1θ, · · · , qkθ|pθ) · Pλ(pθ)

Pλ(q1θ, · · · , qkθ)

6

INTEGRATING NAÏVE BAYES AND FOIL

where HC = {q1, ..., qk} and Pλ(p,q1, ...,qk) is the distribution defined by Hλ.
Now it becomes possible to state the naı̈ve Bayes assumption

Pλ(q1, ...,qk|p) =
∏

i

Pλ(qi|p)

and apply it to our covers function (Equation 1):

P (e | H,B) =
∏

i Pλ(qiθ|pθ) · Pλ(pθ)
Pλ(q1θ, · · · , qkθ)

At the same time, this equation specifies the parameters Hλ of the augmented model H , which are
the distributions Pλ(qi|p) and the prior class distribution Pλ(p) (note that Pλ(q1, ...,qk) can be
computed by summing out).

Example 3 Reconsider the mutagenicity example, and assume that the hypothesis is as sketched
before. Then the queries q1 and q2 are

mutagenic(X)← atom(X, A, o, 40, C), bond(X, B,A, 2)
mutagenic(X)← atom(X, A, c, 22, C), atom(X, B,E, 22, 0.02), bond(X, A,B, 7)

and the target predicate p is “mutagenic(X)”. Now assume a naı̈ve Bayes model with probability
distributions Pλ(qi|p) given as

Pλ(p = t) = 0.6
Pλ(q1 = t|p = t) = 0.7 Pλ(q1 = t|p = f) = 0.4
Pλ(q2 = t|p = t) = 0.2 Pλ(q2 = t|p = f) = 0.1

Summing out yields

Pλ(q1 = t,q2 = t) = 0.10 Pλ(q1 = t,q2 = f) = 0.48
Pλ(q1 = f,q2 = t) = 0.06 Pλ(q1 = f,q2 = f) = 0.36

where t (f) denotes true (false). For the positively labeled example θ = {X/189}, q1 succeeds
and q2 fails: pθ = true, q1θ = true, q2θ = false. Thus,

P (e | H,B) =
Pλ(q1θ|pθ) · Pλ(q2θ|pθ) · Pλ(pθ)

Pλ(q1θ, q2θ)
=

0.7 · 0.8 · 0.6
0.48

= 0.7

3.2 The score Function

As scoring function, we employ the likelihood P (E | H,B) of the data given the model and the
background knowledge, and we assume also that the instances are independently and identically
distributed (i.i.d.). So, we want to find the hypothesis H that maximizes

P (E | H,B) =
∏
e∈E

P (e|H,B) .

To evaluate a set of clauses HC in the generic FOIL algorithm, the scoring function has to be
changed accordingly, to

score(E,HC , B) = P (E | H,B)

where HC has been augmented with an optimal probabilistic model Hλ. This is discussed in more
detail in Section 4.

7

LANDWEHR, KERSTING, DE RAEDT

3.3 Multi-Class Problems

Because we started from ILP, we have so far formulated the learning problem as a binary classifi-
cation task. In ILP, multiple classes are usually encoded with a predicate p(X, C) where C is an
output variable that is instantiated with a class ci ∈ {c1, ..., cm}. One hypothesis is then induced
per class using target predicate p(X, ci). However, combining these hypothesis to classify new
instances is generally non-trivial, as conflict resolution strategies are needed to resolve conflicting
predictions from the individual hypotheses. The same holds for approaches that use ILP to generate
a rule set (Pompe and Kononenko, 1995; Davis et al., 2004) or an ILP technique such as bottom
clauses to generate candidate rules for selection (Davis et al., 2005).

On the other hand, probabilistic models such as (tree augmented) naı̈ve Bayes can deal with
multi-class problems very naturally: the binary class variable is simply replaced by a multi-valued
one. This directly carries over to the integrated model presented above. For a multi-class problem
with classes {c1, ..., cm}, the examples are of the form pθ = p(x, ci) and the random variable p in
the naı̈ve Bayes model takes on some value pθ ∈ {c1, ..., cm}. No conflict resolution strategies are
needed, as the naı̈ve Bayes model directly returns a class ci ∈ {c1, . . . , cm}. Handling multi-class
problems is part of the NFOIL and TFOIL implementations and we report on experimental results
in Section 6.

4. Integrating Naı̈ve Bayes and FOIL: Learning

The goal of learning is to identify a hypothesis H that maximizes the score function. More formally,
the model space under consideration is

H = {(HC ,Hλ)|HC ⊆ L,Hλ ∈MC}

whereMC is the space of all naı̈ve Bayes models over the clauses in HC . The optimization problem
is to find

H∗ = arg max
H

P (E | H,B)

= arg max
HC ,Hλ

P (E | (HC ,Hλ), B),

a hypothesis that jointly optimizes the clause set (structure) and probabilistic model (parameters
such as the Pλ(qi|p) appearing in Example 3). Roughly speaking, the existing approaches pursued
by Pompe and Kononenko (1995) and Davis et al. (2004) solve this task in a two-step process: First,
H∗

C is found (using a standard ILP system, and thus some deterministic score) and fixed; second,
the parameters for the fixed structure are optimized using a probabilistic score (usually, maximum
likelihood):

for all HC ∈ candidates(L) do
compute ilp-score(E,HC , B)

end for
H∗

C = arg maxHC
ilp-score(E,HC , B)

find H∗
λ = arg maxHλ

score(E, (H∗
C ,Hλ), B)

As a consequence, it is unclear which score is being maximized at the global level.

8

INTEGRATING NAÏVE BAYES AND FOIL

A more principled way of solving such optimization problems relies on a nested approach:
Evaluate structures HC which are each augmented with optimal parameters, and select the best
structure H∗

C . Thus, the task of structure selection involves augmenting a given structure with
optimal parameters:

for all HC ∈ candidates(L) do
find H∗

λ = arg maxHλ
score(E, (HC ,Hλ), B)

score(HC) := score(E, (HC ,H∗
λ), B)

end for
H∗

C = arg maxHC
score(HC)

We will follow this more principled approach of guiding the search for the structure directly by
the probabilistic objective function. The rest of this section shows how this can be realized by
modifying the original search technique used in FOIL. This will first be presented for learning the
basic NFOIL model. An extension of the learning algorithm that accounts for the tree augmented
naı̈ve Bayes structure in TFOIL will be discussed in Section 5.

4.1 Adapting FOIL

Like FOIL, NFOIL searches a set of clauses greedily, and a single clause in a general-to-specific
manner using a refinement operator. The main difference in the search technique is that FOIL can
use a separate-and-conquer approach. Because the final model in FOIL is the disjunction of the
learned clauses (where every clause covers a certain subset of examples), it holds that

1. Examples that are already covered do not have to be considered when learning additional
clauses: update(E,H) = E \ covered(H)

2. (Non-recursive) clauses already learned do not need to be considered when scoring additional
clauses: score(E,H ∪ {c′}, B) = score(E, {c′}, B).

Here, score(E, {c′}, B) is some accuracy-related measure such as information gain or the m-
estimate. In NFOIL, such a separate-and-conquer approach is not possible because every clause
can affect the likelihood of all examples. Consequently, the NFOIL algorithm can be obtained from
FOIL by changing two components in the generic FOIL algorithm (see Algorithm 1):

1. The set of examples is not changed after learning a clause: update(E,H) = E.

2. An additional clause c′ has to be scored together with the current model:

score(E,HC ∪ {c′}, B) = P (E | H ′, B)

where H ′ has clauses HC ∪ {c′} and optimal parameters H ′
λ.

We also have to modify the stopping criterion. The most basic stopping criterion for FOIL
stops when all positive examples are covered. This is replaced in NFOIL by stopping if the change
in score when adding a clause falls below a certain threshold. In general, this simple criterion
might lead to overfitting. We therefore also investigated post-pruning the learned hypothesis (see
Section 6). In the experiments, however, this basic stopping criterion worked surprisingly well.

9

LANDWEHR, KERSTING, DE RAEDT

4.2 Parameter Estimation: An Approximation

To evaluate a set of clauses HC = {q1, ..., qk} by score(E,HC , B), one needs to solve the “inner”
optimization problem of finding optimal parameters Hλ for the naı̈ve Bayes model over the random
variables {q1, ...,qk}:

H∗
λ = arg max

Hλ

P (E | H,B)

= arg max
λ

∏
θ∈E

Pλ(pθ|q1θ, · · · , qkθ)

= arg max
λ

∏
θ∈E

∏
j Pλ(qjθ | pθ) · Pλ(pθ)

Pλ(q1θ, ..., qkθ)
(2)

However, these are the parameters maximizing the conditional likelihood of the observed class
labels given the model. Usually, naı̈ve Bayes (as a generative model) is trained to maximize the
likelihood ∏

θ∈E

Pλ(pθ, q1θ, ..., qkθ) =
∏
θ∈E

Pλ(pθ|q1θ, · · · , qkθ) · Pλ(q1θ, ..., qkθ) (3)

=
∏
θ∈E

∏
j

Pλ(qjθ | pθ) · Pλ(pθ).

Maximum likelihood parameters can be computed easily by

Pλ(qi = qi|p = p) =
n(qi = qi,p = p)

n(p = p)

where n(X) are the counts, i.e., the number of examples for which the query X succeeds. However,
there is no closed-form solution for maximum conditional likelihood parameters, and relatively slow
iterative optimization algorithms have to be used.

Could we use the likelihood as defined by Equation (3) as the score? The problem is that this
term is dominated by Pλ(q1θ, ..., qkθ), the likelihood of the propositional dataset that is obtained by
evaluating all features. This likelihood is easily maximized for very non-uniform distributions over
the features values. In fact, it can be maximized to 1 if all features are constant (always succeed or
always fail). Such features are of course completely uninformative with respect to predicting class
labels. In contrast, in Equation (2) the likelihood is corrected by the term Pλ(q1θ, ..., qkθ), and in
this way informative features are selected. Example 4 illustrates this situation for a single feature.
Note that in the setting of parameter estimation from propositional data this problem does not occur
as the distribution over the attribute values is determined by the (fixed) training data and cannot
be changed by the learning algorithm. However, similar considerations apply to feature selection
problems for (propositional) probabilistic models.

Example 4 Consider the following queries q1 and q2:

← true

← perfect-literal(X)

10

INTEGRATING NAÏVE BAYES AND FOIL

Query q1 succeeds on all examples. Assume that query q2 succeeds on all positive and no negative
examples, and that half of the examples are positive. Given maximum likelihood parameters, the
models H1/H2 consisting of only q1/q2 actually have the same likelihood, while conditional likeli-
hood correctly favors H2:
For any example θ,

Pλ(pθ, q1θ) = Pλ(q1θ|pθ) · Pλ(pθ) = 1 · 0.5 = 0.5
Pλ(pθ, q2θ) = Pλ(q2θ|pθ) · Pλ(pθ) = 1 · 0.5 = 0.5

as Pλ(q1θ|pθ) = Pλ(q2θ|pθ) = 1. On the other hand,

Pλ(pθ|q1θ) =
Pλ(q1θ|pθ) · Pλ(pθ)

Pλ(q1θ)
=

1 · 0.5
1

= 0.5

Pλ(pθ|q2θ) =
Pλ(q2θ|pθ) · Pλ(pθ)

Pλ(q2θ)
=

1 · 0.5
0.5

= 1

as Pλ(q1θ) = 1 but Pλ(q2θ) = 0.5.

Furthermore, a similar problem has been noted by Grossman and Domingos (2004) when learn-
ing the structure of Bayesian networks. Here, likelihood maximization leads to over-connected
structures, a problem which is also solved by maximizing conditional likelihood. Because find-
ing maximum conditional likelihood parameters is computationally too expensive, Grossman and
Domingos propose a “mixed” approach: use conditional likelihood as score, but set parameters to
their maximum likelihood values (seen as an approximation to maximum conditional likelihood
values).

For NFOIL, we follow the same approach. Parameters are estimated to maximize the like-
lihood (Equation (3)), while the conditional likelihood, see Equation (2), is retained as score for
selecting the features. Assuming that the naı̈ve Bayes assumption is correct, the maximum likeli-
hood estimates of the parameters will approach the maximum conditional likelihood estimates as
the number of training examples goes to infinity. This is because the maximum likelihood estimate
Pλ(pθ,q1θ, ...,qkθ) approaches the true joint probability P (pθ,q1θ, ...,qkθ) which determines
the true conditional P (pθ|q1θ, ...,qkθ) that also maximizes the conditional likelihood (Friedman
and Goldszmidt, 1996).

This means that parameter estimates are easily obtained by counting, and computational costs
for evaluating a hypothesis are dominated by computing for each query the set of examples on
which it succeeds. Given this information, the computational cost of scoring a partial clause qk+1

in NFOIL is O(C · n) where C is the number of classes and n the number of examples. This
assumes appropriate caching mechanisms on the parameters of {q1, ..., qk} and on partial products
of the scoring function (Equation (2)). Thus, evaluating a clause in NFOIL involves basically
the same computational costs as scoring in FOIL. FOIL, however, profits from its separate-and-
conquer approach; the number of examples is reduced after each iteration. Furthermore, the actual
runtime depends on the path in the search space that is taken by the algorithm, which can be different
for NFOIL because it may learn different clauses. Nevertheless, the computational complexity of
NFOIL is roughly similar to that of FOIL.

11

LANDWEHR, KERSTING, DE RAEDT

Algorithm 2 TFOIL algorithm.
Initialize H := ∅
repeat

Initialize c := p(X1, · · · , Xn)←
repeat

for all c′ ∈ ρ(c) do
for all q ∈ H do

compute s(c′, q) = score(E,H ∪ {c′}, q → c′, B)
end for
let pa(c′) be the q ∈ H with maximum s(c′, q)

end for
let c be the c′ ∈ ρ(c) with maximum s(c′, pa(c′))

until stopping criterion
add c with dependency pa(c′)→ c′ to H

until stopping criterion
output H

5. TFOIL: Relaxing the Naı̈ve Bayes Assumption

The naı̈ve Bayes model employed in NFOIL corresponds to the strong assumption that the proba-
bility of an example satisfying one query is independent of its probability to satisfy another query,
given the class of the example:

Pλ(q1, ...,qk|p) =
∏

i

Pλ(qi|p) (4)

Although it has been shown that naı̈ve Bayes can perform well in practice even if this assumption is
violated, better models can sometimes be constructed by relaxing this strict independence assump-
tion (Friedman and Goldszmidt, 1996). Tree augmented naı̈ve Bayes (TAN) models generalize
naı̈ve Bayes by allowing additional dependencies, but are still significantly more restrictive than
full Bayesian networks. The restriction compared to a full Bayesian network is that the additional
dependencies form a tree (i.e, every query node has at most one additional parent). This means that
the number of parameters of a TAN model is in O(#nodes) as compared to O(2#nodes) for a full
Bayesian network, and learning them is generally easier. In this section, we will discuss the TFOIL
algorithm, which extends the NFOIL algorithm presented above to employ tree augmented naı̈ve
Bayes. Under the TAN assumption, Equation 4 is relaxed to

Pλ(q1, ...,qk|p) =
∏

i

Pλ(qi|p,qpa(i))

where qpa(i) is the additional parent of the node qi in the TAN model. In analogy to Section 3, the
covers function can be re-derived as

covers(E,H, B) =P (e | H,B)

=

∏
i Pλ(qiθ|pθ, qpa(i)θ) · Pλ(pθ)

Pλ(q1θ, · · · , qkθ)
.

12

INTEGRATING NAÏVE BAYES AND FOIL

Otherwise, the problem specification outlined in Section 3 directly carries over to TFOIL.
In contrast to NFOIL, learning a TFOIL model involves the additional task of selecting a TAN

structure over the random variables representing the logical queries. In general, TFOIL follows
the same integrated search strategy as outlined for NFOIL in Section 4. However, when evaluat-
ing a set of clauses HC = {q1, ..., qk} in TFOIL, for every clause qi ∈ HC we have to decide
on a qj = qpa(i) ∈ HC for which a dependency qpa(i) → qi is added. Of course, this could be
accomplished by running the standard TAN structure learning algorithm, which finds a maximum-
likelihood structure in polynomial time (Friedman and Goldszmidt, 1996). However, the incremen-
tal way in which a theory H is learned and query nodes are added to the probabilistic model suggests
a faster, incremental (though heuristic) way of learning the TAN structure. Rather than re-learning
the TAN graph from scratch every time a new candidate clause qi is scored, the subgraph over the
existing hypothesis H = {q1, ..., qi−1} is kept fixed, and all existing clauses qj ∈ H are considered
as possible parents for the clause qi. Out of these candidate graph structures, the one maximizing
score(E,H, B) is chosen, that is, the maximum-likelihood extension of the existing graph on H .

This approach is outlined in Algorithm 2. The function score(E,H ∪ {c′}, q → c′, B) returns
the score of the TAN model over H∪{c′}, where q is the additional parent of c′. For every candidate
clause c′, the best parent pa(c′) is identified and the c′ with highest score is added to H with the
dependency pa(c′) → c′. Comparing Algorithm 2 with the NFOIL algorithm which follows the
template of Algorithm parent of a clause that is added to the model. The computational complexity
of scoring the (k+1)th clause qk+1 in TFOIL is O(C ·k ·n), as all k existing clauses are considered
as possible parents.

6. Experiments

In the following two subsections, we will describe the datasets and algorithms used to experimen-
tally investigate the Questions Q1–Q5 posed in the introduction (cf. Section 1). Section 6.3 then
presents and discusses the results.

6.1 Datasets

We conducted experiments on eight datasets from four domains. Three domains are binary clas-
sification tasks, and one is a multi-class problem. See Table 1 for an overview of the different
datasets.

Mutagenesis (Srinivasan et al., 1996) is a well-known domain for structure-activity relation
prediction. The problem is to classify compounds as mutagenic or not given their chemical structure
described in terms of atoms, bonds, atom charge, and information about atom and bond types that
have been generated by the molecular modeling package QUANTA. No additional numeric or hand-
crafted features of the compounds are used. The dataset is divided into two sets: a regression
friendly (r.f.) set with 188 entries (125 positives, 63 negatives) and a regression unfriendly (r.u.) set
with 42 entries (13 positives and 29 negatives).

For Alzheimer (King et al., 1995), the aim is to compare 37 analogues of Tacrine, a drug
against Alzheimer’s disease, according to four desirable properties: inhibit amine re-uptake, low
toxicity, high acetyl cholinesterase inhibition, and good reversal of scopolamine-induced memory
deficiency. For any property, examples consist of pairs pos(X, Y)/neg(X, Y) of two analogues
indicating that X is better/worse than Y w.r.t. the property. The relation is transitive and anti-

13

LANDWEHR, KERSTING, DE RAEDT

Dataset #Classes #Examples Majority Class #Relations
Mutagenesis r.f. 2 188 66.5% 4
Mutagenesis r.u. 2 42 69.1% 4
Alzheimer amine 2 686 50.0% 20
Alzheimer toxic 2 886 50.0% 20
Alzheimer acetyl 2 1326 50.0% 20
Alzheimer memory 2 642 50.0% 20
DSSTox 2 232 56.5% 3
Diterpene 23 1530 23.5% 17

Table 1: Datasets used in experiments.

symmetric but not complete (for some pairs of compounds the result of the comparison could not
be determined).

The DSSTox dataset has been extracted from the EPA’s DSSTox NCTRER Database (Fang
et al., 2001). It contains structural information about a diverse set of 232 natural, synthetic and
environmental estrogens and classifications with regard to their binding activity for the estrogen
receptor. In our experiments, only structural information, i.e., atom elements and bonds are used.
Additionally, we provided a relation linked(A1, A2, E, BT) in the background knowledge that
represents that there is a bond of type BT from atom A1 to atom A2 and A2 is of element E. This
was done to reduce the lookahead problem for greedy search algorithms.

For Diterpene (Džeroski et al., 1998), the task is to identify the skeleton of diterpenoid com-
pounds, given their C-NMR spectra that include the multiplicities and the frequencies of the skeleton
atoms. Diterpenes are organic compounds of low molecular weight with a skeleton of 20 carbon
atoms. They are of interest because of their use as lead compounds in the search for new pharma-
ceutical effectors. The dataset contains information on 1530 diterpenes with known structure. There
are in total 23 classes. We use the version where both relational and propositional information about
the NMR spectra are available.

6.2 Algorithms and Methodology

We investigate the following learners:

• NFOIL
An implementation of the NFOIL algorithm as outlined in Section 4.1. Instead of a greedy
search a beam search with beam size k = 5 is performed. During the search for a clause,
the algorithm also keeps a set C∗ of the k best (partial) clauses found so far. If this set does
not change from one refinement level to the next, the search is stopped and the best element
c ∈ C∗ is returned. The search for additional clauses is stopped if the change in score be-
tween two successive iterations is less than 0.1%. A hypothesis is limited to contain at most
25 clauses and a clause to contain at most 10 literals. As most other ILP systems, NFOIL
allows the specification of intensional background knowledge to be used in hypothesis. When
classifying unseen examples, the class receiving the highest probability is returned (in partic-
ular, the default classification threshold of 0.5 is used in the binary case).

14

INTEGRATING NAÏVE BAYES AND FOIL

• TFOIL
An implementation of the TFOIL algorithm as outlined in Section 5. The beam search and
stopping criterion are implemented as for NFOIL.

• MFOIL
MFOIL (Lavrač and Džeroski, 1994) is a variant of FOIL also employing beam search and
different search heuristics. The beam size is set to k = 5, otherwise, default parameters
are used. Note that MFOIL, unlike the other systems considered, by default allows negated
literals in clauses.

• ALEPH
ALEPH is an advanced ILP System developed by Ashvin Srinivasan 1. It is based on the con-
cept of bottom clauses, which are maximally specific clauses covering a certain example. The
theory is then built from clauses that contain a subset of the literals found in a bottom clause.
We used this standard mode of ALEPH for the binary domains Mutagenesis, Alzheimer and
DSSTox. Additionally, ALEPH implements a tree learning algorithm, which we used for the
multi-class domain Diterpene. The maximum number of literals in a clause was set to 10
instead of the default 4. Otherwise, default settings are used except on DSSTox as explained
below.

• 1BC2
1BC2 is a naı̈ve Bayes classifier for structured data (Flach and Lachiche, 2004). 1BC2 was
run with a maximum number of 5 literals per clause, as larger values caused the system to
crash. The decision threshold was optimized based on a five fold cross validation.

It would also be interesting to compare against the MACCENT system (Dehaspe, 1997), as max-
imum entropy models and naı̈ve Bayes are somewhat related. Unfortunately, only an implemen-
tation of a propositional version of MACCENT is available, which cannot handle the relational
datasets used in this study2. We have therefore investigated a static propositionalization approach:
frequent clauses were extracted from the relational datasets and then used as features in the propo-
sitional MACCENT system. More precisely, we have used a variant of the frequent pattern miner
WARMR (Dehaspe et al., 1998), as WARMR patterns have shown to be effective propositional-
ization techniques on similar benchmarks in inductive logic programming (Srinivasan et al., 1999).
The variant used was c-ARMR (De Raedt and Ramon, 2004), which allows to remove redundancies
amongst the found patterns by focusing on so-called free patterns. c-ARMR was used to generate
free frequent patterns in the data with a frequency of at least 20%. However, results obtained using
this technique were on average not competitive with those of the other systems, and we decided not
to include them.

To compare the different algorithms, we measure both accuracy and area under the ROC curve
(see Fawcett, 2003), denoted as AUC. Accuracy is determined by a 10-fold cross-validation on all
datasets except the small Mutagenesis r.u., where a leave-one-out cross validation is used instead.
ROC curves and AUC are determined from the cross-validation by pooling the rankings obtained
on the different test folds. All algorithms were run on the same splits into training/test set for every
fold. To test for significant differences in accuracy, a sampled paired t-test is applied to the results
of the different folds.

1. http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph toc.html.
2. Luc Dehaspe, personal communication

15

LANDWEHR, KERSTING, DE RAEDT

Dataset TFOIL NFOIL MFOIL ALEPH 1BC2
Mutagenesis r.f. 79.7± 13.0 75.4± 12.3 76.6± 6.7 69.7± 11.9 82.4
Mutagenesis r.u. 83.3± 37.7 78.6± 41.5 71.4± 45.7 85.7± 35.4 76.2
Alzheimer amine 87.5± 4.4 86.3± 4.3 74.2± 5.9 • N 70.9± 5.8 • N 72.3
Alzheimer toxic 92.1± 2.6 89.2± 3.4 81.9± 2.9 • N 90.9± 1.4 83.4
Alzheimer acetyl 82.8± 3.8 81.2± 5.2 75.2± 2.5 • N 73.9± 3.4 • N 73.4
Alzheimer memo. 80.4± 5.3 M 72.9± 4.3 • 60.9± 4.6 • N 69.2± 5.3 • 68.8
DSSTox 78.5± 8.9 78.0± 9.1 70.4± 15.4 52.1± 11.2 • N 64.7
Diterpene 90.9± 2.1 90.8± 3.1 – 85.0± 3.6 • N 81.9

Table 2: Cross-validated predictive accuracy results on all data sets. •/◦ indicates that TFOIL’s
mean is significantly higher/lower, and N/M that NFOIL’s mean is significantly
higher/lower (paired sampled t-test, p = 0.05). Bold numbers indicate the best result
on a dataset. Note that the high variance on Mutagenesis r.u. is an artifact of the leave-
one-out cross-validation. For 1BC2, we do not test significance because the results on
Mutagenesis and Diterpene are taken from Flach and Lachiche (2004).

6.3 Results

Table 2 shows the accuracy results for TFOIL, NFOIL, MFOIL, ALEPH and 1BC2 on all datasets.
There is no result for MFOIL on Diterpene as it cannot handle multi-class problems. Compar-
ing the results for NFOIL/TFOIL and MFOIL, the experiments clearly show a gain for dynamic
propositionalization over the baseline ILP algorithm, giving an affirmative answer to Question Q1.

The comparison between NFOIL and its tree augmented extension TFOIL shows that—as in
the propositional case—relaxing the naı̈ve Bayes assumption can yield more accurate models in
some cases. TFOIL always gains some predictive accuracy, with gains ranging from very slight
(0.1 percentage points) to substantial (7.5 percentage points). Although only one of these gains
is significant according to a paired sampled t-test on the folds, a simple sign test on the results of
TFOIL and NFOIL (8/0) shows that TFOIL significantly outperforms NFOIL (p < 0.01). This
affirmatively answers Question Q3: performance can be improved by using a more expressive model
than naı̈ve Bayes. Furthermore, TFOIL significantly outperforms ALEPH on five datasets, and both
a sign test (7/1) and the average accuracy seem to favor TFOIL and NFOIL over ALEPH. This
shows that relatively simple dynamic propositionalization approaches are competitive with more
advanced ILP systems, giving an affirmative answer to Question Q4. The DSSTox domain seems
to be particularly hard for the ALEPH system. Using standard settings, ALEPH only accepts rules
if they cover no negative examples. In this case, for most folds it does not return any rules on
the DSSTox dataset, and only reaches 43.1% accuracy. The result reported above was obtained by
setting the “noise” parameter to 10 (which means that a rule can cover up to 10 negative examples).
The minacc parameter was left at its default value of 0.

To complement the study of predictive accuracy presented above, we investigate the perfor-
mance of the probabilistic classifiers by means of ROC analysis. ROC curves evaluate how well
the probability estimates produced by classifiers can discriminate between positive and negative
examples (i.e., rank examples) without committing to a particular decision threshold. ROC curves
provide more detailed information about performance than accuracy estimates, for example with

16

INTEGRATING NAÏVE BAYES AND FOIL

Dataset TFOIL NFOIL MFOIL ALEPH 1BC2
Mutagenesis r.f. 0.817 0.809 0.791 0.713 0.816
Mutagenesis r.u. 0.753 0.737 0.645 0.790 0.729
Alzheimer amine 0.945 0.937 0.747 0.708 0.793
Alzheimer toxic 0.983 0.965 0.821 0.912 0.925
Alzheimer acetyl 0.932 0.916 0.759 0.752 0.815
Alzheimer memory 0.913 0.824 0.608 0.696 0.744
DSSTox 0.789 0.760 0.668 0.567 0.636

Table 3: Area under the ROC curve for all binary data sets. Bold numbers indicate the best re-
sult on a dataset. Results for 1BC2 on Mutagenesis are taken from Flach and Lachiche
(2004). Rankings are pooled over the different folds of a 10-fold cross-validation, except
for Mutagenesis r.u. where a leave-one-out cross-validation is used instead.

regard to possible error trade-offs under variable misclassification costs (Provost et al., 1998). As
ROC curves are only well-defined for binary classification problems, we do not report results for the
multi-class dataset Diterpene. For the ILP systems, ROC curves were produced by clause voting
as introduced by Davis et al. (2004). In clause voting, the threshold that is varied is the number of
clauses that have to cover an example before it is classified as positive (the default threshold being
one).

AUC results, shown in Table 3, generally confirm the results obtained by accuracy analy-
sis: TFOIL outperforms NFOIL across the board, and TFOIL/NFOIL generally produce better
rankings than the ILP methods and 1BC2. Note that in some cases dynamic propositionalization
achieves higher AUC scores than ILP systems even though it achieves lower accuracy (e.g., compar-
ing NFOIL and ALEPH on the Alzheimer toxic dataset). To investigate this behavior in more detail,
ROC curves for the different methods on all binary datasets are shown. Figure 1 shows curves on
the relatively large Alzheimer amine, Alzheimer toxic, Alzheimer acetyl and Alzheimer memory
datasets. Here, ROC curves clearly fall into two groups: for the ILP systems MFOIL and ALEPH,
the curve has one sharp angle and is otherwise mostly linear, while the curves for TFOIL, NFOIL
and 1BC2 are convex almost across the whole range of the threshold parameter. This means that for
the ILP systems there is one (namely, the default) decision threshold which offers a good trade-off
between true positives and false positives, but ranking below and above this point is relatively poor.
At the level of induced clauses, it indicates that clauses induced by the ILP systems are specific in
the sense that positive examples are typically covered by only one clause—if the decision threshold
in clause voting is set to more than one, the true positive rate drops rapidly. In contrast, ranking
performance for the dynamic propositionalization systems and 1BC2 is more stable, meaning that
these systems also offer good classification performance under varying misclassification costs (or,
equivalently, class skew). This indicates that dynamic propositionalization approaches can make
use of more diverse rule sets, which are helpful in ranking examples by providing additional in-
formation but would produce too many false-positive classifications if interpreted as a disjunctive
hypothesis. We will provide further evidence for this claim below.

Figure 2 shows ROC curves on the three smaller datasets included in our study. On Muta-
genesis r.f. and DSSTox, similar observations hold as noted above, although class separation is

17

LANDWEHR, KERSTING, DE RAEDT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Alzheimer amine

tFOIL
nFOIL
1BC2

mFOIL
Aleph

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Alzheimer toxic

tFOIL
nFOIL
1BC2

mFOIL
Aleph

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Alzheimer acetyl

tFOIL
nFOIL
1BC2

mFOIL
Aleph

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Alzheimer memory

tFOIL
nFOIL
1BC2

mFOIL
Aleph

Figure 1: ROC curves on the Alzheimer amine, Alzheimer toxic, Alzheimer acetyl and Alzheimer
memory datasets for TFOIL, NFOIL, MFOIL, ALEPH and 1BC2. Rankings are pooled
over the different folds of a 10-fold cross-validation.

generally poorer and curves behave less well. On the very small Mutagenesis r.u. dataset ranking
performance is poor for all methods.

To investigate Question Q2, i.e., to compare dynamic and static propositionalization approaches,
two additional experiments were performed:

18

INTEGRATING NAÏVE BAYES AND FOIL

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Mutagenesis r. f.

tFOIL
nFOIL
mFOIL
Aleph

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Mutagenesis r. u.

tFOIL
nFOIL
mFOIL
Aleph

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

DSSTox

tFOIL
nFOIL
1BC2

mFOIL
Aleph

Figure 2: ROC curves on the Mutagenesis regression friendly, Mutagenesis regression unfriendly
and DSSTox datasets for TFOIL, NFOIL, MFOIL, ALEPH and 1BC2. There is no curve
for 1BC2 on the Mutagenesis datasets because results are taken from Flach and Lachiche
(2004). Rankings are pooled over the different folds of a 10-fold cross-validation, except
for Mutagenesis r.u. where a leave-one-out cross-validation is used instead.

19

LANDWEHR, KERSTING, DE RAEDT

MFOIL ALEPH
Dataset +NB +TAN +NB +TAN NFOIL/disjunctive
Mutagenesis r.f. ±0.0 • ±0.0 • ±0.0 ±0.0 −8.9 • N
Mutagenesis r.u. ±0.0 +2.4 ±0.0 ±0.0 −47.6 • N
Alzheimer amine −0.5 • N ±0.0 • N ±0.0 • N ±0.0 • N −36.3 • N
Alzheimer toxic ±0.0 • N +0.2 • N ±0.0 ±0.0 −39.2 • N
Alzheimer acetyl −0.4 • N ±0.0 • N ±0.0 • N +0.1 • N −31.2 • N
Alzheimer memory ±0.0 • N ±0.0 • N ±0.0 • ±0.0 • −22.9 • N
DSSTox +2.1 +1.7 +4.3 • N +4.3 • N −21.5 • N
Diterpene – – ±0.0 • N −0.3 • N –

Table 4: Gain/loss in cross-validated predictive accuracy for the two-step methods
MFOIL+NB/TAN, ALEPH+NB/TAN and NFOIL/DISJUNCTIVE over their correspond-
ing baselines MFOIL, ALEPH and NFOIL. •/◦ indicates that TFOIL’s mean accuracy
is significantly higher/lower, and N/M that NFOIL’s mean accuracy is significantly
higher/lower (paired sampled t-test, p = 0.05).

1. Learning a naı̈ve Bayes or tree augmented naı̈ve Bayes model over a set of clauses using a
two-step approach: First, a set of rules is learned using MFOIL or ALEPH, and afterwards
a (tree augmented) naı̈ve Bayes model is built using these rules. This is a static proposi-
tionalization approach, where the propositionalized data is used as input for the probabilistic
learner. Question Q2 is whether these rules are less useful when combined with (tree aug-
mented) naı̈ve Bayes than the rules constructed by a dynamic propositionalization approach
(NFOIL/TFOIL). For the training of the TAN model we used the local score based TAN
implementation in WEKA 3.4.6 (Witten and Frank, 2000), which implements the learning
algorithm of Friedman and Goldszmidt (1996).

2. Using the rules learned by NFOIL as a disjunctive hypothesis Q: For this, every rule q learned
by NFOIL is evaluated on the training set. If it covers more positive than negative examples,
q is added to Q, otherwise not(q). The rule set Q is then evaluated as a disjunctive hypothesis
on the test data. This technique can only be used for binary classification problems.

Table 4 shows the result of these experiments. It displays the average gain/loss of the two-
step methods MFOIL+NB, ALEPH+NB and NFOIL/disjunctive over their corresponding baselines
MFOIL, ALEPH and NFOIL. Significantly higher/lower mean accuracies of a method as com-
pared to TFOIL/NFOIL are also indicated. On most datasets, applying naı̈ve Bayes as a method
for post-processing the learned rule set of MFOIL or ALEPH does not yield any improvement,
with the exception of small gains on the DSSTox and Mutagenesis r.u. datasets for MFOIL.
ALEPH+NB/TAN only improves on the original result of ALEPH on DSSTox by always predict-
ing the majority class. Furthermore, NFOIL/TFOIL significantly outperform MFOIL+NB and
MFOIL+TAN on the same datasets on which they significantly outperform MFOIL. In ROC space,
post-processing rules with (tree augmented) Naı̈ve Bayes can increase or decrease the performance
depending on the dataset (Table 5). However, AUC scores of the static propositionalization ap-
proaches are on average much lower than those of dynamic propositionalization approaches.

20

INTEGRATING NAÏVE BAYES AND FOIL

MFOIL ALEPH
Dataset +NB +TAN +NB +TAN
Mutagenesis r.f. +0.045 +0.036 +0.011 −0.034
Mutagenesis r.u. −0.183 −0.183 −0.175 −0.063
Alzheimer amine +0.001 +0.007 −0.013 −0.012
Alzheimer toxic +0.003 +0.011 +0.006 +0.005
Alzheimer acetyl +0.002 −0.003 −0.006 −0.010
Alzheimer memory −0.010 −0.016 −0.010 −0.027
DSSTox +0.054 +0.048 −0.095 −0.099

Table 5: Gain/loss in area under ROC curve for the two-step methods MFOIL+NB/TAN and
ALEPH+NB/TAN over their corresponding baselines MFOIL and ALEPH. Rankings are
pooled over the different folds of a 10-fold cross-validation, except for Mutagenesis r.u.
where a leave-one-out cross-validation is used instead.

Using the (possibly negated) rules learned by NFOIL as a disjunctive hypothesis strongly de-
grades performance. This is because NFOIL can make use of rules which have a very low accuracy
individually but still help as additional features in the naı̈ve Bayes. If these rules are used for dis-
junctive classification, they produce many false-positive classifications. In fact, on some domains
(e.g, Alzheimer) all examples in the test set are always classified as positive. This shows that
NFOIL uses significantly different rule sets to ILP approaches. Thus, we can answer Q2 as follows:

A dynamic propositionalization approach that selects rules based on the criterion of
the probabilistic model performs better than static propositionalization approaches that
post-process a rule set using a probabilistic learner. This is because dynamic propo-
sitionalization can make use of different/additional rules that are not considered by
traditional ILP systems as they would produce too many false-positive classifications.

It remains to answer Question Q5, that is, to compare dynamic propositionalization approaches to
relational naı̈ve Bayes methods such as 1BC2 in terms of accuracy and the number of features they
employ. With respect to predictive accuracy and AUC score, sign tests prefer TFOIL over 1BC2 (at
7/1 and 8/0, respectively). Theory complexity is hard to compare because of the different representa-
tions. For TFOIL/NFOIL and 1BC2, one complexity measure is the number of probability values
attached to clauses. There are #classes probability values attached to each clause in NFOILand
1BC2, and 2 ·#classes in TFOIL (#classes denotes the number of classes). Additionally, we have
to specify the prior distribution over the class variable. The overall number of probability values
to be specified is thus of the order of O(#clauses), and it is sufficient to compare the number of
clauses. In the experiments, 1BC2 uses an order of magnitude more clauses than NFOIL. More
precisely, 1BC2 uses more than 400 (in some cases even more than 1000) clauses whereas NFOIL
is limited to using 25 clauses. This clearly shows that Q5 can be answered affirmatively as well.

We furthermore investigated whether the proposed dynamic propositionalization approach some-
times constructs too many clauses and overfits the training data, as the stopping criterion is based on
the training set score. We therefore tried post-pruning a learned hypothesis. Post-pruning is more
easily realized for NFOIL than for TFOIL, as the additional TAN structure in the TFOIL model
prevents removal of rules which are parents of other rules. Rule post-pruning was carried out us-

21

LANDWEHR, KERSTING, DE RAEDT

Algorithm 3 Post-pruning a hypothesis learned by NFOIL.
Initialize H := NFOIL(E,B)
repeat

for all c ∈ H do
s(c) := cross-validate-accuracy(H \ {c}, E, B)

end for
c∗ := arg maxc∈H s(c)
H := H \ {c∗}

until cross-validated accuracy decreases
output H

NFOIL NFOIL/pruning
Dataset Accuracy #clauses Accuracy #clauses
Mutagenesis r.f. 75.4± 12.3 25.0 73.9± 12.1 17.7
Mutagenesis r.u. 78.6± 41.5 23.1 85.7± 35.4 1.4
Alzheimer amine 86.3± 4.3 24.7 85.0± 4.5 20.1
Alzheimer toxic 89.2± 3.4 22.4 87.8± 3.6 16.6
Alzheimer acetyl 81.2± 5.2 25.0 80.8± 4.2 20.5
Alzheimer memory 72.9± 4.3 24.9.5 74.5± 4.3 20.4
DSSTox 78.0± 9.1 15.4 79.3± 9.7 4.5
Diterpene 90.8± 3.1 25.0 90.7± 3.1 23.4

Table 6: Cross-validated predicative accuracy results and average number of clauses in the final
model for NFOIL and NFOIL/pruning. Bold numbers indicate the best result on a dataset.
The are no significant differences in mean accuracy between the two methods (paired
sampled t-test, p = 0.05).

ing the greedy algorithm outlined in Algorithm 3. The procedure cross-validate-accuracy(H,E,B)
cross-validates the naı̈ve Bayes model on the training data for a fixed set H of clauses and returns an
accuracy estimate. The algorithm greedily drops clauses from H as long as this does not decrease
the cross-validated accuracy estimate. Table 6 lists the accuracies of NFOIL and NFOIL/pruning
which incorporates this rule post-pruning algorithm. There is some gain in accuracy on the small
Mutagenesis r.u. and the DSSTox domain, although no differences in accuracy are significant at
the p = 0.05 level. On these two datasets the number of features is also greatly reduced, while few
or no features are pruned for the other datasets. To summarize, a clear overfitting behavior can not
be observed except possibly on the very small Mutagenesis r.u. dataset.

We conclude that our experimental study affirmatively answers Questions Q1–Q5 posed in the
introduction. The dynamic propositionalization approaches NFOIL and TFOIL yield more accurate
models than simple ILP rule learning and static propositionalization approaches, and also compare
favorably to the first order naı̈ve Bayes system 1BC2 and one of the most advanced ILP systems,
namely Aleph.

22

INTEGRATING NAÏVE BAYES AND FOIL

7. Related Work

The approaches that combine statistical learning with inductive logic programming techniques for
addressing classification can be divided into three categories.

A first class of techniques are static propositionalization approaches. They start by generat-
ing a set of first order features and then use these features as attributes in a probabilistic model.
Probabilistic models of different expressivity have been used, ranging from naı̈ve Bayes (Pompe
and Kononenko, 1995; Flach and Lachiche, 2004), to tree augmented naı̈ve Bayes or full Bayesian
networks as in (Davis et al., 2004). The set of features is obtained either by taking all features
within a pre-defined language bias, as in the 1BC system (Flach and Lachiche, 2004), or by run-
ning a traditional ILP algorithm (Pompe and Kononenko, 1995; Davis et al., 2004). Furthermore,
aggregation-based feature construction methods such as RELAGGS (Krogel and Wrobel, 2001)
and ACORA (Perlich and Provost, 2006) that search a relational feature space using aggregation
operators fall into this group. In this class of techniques the feature construction and the statistical
learning steps are performed consecutively and independent of one another, whereas in NFOIL and
TFOIL they are tightly integrated. However, an initial step beyond static propositionalization has
been taken in the work by Pompe and Kononenko (1997), where rules generated by an ILP system
are post-processed by splitting and merging clauses in order to find a rule set that satisfies the naı̈ve
Bayes assumption.

A second class of techniques employs a rich probabilistic model such as a Probabilistic Rela-
tional Model (Getoor et al., 2001) or a higher-order probabilistic logic (Flach and Lachiche, 2004).
The logical component (and hence the features) of such a model are fixed, and only the parame-
ters are learned using statistical learning techniques. The work by Taskar et al. (2001) on using
Probabilistic Relational Models for clustering and classification of relational data, the Relational
Bayesian Classifier (Neville et al., 2003) and the 1BC2 system (Flach and Lachiche, 2004) fall into
this category. The difference compared to NFOIL and TFOIL is that this class of techniques does
not address structure learning or feature generation.

A third class of techniques (Popescul et al., 2003; Dehaspe, 1997) indeed tightly integrates the
inductive logic programming step with the statistical learning step in a dynamic propositionaliza-
tion approach. However, whereas the dynamic propositionalization methods presented in this paper
employ the simplest possible statistical model, namely naı̈ve Bayes, those approaches use more ad-
vanced (and hence computationally more expensive) statistical models such as logistic regression
and maximum entropy modeling, which does seem to limit the application potential. For instance,
Popescul et al. (2003) report that—in their experiments—they had to employ a depth limit of 2
when searching for features. The work on NFOIL and TFOIL is similar in spirit to these two ap-
proaches but is much more simple and therefore, we believe, also more appealing for the traditional
classification task considered in inductive logic programming.

Probably the most closely related approach to the methods presented in this paper is the SAYU
system (Davis et al., 2005). SAYU uses a “wrapper” approach where (partial) clauses generated by
the refinement search of an ILP system are proposed as features to a (tree augmented) naı̈ve Bayes,
and incorporated if they improve performance. This means that feature learning and naı̈ve Bayes
are tightly coupled as in our approach. However, in SAYU the scores for feature and parameter
selection are different, and the feature selection is based on a separate tuning set. The probabilistic
model is trained to maximize the likelihood on the training data, while clause selection is based
on the area under the precision-recall curve of the model on a separate tuning set. This contrasts

23

LANDWEHR, KERSTING, DE RAEDT

with the approach of selecting features and parameters that jointly optimize a probabilistic score on
the training data used in NFOIL and TFOIL. Davis et al. (2005) also report that a tree-augmented
naı̈ve Bayes model in SAYU does not significantly outperform a naı̈ve Bayes, which contrasts with
the results obtained in this study. Furthermore, SAYU cannot handle multi-class problems, while
NFOIL and TFOIL handle them as naturally as naı̈ve Bayes does.

Finally, there is also the approach of Craven and Slattery (2001) who combine several naı̈ve
Bayes models with FOIL. The decisions of naı̈ve Bayes models are viewed as truth values of literals
occurring in clauses. This work can be regarded as the inverse of the approach presented in this paper
in that NFOIL/TFOIL employ naı̈ve Bayes on top of logic, whereas Craven and Slattery employ
naı̈ve Bayes as a predicate in the logical definitions.

8. Conclusions

We have introduced the NFOIL and TFOIL systems, two dynamic propositionalization approaches
that combine the simplest techniques from ILP and probabilistic learning. In an experimental study
on several benchmark datasets, the proposed approaches were compared to the ILP systems MFOIL
and ALEPH, static propositionalization approaches and the first-order naı̈ve Bayes system 1BC2.
Experimental results show that dynamic propositionalization is superior to static propositionaliza-
tion and simple rule learning. Despite their simplicity, the proposed approaches are also competitive
with the more advanced ILP system ALEPH. Moreover, our experiments indicate that the superior
performance of dynamic propositionalization approaches is due to the fact that they can make use of
more diverse rule sets than ILP systems. NFOIL and TFOIL are also particularly strong at ranking
examples (as measured by ROC analysis), a task in which standard ILP systems performed rather
poorly in our experiments.

Further exploring dynamic propositionalization as a way of combining (possibly more powerful)
statistical learners with ILP search techniques is an interesting direction for future work.

Acknowledgments

We would like to thank the three anonymous reviewers for their helpful comments and suggestions,
which have greatly improved this paper. We furthermore thank Romaric Gaudel for fruitful discus-
sions and help with performing the experimental study. We acknowledge support for this work from
the European Union under contract number FP6-508861, Applications of Probabilistic Inductive
Logic Programming II.

References

Hendrik Blockeel and Luc De Raedt. Lookahead and Discretization in ILP. In N. Lavrač and
S. Džeroski, editors, Proceedings of the Seventh International Workshop on Inductive Logic
Programming (ILP-1997), volume 1297 of Lecture Notes in Computer Science, pages 77–84.
Springer, 1997.

Marc Craven and Seán Slattery. Relational Learning with Statistical Predicate Invention: Better
Models for Hypertext. Machine Learning, 43(1–2):97–119, 2001.

24

INTEGRATING NAÏVE BAYES AND FOIL

Jesse Davis, Irene M. Ong Vı́tor Santos Costa, David Page, and Inês Dutra. Using Bayesian Clas-
sifiers to Combine Rules. In Working Notes of the Third Workshop on Multi-Relational Data
Mining (MRDM-2004) in conjunction with the Tenth ACM SIGKDD International Conference on
Knowlege Discovery and Data Mining (KDD-2004), Seattle, Washington, USA, 2004.

Jesse Davis, Elizabeth Burnside, Inês de Castro Dutra, David Page, and Vı́tor Santos Costa. An In-
tegrated Approach to Learning Bayesian Networks of Rules. In Joao Gama, Rui Camacho, Pavel
Brazdil, Alı́pio Jorge, and Luı́s Torgo, editors, Proceedings of the Sixteenth European Conference
on Machine Learning (ECML-2005), volume 3720 of Lecture Notes in Computer Science, pages
84–95. Springer, 2005.

Luc De Raedt and Kristian Kersting. Probabilistic Logic Learning. ACM-SIGKDD Explorations, 5
(1):31–48, 2003.

Luc De Raedt and Kristian Kersting. Probabilistic Inductive Logic Programming. In S. Ben-David,
J. Case, and A. Maruoka, editors, Proceedings of the Fifteenth International Conference on Algo-
rithmic Learning Theory (ALT-2004), volume 3244 of Lecture Notes in Computer Science, pages
19–36. Springer, 2004.

Luc De Raedt and Jan Ramon. Condensed Representations for Inductive Logic Programming. In
Proceedings of the Ninth International Conference on Principles of Knowledge Representation
and Reasoning (KR-2004), Whistler, Canada, 2004. AAAI Press.

Luc Dehaspe. Maximum Entropy Modeling with Clausal Constraints. In N. Lavrač and S. Džeroski,
editors, Proceedings of the Seventh International Workshop on Inductive Logic Programming
(ILP-1997), volume 1297 of Lecture Notes in Computer Science, pages 109–124. Springer, 1997.

Luc Dehaspe, Hannu Toivonen, and Ross D. King. Finding Frequent Substructures in Chemical
Compounds. In Proceedings of the Fourth International Conference on Knowledge Discovery
and Data Mining (KDD-1998), New York City, New York, USA, 1998. AAAI Press.

Saso Džeroski, Steffen Schulze-Kremer, Karsten Heidtke, Karsten Siems, Dietrich Wettschereck,
and Hendrik Blockeel. Diterpene Structure Elucidation from13C NMR Spectra with Inductive
Logic Programming. Applied Artificial Intelligence, Special Issue on First-Order Knowledge
Discovery in Databases, 12:363–383, 1998.

Hong Fang, Weida Tong, Leming M. Shi, Robert Blair, Roger Perkins, William Branham, Bruce S.
Hass, Qian Xie, Stacy L. Dial, Carrie L. Moland, and Daniel M. Sheehan. Structure-Activity Re-
lationships for a Large Diverse Set of Natural, Synthetic, and Environmental Estrogens. Chemical
Research in Toxicology, 14(3):280–294, 2001.

Tom Fawcett. ROC Graphs: Notes and Practical Considerations for Data Mining Researchers, 2003.

Peter Flach and Nicholas Lachiche. Naive Bayesian Classification of Structured Data. Machine
Learning, 57(3):233–269, 2004.

Nir Friedman and Moises Goldszmidt. Building Classifiers Using Bayesian Networks. In Proceed-
ings of the Thirteenth National Conference on Artificial Intelligence (AAAI-1996), Vol. 2, pages
1277–1284, Portland, Oregon, USA, 1996. AAAI Press / The MIT Press.

25

LANDWEHR, KERSTING, DE RAEDT

Lise Getoor and Ben Taskar, editors. Statistical Relational Learning. MIT Press, 2007. In press.

Lise Getoor, Nir Friedman, Daphne Koller, and Avi Pfeffer. Learning Probabilistic Relational Mod-
els. In Relational Data Mining. Springer, 2001.

Daniel Grossman and Peter Domingos. Learning Bayesian Network Classifiers by Maximizing
Conditional Likelihood. In Proceedings of the Twenty-First International Conference on Machine
Learning (ICML-2004), pages 361–368, Banff, Canada, 2004. ACM Press.

Ross D. King, Ashvin Srinivasan, and Michael J, E Sternberg. Relating Chemical Activity to Struc-
ture: an Examination of ILP Successes. New Generation Computing, 13(2,4):411–433, 1995.

Mark A. Krogel and Stefan Wrobel. Transformation-based Learning Using Multirelational Aggre-
gation. In Céline Rouveirol and Michèle Sebag, editors, Proceedings of the Eleventh Interna-
tional Conference on Inductive Logic Programming (ILP-2001), volume 2157 of Lecture Notes
in Computer Science. Springer, 2001.

Niels Landwehr, Kristian Kersting, and Luc De Raedt. nFOIL: Integrating Naı̈ve Bayes and FOIL.
In Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-2005),
pages 795–800, Pittsburgh, Pennsylvania, USA, 2005. AAAI Press.

Nada Lavrač and Saso Džeroski. Inductive Logic Programming. Ellis Horwood, 1994.

Stephen Muggleton. Inverse Entailment and Progol. New Generation Computing, Special Issue on
Inductive Logic Programming, 13:245–286, 1995.

Stephen Muggleton. Stochastic Logic Programs. In Advances in Inductive Logic Programming.
IOS Press, 1996.

Stephen Muggleton and Luc De Raedt. Inductive Logic Programming: Theory and Methods. Jour-
nal of Logic Programming, 19/20:629–679, 1994.

Stephen Muggleton and Cao Feng. Efficient Induction of Logic Programs. In Proceedings of the
First Conference on Algorithmic Learning Theory (ALT-1990), pages 368–381, Tokyo, Japan,
1990. Springer.

Jennifer Neville, David Jensen, and Brian Gallagher. Simple Estimators for Relational Bayesian
Classifiers. In Proceedings of the Third IEEE International Conference on Data Mining (ICDM-
2003), pages 609–612, Melbourne, Florida, USA, 2003. IEEE Computer Society.

Claudia Perlich and Foster Provost. Distribution-based Aggregation for Relational Learning with
Identifier Attributes. Machine Learning, 62:65–105, 2006.

Uros Pompe and Igor Kononenko. Naive Bayesian Classifier within ILP-R. In Proceedings of
the Fifth International Workshop on Inductive Logic Programming (ILP-1995), pages 417–436,
Tokyo, Japan, 1995.

Uros Pompe and Igor Kononenko. Probabilistic First-Order Classification. In N. Lavrač and
S. Džeroski, editors, Proceedings of the Seventh International Workshop on Inductive Logic
Programming (ILP-1997), volume 1297 of Lecture Notes in Computer Science, pages 235–242.
Springer, 1997.

26

INTEGRATING NAÏVE BAYES AND FOIL

Alexandrin Popescul, Lyle H. Ungar, Steve Lawrence, and David M. Pennock. Statistical Relational
Learning for Document Mining. In Proceedings of the Third IEEE International Conference on
Data Mining (ICDM-2003), pages 275–282, Melbourne, Florida, USA, 2003. IEEE Computer
Society.

Foster J. Provost, Tom Fawcett, and Ron Kohavi. The Case Against Accuracy Estimation for Com-
paring Induction Algorithms. In Proceeding of the Fifteenth International Conference on Ma-
chine Learning (ICML-1998), Madison, Wisconsin, USA, 1998. Morgan Kaufmann.

J. Ross Quinlan. Learning Logical Definitions from Relations. Machine Learning, pages 239–266,
1990.

Jorma Rissanen. Modeling by Shortest Data Description. Automatica, 14:465–471, 1978.

Ashvin Srinivasan, Stephen Muggleton, Ross D. King, and Michael J. E. Sternberg. Theories for
Mutagenicity: a Study of First-order and Feature Based Induction. Artificial Intelligence, 85:
277–299, 1996.

Ashwin Srinivasan, Ross D. King, and Douglas W. Bristol. An Assessment of ILP-Assisted Mod-
els for Toxicology and the PTE-3 Experiment. In Saso Dzeroski and Peter A. Flach, editors,
Proceedings of the Ninth Internatinal Workshop on Inductive Logic Programming (ILP-1999),
volume 1634 of Lecture Notes in Computer Science. Springer, 1999.

Ben Taskar, Eran Segal, and Daphne Koller. Probabilistic Clustering in Relational Data. In Proceed-
ings of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-2001),
pages 870–878, Seattle, Washington, USA, 2001. Morgan Kaufmann.

Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques
with Java Implemenations. Morgan Kaufmann, 2000.

27

