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ABSTRACT

We present a system for indexing of and index-based search in PCM-based audio material. Given a short excerpt of
a waveform signal as a query, the index returns all pieces in a data base containing that waveform. Additionally, the
precise position of the waveform within those pieces is returned. The indexing method is robust against several signal
processing operations such as lossy compression or analog transmissions. Indexing of a test data base consisting of
approximately 50 GB of audio data results in an index of size 58 MB. Response times to queries of lengths of about

one or a half of a second are only fractions of a second.

INTRODUCTION

Today, enormous amounts of digital audio data are stored in
digital libraries and archives. The purposes of storing the au-
dio data are manifold including preservation, documentation,
backup, or further processing. Moreover, the amount of audio
data to be handled by audio data base systems is significantly
increased every day. For an example we may think of radio-
or TV stations archiving their daily programmes.

Unfortunately, in comparison with conventional text-based
data base systems, todays audio data base systems lack suit-
able indexing and search functionalities. Therefore, although
stored in a data base, much of todays audio material is inac-
cessible to someone searching for it. What makes things more
complicated is that ‘audio queries’ are not as easily specified

in a textual form as queries to a conventional data base. In
fact there are many different possibilities of how an audio
query could look like and there are also many different expec-
tations behind those queries. For example, a person looking
for a popular song while only memorizing the song’s main
tune would probably accept several versions of that song in-
cluding its original version, a live recording, or even a cover
version by a different performer. In contrast, an employee of
a broadcasting company looking for the time stamps within a
radio programme where a particular jingle was played, would
probably be looking for somewhat like an ‘exact’ match. In
our work we deal with the latter kind of queries.

In our paper, we describe a system for full-text indexing of
and searching in digital audio data. Given a short excerpt of
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a waveform signal as a query, the index returns all pieces in a
data base containing that waveform. Additionally, the precise
position of the waveform within those pieces is returned. Our
new indexing techniques also allow an approximate as well as
a ranked search. This makes the index robust against several
signal processing operations such as lossy compression, e.g.,

MPEG-1 Layer I1/III coding, or addition of noise.

Our paperis organized as follows. The next section introduces
the ideas behind “full-text” indexing for audio documents and
reviews some previously reported approaches to audio index-
ing and audio-based database search. In the third section
we describe our system for full-text audio indexing and give
an overview of the underlying techniques. The fourth sec-
tion contains results of our extensive tests. In particular we
consider time-requirements for the indexing and query proce-
dures as well as storage requirements. Prior to summing up,
the fifth section discusses some applications of our technology.
In the last section we suggest some of the future work in this

field.

FULL-TEXT SEARCH AND RELATED AP-
PROACHES

The Search Problem

In a classical full-text search scenario, one is interested in all
occurrences of a given text string within a database of text
documents. To describe our approach to audio indexing, we
generalize this search task to locating a small excerpt of music
within a database of (many) pieces of music.

Our search problem may be easily formulated in terms of
standard signal processing notation. Given a digital signal ¢
of finite length n and a database consisting of N signals z;,
1 < ¢ < N, we are looking for the set of matches

{G,t)|lg =zt : t + n — 1]},
where z[a : b] := (z(a),z(a + 1),...,2(b)), a < b. This is,

(,t) is a match if the query signal z occurs in the i-th piece
of music within the database starting at position t.

For most applications, such an identity search is by far too
restrictive. If our query signal z is, for example, a decoded
segment of an MP3-coded piece of music, a kind of approzi-
mate match, ¢ & z[a : b] or |g — z[a : b]| < &, where € is an
appropriate tolerance value, would be by far more useful.

As sample-by-sample comparison is frequently an expensive
as well as inappropriate strategy, one often resorts to feature-
based similarity measures. If F' : R” — R™ denotes an m-
dimensional feature extraction method, a feature-based match
would be a pair (7,t) such that F(q) = F(z;[t : ¢t + £]) for
some appropriate £. We shall use the shorthand notation
Fy p(z) := F(z[t: t + k — 1]). An approzimate feature-based
match to a query g is a pair (4,t) s.t. F(q) & F}j(x;) for
some k w.r.t. an appropriate similarity measure .

It seems to be impractical or at least very expensive to eval-
uate F; ;(z) for each document ¢ and each position ¢ within
this document. Hence, several strategies have been proposed
in the literature to circumvent this problem.

A first approach would be to evaluate F} i, () for all £ in an ap-
propriate subset I C 7Z, e.g. k = 1024, = {0,512,1024,...}
(50% overlap processing) or k = 2048, = {0,2048,4096, ...}
(non-overlapping processing). If the size of the feature vec-
tors, m, is reasonably small, this amounts in significant sav-
ings in storage requirements for the extracted feature vectors.
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Querying a database of such feature vectors with a query ¢
of size n amounts to finding (3,t),t € I, s.t. F(q) & Fy n(z;).
Clearly, if g = z;[s: s+ n — 1] for s € I, i.e., x is not aligned
with z;’s frame boundaries, this might lead to problems in
finding a match:

e A match will only be found, if F; »(z) and Fyis 5 (x)
are sufficiently similar for each § in the magnitude of
the stepsize between two adjacent frames.

e If the former requirement is fulfilled, a match result-
ing from F(q) & F} n(z) only yields an approximate
position ¢ of ¢ within the signal z.

If the size of ¢ is larger than the segment size n used to com-
pute the feature vectors, ¢ itself is segmented to produce a
sequence of feature vectors. A query may now be seen as a
comparison of sequences of feature vectors. This leads to the
problem of an appropriate alignment of the query sequence
with the feature sequences stored in the data base. In com-
paring two sequences, two feature vectors should be aligned
if they are sufficiently equal. Many strategies to solve such
alignment problems have been proposed in the field of speech
recognition, e.g., dynamic time warping.

A different approach to reduce costs in storing feature vectors
is to make the feature extraction independent of the input sig-
nal’s length. This is, for each signal, only one feature vector
of fixed length is computed. As an example we refer to work
carried out at UC Berkeley [1]. Obviously, such an approach
completely loses the time-dimension of the signal and hence
is not appropriate for our kind of search problem.

Feature Extraction

We now give some examples of acoustical features which have
recently been proposed for use with audio indexing. We
mainly concentrate on so-called low-level features which are
derived from the PCM waveform in a straightforward man-
ner. The use of higher-level features where the extraction
frequently involves a complex recognition mechanism are not
considered (e.g., musical notes or instrumentation).

In [2] the authors propose to extract features from the au-
dio signals loudness, pitch, tone, bandwidth, brightness, and
the mel-filtered cepstral coefficients (MFCCs). Additionally,
the use of derivatives of the corresponding trajectories (e.g.
the pitch trajectory) to derive features is proposed. The fea-
tures are proposed to be extracted on a frame-by-frame basis
yielding a time-series of feature vectors.

In [1], a single feature vector containing information derived
from tonal histograms, tonal transitions, noise characteris-
tics, volume, tempo and rhythm is extracted for each signal.
The search in the high dimensional feature space is performed
by using a brute-force k-nearest neighbor search. Proposed
lengths of feature vectors are 12, 24, 100, 1000, and 1248.

More recently, several parties have proposed to use psychoa-
coustic knowledge to make the extracted features or finger-
prints robust against common signal distortions such as lossy
compression or analog transmissions [3]. Another sound fin-
gerprinting project is [4].

Problem Formulation: Summary

Summing up, in our approach we are interested in matches
of the form (z,t), identifying the piece z; and the position t
within that piece where a given query signal is found. Fur-
thermore, we require the indexing mechanism to be invariant
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against signal modifications like analog transmissions, lossy
compression, bandwidth reduction, and amplification. In the
following section, we illustrate the key principles of a system
satisfying those requirements.

SYSTEM FOR FULL-TEXT INDEXING

Frame- and String-Based Points of View

The traditional frame-based feature extraction as described
above has the properties of fixed frame positions and fixed
frame-sizes. As a consequence, the features are assigned to
fixed (time-) locations. Moreover, in most approaches a fea-
ture vector is assigned to each frame. However intuitively,
rather the signal itself should determine the time positions
where features are located. This is, in our opinion, an event-
based point of view would be more appropriate.

String-based feature representations, e.g. phoneme/diphone
representations from speech processing, are more adapted to
this event-based view. Unfortunately, those representations
do not preserve the (time-) distance between single events.
The only time-based property preserved by a string-like repre-
sentation is the succession of events, i.e., their relative order-
ing. Hence, also a string-based representation is not suitable
for our purposes.

Key Ideas
Having in mind the latter, we state the key principles of our
full-text indexing scheme.

First, the feature-extraction should be event-based. The fea-
ture’s positions are adaptively determined for each signal.
Features are realized by pairs consisting of time and clas-
sification information. Hence in our index we store patterns
of the form

((time;, classification;))icy-

Second, in the task of music identification, absolute distances
between neighboring features are an important measure char-
acterizing a particular audio signal. Hence, time-invariance
will be an important issue in our feature extraction.

Third, the preprocessing to indexing and querying should be
performed identically. This way, the risk of introducing errors
because of different feature extraction methods is minimized.

Let us also stress, that we do not use particular psychoacous-
tic models or measures to determine our features. Such an
approach has been suggested before [3]. Yet up to now and
to our knowledge, few results have been published discussing
those approaches. The only psychoacoustic knowledge we in-
corporate in our feature extraction are some implicit assump-
tions which facilitate a robust selection of features.

Indexing System

Fig. 1 gives an overview of the overall indexing system. The
audio signal processing module (ASP) performs a preprocess-
ing step. The preprocessing is approximately invariant to
translations of the input signal. Additionally, the ASP per-
forms a small amount of noise reduction. Possible prepro-
cessing could consist of windowed Fourier transforms, wavelet
transforms, or filter banks. Several of those preprocessing
methods were evaluated during our research. Good results
were obtained by a choice of optimized filter banks.

The adaptive feature extraction unit determines rele-
vant (time-) stamps and creates features consisting of
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(time,classification )-pairs. This way, feature patterns are cre-
ated. In the design of suitable features, the feature density
is a critical issue. In our event-based approach, no features
are assigned to null-signals as those signals do not carry any
interesting information. Hence, passages of silence cannot be
detected unless features are explicitly assigned to such pas-
sages. On the other hand, we have to take care that features
are assigned to every “interesting” part of an audio signal.
Our current set of features is adapted to general acoustic sig-
nals. In particular, the feature density has been designed to
allow a signal identification from about 0.25 — 0.5 seconds
of audio. However, the feature density may be adapted ac-
cording to application-specific demands. A reduced feature
density implies a higher index compression. On the other
hand, this parameter setting requires longer portions of an
audio signal to perform the task of signal identification. An
increased feature density would allow a signal identification
from, e.g., 10 milliseconds of audio, but also imply higher
storage requirements to store the index. However, for most
applications it will probably be not necessary to achieve an
identification from such a short piece of audio. In our settings,
the appropriate feature extraction parameters to guarantee a
sufficient feature density have been determined and validated
by extensive tests on a wide variety of acoustic material. A
more detailed discussion of the test material will be given in
the next section.

The next step in the indexing process consists of the reduc-
tion of the extracted features and is accomplished by a feature
compression unit (FCU). This unit examines the features ex-
tracted by the AFE unit and retains only the most relevant
ones. In our setting, this unit is used as an additional means
to regulate the feature density as discussed in the previous
paragraph. The FCU as well as the AFE works in an approx-
imately time-invariant manner, i.e., the time-information of
the retained features is approximately preserved.

The extracted features are finally organized, classified, and
stored using an algebraic indexing technique. This indexing
is performed by an algebraic indexing unit (AIU) which has
recently been developed by our group. In brief, the ATU com-
bines techniques from classical full-text indexing [5] and com-
puter algebra to account for the structure contained in the
extracted feature patterns. This structure is thus mapped to
the index data. The use of algebraic indexing is not restricted
to the field of audio. Details about the algebraic indexing
techniques and applications to other fields will be reported
elsewhere.

Fig. 2 gives an overview of the query processing queue. The
upper part of the figure shows the raw PCM signal. The
signal ist first analyzed to yield a feature space representa-
tion. In the example this is illustrated by a windowed Fourier
transform (second row of the figure). The adaptive feature ex-
traction yields a pattern of candidate features as illustrated
by the stars in the third row of the figure. The feature com-
pression unit selects the most important features among those
candidates (4th row of the figure). Finally, the reduced fea-
ture set is stored in the index using the algebraic indexing
technique. We would like to particularly point out the event-
based feature extraction as performed by the AFE unit.

Query Processing

A query is assumed to be given by an arbitrary piece of audio.
However in most cases this will be only a short excerpt con-
taining only a few seconds of an audio recording. Naturally,
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ASP Adaptive feature Feature Algebraic
—®— preprocessing [ extraction —— compression [—# indexing
(AFE) unit (FCU) (AIV)
PCM Preprocessed Raw Reduced Organized
audio audio features feature set index data

Fig. 1: Overview of the overall indexing system.

raw PCM signal

g >
time l ASP preprocessing

— -

adaptive feature extraction

[
L

Fig. 2: Sketch of the feature extraction process. The starts in the third resp. fourth rows indicate the extracted
candidate features resp. the features selected by the FCU for indexing.
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the length of a query required to perform a unique identifi-
cation will depend on the feature density as discussed in the
last subsection.

The query is basically fed into the preprocessing queue as
already described in the indexing section. ASP-processing,
AFE and FC are performed in the same way as in the pro-
cess of indexing. As the feature extraction is approximately
time-invariant, the features extracted from a query are ap-
proximately equal to a subset of the features extracted from
a piece of audio containing that query as a subpart.

The algebraic retrieval unit (ARU) searches the index for one
of the following types of matches:

e FKzact matches, i.e., the features of the query coincide
with a subset of the features of an audio document
within the index.

o k%-matches, i.e., the queries features exhibit a k%-
match with a part of an audio document contained in
the index.

o Approximate matches, i.e., the features are allowed to
be slightly distorted as compared to those of an audio
document within the index.

The latter two types of matches provide robustness against
signal distortions resulting from various kinds of signal pro-
cessing as mentioned above. In our query framework it is also
possible to efficiently search for combinations of those two
types of matches, i.e., approximate k%-matches.

PERFORMANCE

For our performance measurements we created several indexes
using both a large archive of popular, rock, dance, and clas-
sical music and recordings of radio programmes of a german
radio station. The main index consists of 930 rock and pop
songs. The raw PCM material has a data volume of approxi-
mately 50 gigabytes. The resulting index size is 58 megabytes.
That means a data reduction of approximately 1 : 862. In this
particular index, the left and right channels were both pro-
cessed independently. Using a downmix to one mono channel
or even restricting the index to only one channel, the index
size can be further reduced to half of its size resultingin a total
data reduction of 1 : 1725. Further experiments indicate that
the use of an additional index compression, e.g. by Huffman-
or similar coding techniques can further reduce the index size
by a factor of two. However in this case, care has to be taken
not to slow down the query times because of the necessity of
an additional decoding step prior to querying. Mechanisms
for a suitable index compression have already been devised
and will be reported elsewhere.

In summary, the size of the index possible within our current
feature-settings can be estimated to roughly 1/3500-th of the
size of the raw PCM data. As an illustration, imagine that
approximately 3500 CDs could be indexed using one index
CD only.

Feature Density

As discussed before, the feature density influences the mini-
mum length of a query that is required for an identification of
that query. Fig. 4 shows the number of features per process-
ing frame for the song “Belfast Child” by the Simple Minds.
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Fach processing frame corresponds to roughly 1.1 seconds of
audio (49152 samples at a sampling rate of 44.1 kHz). The
most frequent feature densities in this example range from
5 — 30 features per second. Fig. 5 shows the feature density
for a piece of orchestral music (“Star Wars Suite”). The lower
part of the figure depicts the waveform signal. Assuming a
feature density of 5 — 10 features per second to be sufficient
for a unique identification of one second of audio in a mid-
size audio data base (of perhaps several 100,000 songs), the
figures show our features to yield a suitable feature density.

Fig. 6 shows the indexing data for an entire audio CD (“In-
nuendo” by Queen). As in our main index, the left and
right channels were indexed separately. The rightmost col-
umn shows the number of features per piece. Note that al-
though we cannot guarantee a specific feature density per
frame or per piece in our event-based setting, our features
were chosen suitably to yield a very regular density. Fig. 7
shows the index size in kB per hour of indexed radio mate-
rial. The radio material was directly recorded from antenna
using a conventional radio receiver and PC sound recording
equipment. In this case we indexed one mono channel only.
The figure exhibits a very close to linear increase in the index
size with time. As the size of our indexes can be proven to
grow linearly with the number of indexed features, this also
documents a nearly constant feature density.

Indexing performance

For our runtime experiments we used a PC with MS-Windows
98 as an operating system, 900 MHz Athlon CPU and 512 MB
of main memory. Note however that our indexing and query
engines have been designed for much larger data bases than
presented in our tests. In our implementation, the index size
is not limited by the available main memory. Furthermore it
is not necessary to load the whole index into the computers
main memory prior to query processing. For our main test
index of size 58 MB, a standard PC with only 16 MB of main
memory would be sufficient for the query processing.

The process of indexing PCM audio turns out to be realize-
able several times faster than realtime. For indexing one CD
of 53:49 minutes (543 MB) of audio, the index construction
takes 10:42 minutes when both channels are indexed sepa-
rately. This is roughly a factor of 5 faster than realtime.
When restricting the indexing to one channel only, the index-
ing speed is doubled. The indexing of a second audio CD of
length 40:54 minutes ( “Blues Brothers Soundtrack”) (413 MB
of data) takes 8:23 minutes yielding similar runtime /realtime
ratios.

Query Performance

Fig. 8 shows the query performance data of 16 short audio
pieces we used for querying or main index. All pieces are of
short lengths ranging from 0.5 — 3 seconds. The third column
from the left gives the total query times. The rightmost col-
umn gives the number of features extracted from each of the
queries. In the setting of an exact matching, all queries are
uniquely identified, i.e. each of them yields an exact match of
the form (7, t) consisting of the identified piece ¢ and position ¢
within that piece where the query occurs. The response times
to queries are very short and range from 0.5 — 1.5 seconds.

Robustness of Features

To allow a signal identification from distorted versions of an
original audio signal, the features should exhibit a certain
amount of robustness. Ideally, the features of the original
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Fig. 3: Overview of the query processing.
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Fig. 4: Feature density of the left channel of the song “Belfast Child” (Simple Minds).
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Fig. 5: Feature density of the left channel of the first 1:

Musicum, University of Berlin, Germany.

signal and a distorted but yet perceptually identifiable sig-
nal should be the same. As there are many forms of relevant
signal distortions, e.g., lossy compression or analog-, noisy-,
or radio transmissions, which themselves might result in very
different degrees and types of distortion, this goal can only
approximately be achieved. Moreover, the notion of “percep-
tually identifiable” is a very subjective one and cannot be
expressed by simple formulae.

Observing our feature patterns of the form
((time;, classification;))icy-

we consider two types of possible changes in the query pat-
tern resulting from signal distortions as compared to a pattern
stored in the index:

e The time-parameter of single features could be modified
or slightly distorted. For this kind of distortion we allow
a user-configurable tolerance value. This value may be
freely chosen depending on the assumed degree of signal
distortion. It determines the maximum time-deviation
between two features with identical classifications that
is allowed to consider both to be identical.

e The classification-parameter of a feature could change
as a result of a signal distortion. As we generally do
not assume the existence of a distance measure between
two different classifications, such differences in the clas-
sification parameter are considered to yield a feature
mismatch. To make our query scheme robust against
distortions causing mismatches we allow a certain per-
centage of feature mismatches for each query pattern.

6 8 10 12
Waveform signal x10°

30 min. of the “Star Wars Suite” played by the Collegium

This percentage may be predefined by a user, e.g., 40%
of feature mismatches could be specified to be tolerable
for a feature pattern to still yield a match.

Fig. 9 illustrates our concept of robustness comparing the
features of an MP3-coded version of a signal to those of a
corresponding original signal. The comparison is performed
on a segmental basis: The MP3-coded signal is decoded and
the features are extracted using the ASP, AFE and FC units.
Subsequent segments of 30 features each are grouped together
and used as a query input to a data base containing the in-
dexed original signal. The figure for each segment shows the
percentage of features coinciding in the original and the MP3-
version of the signal. In this setting, a tolerance value of 50
samples was allowed as an additional time-deviation for each
feature. Note that with the exception of two segments the
percentage of coinciding features is very high. On the other
hand, our tests show that false matches, i.e., accidental co-
incidents of a high percentage of features per segment, occur
very rarely. In our tests, all of those false matches could be
resolved by examining two or three segments with high per-
centage matches. Intersecting the matches for those segments,
thus only retaining the matches occurring in all of those seg-
ments, generally yields correct identifications.

The MP3-coding used in our tests was performed using a
compression ratio of 1 : 12. Put it another way, only roughly
8% of the original signal is conserved. In our setting of radio-
indexing, a considerable extent of the recorded audio material
contains transmission distortions. However it turns out that
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| Piece no. | Channel | Length (samples) | Length (min.) | No. of features

1 left 9,665,291 3:39 3,083
1 right 9,665,291 3:39 3,925
2 left 11,563,787 4:22 4,119
2 right 11,563,787 4:22 4,070
3 left 11,264,267 4:15 3,798
3 right 11,264,267 4:15 3,706
4 left 11,539,595 4:22 4,633
4 right 11,539,595 4:22 4,710
5 left 12,163,979 4:36 5,445
5 right 12,163,979 4:36 5,349
6 left 9,567,371 3:37 5,456
6 right 9,567,371 3:37 5,285
7 left 12,479,627 4:43 3,677
7 right 12,479,627 4:43 3,602
g left 13,082,123 4:57 5,336
g right 13,082,123 4:57 5,194
9 left 17,258,123 6:31 6,819
9 right 17,258,123 6:31 6,007
10 left 12,066,059 4:34 4,918
10 right 12,066,059 4:34 4,907
11 left 12,271,115 4:38 4,349
11 right 12,271,115 4:38 4,434
12 left 9,499,403 3:35 3,281
12 right 9,499,403 3:35 3,217

Fig. 6: Indexing data for an entire CD (“Innuendo” by Queen).
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Fig. 7: Index size obtained by indexing several hours of german radio (mostly pop/rock music and speech).

| Piece no. | Length in seconds | Query time in seconds | No. of features

1 0.565 0.38 5
2 0.491 0.71 10
3 0.636 0.66 8
4 1.829 0.72 12
5 1.142 1.04 18
6 0.801 0.5 9
7 1.141 1.1 16
8 1.161 1.59 25
9 1.157 1.09 14
10 0.925 0.6 11
11 0.641 0.66 8
12 0.957 1.27 17
13 0.833 0.82 13
14 1.115 0.88 14
15 1.12 0.71 15
16 2.98 1.43 28

Fig. 8: Query times for exact identifications on the test data base containing 50 GB of indexed PCM audio.
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Fig. 9: Robustness of our features against MP3-compression. Depicted is the percentage of features for each time
segment which coincide in the MP3-coded version and the original signal.

although those distortions are partially severe, a reliable sig-
nal identification is still possible from our chosen features.

Let us stress at this point that the set of features used in our
current settings has not explicitly been designed to provide
a robustness against higher level distortions. The design of
such features is beyond the scope of this work and will be
addressed in the future.

APPLICATIONS

There are several areas of application for our novel index-
ing technique. To describe these areas, note that we have
made a clear distinction between feature extraction resp. pre-
processing and indexing. The only requirement for the fea-
ture extraction is that it should produce patterns of the form
((time;, classification;));c7. This form exhibits the essential
characteristics of our event-based approach.

As our approach is very modular, it may be easily combined
with any suitable feature extraction method. The chosen fea-
tures determine how precise a given audio document is rep-
resented in the index. In our setting of full-text indexing we
look for exact- or indentity-matches. However, several other
projects in the field of audio retrieval aim at similarity-based
matches. Various types of similarity have been discussed re-
cently. The features used in those approaches are mostly
higher level features such as instrument classes or note onsets.
A straightforward application of our technology is to combine
the feature extraction methods used by those approaches with
our event-based view and the algebraic indexing technique.

Applications of audio identification as discussed in this paper

have recently been brought up by the industry as well as the
research community:

e Automated monitoring of radio and TV programmes,
particularly automatic detection of music, ads, audio
clips, etc.

e Monitoring of audio traffic on the internet. The faster
than realtime capabilities of our retrieval technique al-
low the detection of copyrighted material during its
transmission. Furthermore, only fractions of the audio
material (some seconds or few IP packets) are needed
for an identification.

e Detection of audio material illegally distributed on the
internet.

e Identification of audio fragments played back by a user
querying for the CD/DVD containing the correspond-
ing audio track.

e Directly querying PCM/MP3-audio instead of only
the title, composer, etc. (classical vs content-based
queries).

The applications of the very powerful algebraic indexing tech-
nique (AIT) used by our full-text audio indexing are in many
fields. Given a suitable feature extraction depending on the
application specific demands, this technique allows for very
fast retrieval of complex query patterns in very large data
sets. In our group we are currently developing a system for
the fast search of objects in complex 3D scenes.
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SUMMARY AND FUTURE WORK

In our paper we proposed a novel event-based framework for
full-text audio indexing. The main application described in
this paper is the identification of pieces of audio resp. the
index-based search of a short piece of audio in a very large
audio data base. Our indexing method combines an algebraic
indexing technique with a suitable feature extraction. For
PCM audio the index is compressed to factors of 1 : 1000 and
above w.r.t. the original PCM data. The indexing is robust
to mid-level signal distortions such as MP3 compression or
radio transmissions.

Our future work in the field of audio will investigate suitable
high-level features to make the indexing robust to more severe
kinds of signal distortions. The algebraic indexing techniques
will be applied to other multimedia data as indicated above.

FULL-TEXT INDEXING OF VERY LARGE AUDIO DATA BASES
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