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1 Introduction

The agent paradigm is theoretically well developed in various instantiations and fills
entire textbooks [37, 38]. Many agent programming languages and frameworks for the
development of agents and multiagent systems exist [8]. A symbolic representation of
an agent’s knowledge allows for flexible representation, handling and exchange of infor-
mation between software and human agents. A variety of logical formalisms with differ-
ent expressivity and computational properties are available for knowledge representation
[9, 35]. Yet no framework for developing logic based agents with advanced reasoning ca-
pabilities exists. In this work we present the angerona framework which is designed to
support the development of epistemic agents based on logical formalisms for knowledge
representation and reasoning.

On the topic of secrecy a large body of work exists and diverse definitions of secrecy in
various settings with different properties have been developed. For multiagent systems
the main research focus herein lies on strong notions of secrecy of a whole (multiagent)
system, for an overview see [13]. Secrecy is generally imposed by some global definition
of secret information from a global complete view of the system. Various logics for se-
crecy or privacy have been developed for different purposes, that provide a high degree
of expressiveness for specification, for an overview see [34]. While a substantial body of
work on the definition of secrecy exists mechanisms for secrecy preservation in multiagent
systems are lacking. Of our particular interest is the inference problem in which infor-
mation is not only to be protected directly but also via possible inferences [11]. Hereby,
prior information and background knowledge have to be considered in combination with
some inference operator. Effective mechanisms for secrecy preserving query answering
have been developed for the database setting, e. g. [27, 5]. In those, a censor component
is used which checks the answer of the database to a user’s query given the history of
queries and answers, and the users assumed background knowledge. In case of secrecy
violation the censor distorts the answer by refusing the answer or by lying.

In this work we consider secrecy and secrecy preservation from the point of view of an
autonomous knowledge-based agent with incomplete and uncertain information, situated
in a multiagent system. Moreover, we consider a dynamic system which demands for
techniques to handle the dynamics of information and to dynamic secrecy preservation.
Dynamic secrecy preservation allows for adaptation and potentially to a higher degree
of availability of information than static access rights. The epistemic component of an
agent is central to our approach. Secrecy of information and in particular the inference
problem depend on the representation of information and the reasoning capabilities of
the agents.

Agents reason under uncertainty about the state of the environment, the reasoning of
other agents and possible courses of action. They pursue their goals by performing
actions in the environment including the communication with other agents. On the one
hand, the exchange of information with other agents is often essential for an agent in
order to achieve its goals; especially if the agent is part of a coalition. On the other
hand the agent is interested, or obliged, not to reveal certain information, its secrets.
Restriction of communication leads to a loss in performance and utility of the individual
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agent, coalitions and the whole multiagent system. That is, secrecy preservation can
be seen as a special kind of maintenance goal [36] which requires reasoning about the
information and reasoning capabilities of other agents. A good solution of the implied
conflict between the agent’s goal to preserve secrecy and its other goals is one that restricts
communication just as much as necessary to still preserve secrecy. To achieve a possible
violation of secrecy by an intended course of action has to be detected as early as possible
and alternative courses have to be found.

In this work we define desirable properties of a notion of secrecy in our considered setting
and an adequate notion of secrecy and secrecy preservation within a general epistemic
agent model satisfying the desirable properties. We present a general epistemic agent
model for secrecy independent of the underlying logic and apt for formalisms capable of
dealing with incomplete information such as non-monotonic logics. Moreover, we design
a secrecy-preserving agent, i.e. an agent that does not perform a secrecy violating action.
This can be achieved by adding a censor operator which checks the agent’s actions prior
to execution and modifying them if necessary similar to the approaches from database
theory [27, 6] and previous applications of these to a multiagent setting [7]. We argue
that such an agent loses its autonomy since some foreign object modifies its actions. The
performance of such an agent can be suboptimal as it might be much better off by taking
secrecy concerns into consideration while deliberating and planning its actions. Here we
present an agent model capable of the latter. The more secrecy preservation is integrated
into the agent model the more options for utility optimization under secrecy constraints
is possible.

For realizing agents, the BDI model [37, 25] has become a leading paradigm of the field.
This model distinguishes between Beliefs, Desires, and Intentions as the main components
of an agent’s mind, the interactions of which determine its behavior. Roughly, Beliefs
comprise (plausible) knowledge the agent has concerning the current situation and how
the world works in general, Desires encode what she wishes to achieve and hence represent
possible goals, whereas Intentions focus on the next actions the agent should undertake to
achieve the current goal. The role of Beliefs in this scenario is to provide the agent with
useful information to evaluate the current situation and to find reasonable and effective
ways to achieve her goals. We base our agent model on the well-established belief, desires,
intentions model and extend it by a partial planning mechanism and show that it satisfies
the defined properties for secrecy preservation.

We consider answer set programming (ASP) [12] as a possible formalism for knowledge
representation, reasoning and planning with limited resources and sketch the use of it
within our framework. We implemented the general framework presented in this work.
The result is a variable system for the development of knowledge-based agents. We
implemented the proposed BDI model with an ASP based reasoning and deliberation
component.
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2 Answer Set Programming

We introduce extended logic programs and the answer set semantics as presented in [12].
An extended logic program consists of rules over a set of atoms A using strong negation
¬ and default negation not. A literal L can be an atom A ∈ A or a negated atom ¬A.
The complement of a literal L is denoted by ¬L and is A if L = ¬A and ¬A if L = A.
Let A be the set of all atoms and Lit the set of all literals Lit = A∪ {¬A | A ∈ A}. For
a set of literals X ⊆ Lit we use the notation not X = {not L | L ∈ X} and denote the
set of all default negated literals as D = not Lit. L = Lit ∪ D represents the set of all
literals and default negated literals. A rule r is written as

L← L0, . . . , Lm, not Lm+1, . . . , not Ln.

where the head of the rule L = H(r) is either empty or consists of a single literal and the
body B(r) = {L0, . . . , Lm, not Lm+1, . . . , not Ln} is a finite subset of L. The language of
rules constructed over the set of atoms A this way is referred to as LaspAt . A finite set of
sentences from LaspAt is called an extended logic program P ⊆ LaspAt .

The body consists of a set of literals B(r)+ = {L0, . . . , Lm} and a set of default negated
literals denoted by B(r)− = {Lm+1, . . . , Ln}. Given this we can write a rule as

H(r)← B(r)+, not B(r)−.

If B(r) = ∅ we call r a fact. A state S is a set of literals that does not contain any
complementary literals L and ¬L. A state S is a model of a program P if for all r ∈ P
if B(r)+ ⊆ S and B(r)− ∩ S = ∅ then H(r) ∩ S 6= ∅. The reduct P S of a program P
relative to a set S of literals is defined as

P S = {H(r)← B+(r) | r ∈ P,B−(r) ∩ S = ∅}.

An answer set of a program P is a state S that is a minimal model of P S. The set of all
answer sets of P is denoted by AS (P ). Rule schemas can use variables which we denote
by x, y, z and _ for the anonymous variable [12].

Two different inference relations are defined based on answer sets. An extended logic
program P infers a literal L credulously, denoted by P |=c

asp L, iff L ∈ ∪AS (P ). An
extended logic program P infers a literal L skeptically, denoted by P |=s

asp L, iff L ∈
∩AS (P ). P |=◦asp S refers to any answer set inference relation. The answer set semantics
defines the evaluation of queries ?L with L ∈ Lit as yes if P |=◦asp L, no if P |=◦asp ¬L
and unknown else.

We also introduce nested logic programs (NLP) as defined in [20]. A NLP consists of
rules that allow not quantified first order formulas to appear in the head and the body.
In ASP the head can be a disjunction and as soon as the body has more than one element
the elements are seen as conjunction. In NLP the head can also contain conjunctions and
the body can also contain disjunctions. [20] also describes two default negations not not a
and default negations in the head. These constructs are not used in this work and are
therefore not described here.
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The translation of FOL literals to ASP literals is trivial. A NLP rule with a conjunction
in the head can be translated into multiple ASP rules:

{a ∧ b← c.}NLP {a← c. b← c.}ASP

and also a NLP rule containing a disjunction can be translated into multiple ASP rules:

{a← b ∨ c.}NLP {a← b. a← c.}ASP

The translation of ASP rules into NLP rule is straightforward because NLP is a superset
of ASP.

3 Conceptualization of Epistemic Agency for Secrecy

In this section we start with a brief introduction to our general concept of an epistemic
agent. Then we start the elaboration of our epistemic agent model for secrecy preser-
vation. Herby start with the general concept and then concretize the model and finally
define a concrete model based on the well-known BDI agent model.

3.1 General Agent Model

The central idea of our framework is that of a widely knowledge based, i. e. epistemic,
agent. All processes of an agent should be based on the information available to it and
the beliefs it forms thereupon by means of reasoning, formalized by its belief-operator.
This contrasts our framework from other frameworks in which extra-logical components
which are not available for reasoning control the agents behavior.

Definition 1 (Agent). An agent is a tuple (K, ξ) comprising of an epistemic state K
and a functional component ξ. The set of all agents in the system is denoted by A.

This notion fixes the very basic structure of an epistemic agent as illustrated in Figure
3. However, it hardly constrains the agent’s type or realization. Any meaningful agent
model has some data component and one input or output channel which alters the data
component by some function. The data component is often a simple form of some memory
for state variables or instructions. We do require that the data component is an epistemic
one. That means, that it is based on a logic representation of information which comes
along with reasoning capabilities which allow to infer more information based on the
given representation. The assumptions we make here about the structure of an epistemic
state are satisfied by virtually all formalisms used for knowledge representation.

The composition of an agent of an epistemic and a functional component is reflected
by the plug-in architecture of the angerona framework. It contains two independent
plug-ins for the epistemic and the functional component respectively. The former is
based on the tweety library for knowledge representation [30] which provides a rich
framework and many plug-ins for knowledge representation formalisms. This allows to
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Environment

Agent

ξ

Perception

Action

K

Figure 1: Basic structure of an epistemic agent

use any formalism already implemented, to develop our own, and to use those that might
be implemented by others in the future.

In the following we concretize both components conceptually. That is, we develop a
general framework for knowledge based agents with an extension towards secrecy preser-
vation. For the functional component we define an abstract instance first. Then we
develop the basic instance towards a BDI-based Agent model for secrecy preservation.

3.2 Epistemic Component for Secrecy

In this section we present an epistemic characterization of secrecy for autonomous agents
in multiagent systems. We base our definition of secrecy on the view of a single agent that
wants to maintain secrecy while interacting with other agents and its environment. It has
incomplete and uncertain information. Thus it has to rely on its plausible but defeasible
beliefs which result from its current epistemic state, and has to handle the dynamics of
beliefs and secrets. As motivated above, an agent needs a definition of secrets that allows
to define secrets individually with respect to each of its fellow agents. Moreover, each
secret can vary in strength, that is, the agent wants to keep some information more secret
than other.

To be more precise we consider scenarios having all of the following properties:

E1 subjective perspective of an autonomous resource-bound agent

E2 incomplete and uncertain information

E3 direct (communication) and indirect (effects in the environment) interaction with
other agents

E4 dynamic, non-deterministic, and partially observable environment

With respect to the design of the agents we demand the following features:
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A1 knowledge-based with logic-based epistemic state,

A2 inference operators that account for uncertainty,

A3 update operators for beliefs about the world, other agents, and secrets,

A4 resource-bounded reasoning about beliefs, changes and actions,

A5 goal directed, proactive behavior and planning.

We elaborate an agent model showing the features A1 to A5. For a comprehensible
representation of main aspect of the secrecy scenario it is helpful to focus on the com-
munication between two agents, the modeled agent which wants to defend its secrets,
denoted by D, from a potentially attacking agent, denoted by A. For the illustration of
our approach we use the following running example.

Example 1 (Strike Committee Meeting). Consider an employee emp working in a com-
pany for his boss boss. He wants to attend a strike committee meeting (scm) next week
and has to ask his boss for a day off in order to attend. It is general knowledge that the
agent boss puts every agent who attends the scm on her blacklist of employees to be fired
next. Therefore the agent emp wants to keep its attendance to the scm secret.

The epistemic state of an agent contains a complex representation of the agent’s current
belief state which might contain extra-logical information. Our concepts and notions of
secrecy are independent of the used formalism we assume but we assume an underlying
base-language L, e. g. propositional logic, which the representation of the epistemic state
makes use of. Belief operators can be applied to produce the set of currently held beliefs,
the belief set, expressed in a language based on the same base language. The basic setup
is illustrated in Figure 2. Three types of languages based on L are used, LV for the view
of the agent on other agents and its environment, LS to define secrets and LBS for the
belief set of some view. This way we allow for formalisms that use different languages
such as answer set programming [12], argumentation systems [4], or conditionals [28].

Definition 2 (Epistemic State). Let D ∈ A be some agent. The epistemic state of D
is denoted by KD. The set of all possible epistemic states of the agents in A is denoted
by Ω. Agent D’s view on the world is given by VW (KD) and expressed in the language
LV .The view agent D has on the view on the environment of agent Y ∈ A is given by
VY(KD) ⊆ LV . S(KD) returns the secrets expressed in the language LS of an agent with
epistemic state KD.

To equip agents with reasoning facilities, a belief operator is defined which returns a set
of beliefs given a belief base which represents the view on the world of an agent.

Definition 3 (Belief Operator). A belief operator Bel : LV → LBS is a function from the
view language to the belief set language such that for a given view V we get Bel(V ) ⊆ LBS.
It satisfies the following two properties:

• Consistency: There does not exist φ ∈ L and W ∈ LV
such that φ ∈ Bel(W ) and ¬φ ∈ Bel(W ).
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• Propositional Consequence: For all φ, ψ ∈ L such that ψ is a propositional conse-
quence of φ, i.e., φ `pl ψ, for all W ∈ LV it holds
φ ∈ Bel(W ) implies ψ ∈ Bel(W ).

The belief operator determines the currently held beliefs of the agent given some view.
In a simple answer set programming setting beliefs are represented by a set of literals
and a view by a logic program. The framework also allows for first order or modal
logic, conditional information or defeasible rules, possibly augmented by some preference
information. The belief operator determines how uncertainty of information is handled.

Environment

Agent

ξ

Perception

Action

Epistemic State

World
VW (KD) ⊆ LVW

Views
VA(KD) ⊆ LVA

Secrets
S(KD) ⊆ LS

Belief Set
Bel(VW (KD)) ⊆ LBS

Belief Set
Bel(VA(KD)) ⊆ LBS

Belief Operator
Bel ∈ Ξ

Belief Operator
Bel ∈ Ξ

Figure 2: Basic Epistemic Agent

Given an epistemic state with incomplete and uncertain information various inferences
are possible which are more or less credible. Different belief operators can be used which
differ in the strength of belief associated to the resulting beliefs. We assume a structured
family of belief operators from which an operator can be chosen.

Definition 4 (Belief-Operator Family). A Belief-Operator Family is a complete lattice
(Ξ,�Ξ ) consisting of a set of Ξ of belief operators and a partial order �Ξ on Ξ, We
assume that the ignorant operator Bel∅(V ) = ∅ is in any familiy, i. e. Bel∅ ∈ Ξ. If
Bel �Ξ Bel

′, then for all V ∈ LV it holds that Bel(V ) ⊆ Bel′(V ). We read Bel �Ξ Bel
′

as Bel′ is at least as credulous as Bel.

The notion of a belief-operator family captures a wide range of formalisms from purely
qualitative ones to fully quantitive ones. We assume that for any two operatorsBel1, Bel2 ∈
Ξ such that Bel1 �Ξ Bel2 the information in the belief set of Bel1 are at least as credible
as those of Bel2.

A basic and well-known family of operators would be Ξa = {Belskep, Belcred} consisting
of a skeptical and a credulous belief operator for some formalism. The order on these
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operators can be based on the subset relation, i. e. Beli �Ξ Belj if and only if Beli(V ) ⊆
Belj(V ) for all V ⊆ LV . Assuming that an agent believes credulously everything that it
believes skeptically we get Belskep �Ξ Belcred.

A richer hierarchy is given by quantitive approaches as by probabilistic formalisms where
a family of operators is given by Ξb = {Belx | x ∈ [0, 1]}. Each Belx includes every
sentence which is believed with probability ≥ x and Belx �Ξ Bely if and only if x ≥ y.

Based on this general agent model we define our notion of secrecy. In realistic settings the
information to be kept secret is neither global, nor uniform, nor static. Secrets are not
global in their content as an agent has different secrets with respect to different agents.

Example 2 (strike committee meeting). In our example, the employee wants to keep his
attendance to the scm secret from his boss but not from other employees that want to
attend the meeting.

They are also not uniform with respect to their strength. That is, an agent wants to
keep some information more secret than other. These differences in strength of secrets
arise naturally from the value of the secret information to a specific agent. The value of
secret information depends on the severeness of the negative effects, or the cost, for the
agent resulting from disclosure of the secret information. These costs can differ widely
and consequently the agent is interested in not revealing secret information to different
degrees. These degrees of strength are expressed by assigning belief operators to the
information.

Example 3 (strike committee meeting). The employee does not even want his boss to be
suspicious about him attending the scm (secrecy with respect to a credulous belief opera-
tor). He also does not want that other employees that are against the strike to know that
he attends the scm. However, with respect to the latter he considers it sufficient that they
do not know for sure that he attends (secrecy with respect to a skeptical belief operator).

Secrets are also not static, they arise, change and disappear during runtime of an agent
such that it has to be able to handle these changes adequately.

Example 4 (strike committee meeting). If the employee realizes that his boss overheard
his phone call with the strike committee he should give up his corresponding secret since
it has been revealed already.

Apart from being aware of its secrets at any time, an agent has to act such that it avoids
revealing its secrets. It shall only reveal secret information if it considers it necessary in
order to achieve its goals; which depends on the strength of the secret and the utility
of the goals. That is, an agent has to take its secrets into account while acting and,
moreover, while planning its intended course of action.

These considerations lead to the following formulation of properties of secrecy:

S1 secrets can be specific with respect to an agent

S2 secrets can vary in strength
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S3 secrets can change over time, they can be adopted, strengthened, weakened or dropped

S4 secrecy accounts for uncertainty about beliefs of other agents, state of the world,
effects of actions

Next we give a notion of secrets satisfying the properties given above. Most importantly,
the information to be kept secret has to be expressed in the belief set language. Moreover,
the agent from which the information has to be kept secret has to be defined and lastly
the strength of the secret has to be expressed. Note that by assuming a more credulous
belief operator of the attacker leads to a stronger protection of secret information of the
defender with respect to the attacker. That is, if the defender reveals some information
a credulous attacker might infer some secret information while a skeptical one with the
same information might not. In the former case the defender should not have revealed
the information. That is why we can specify the strength of a secret by the selection of a
belief operator under which it should be protected. Hence in our framework secrets are
triples specifying the information to be kept secret, the belief operator to use and the
agent towards which the agent holds the secret.

Definition 5 (Secrets). A secret is a triple (Φ, Bel,A) which consists of a formula
Φ ∈ LBS, a belief operator Bel ∈ Ξ and an agent identifier A ∈ A. The set of secrets of
agent D is denoted by S(KD). The set of all such triples defines the language LS.

The semantics of a secret is that if agent D holds the secret (Φ, Bel, A) ∈ S(KD), it does
not want that agentA believes Φ by use of the belief operator Bel, i. e. Φ 6∈ Bel(VA(KD)).
Since agents only have local views, secrecy is based on the subjective view VA(KD) agent
D has on the beliefs of another agent A.

Example 5 (strike committee meeting). We can formalize the secrets of the employee
as S(emp) = {(attend_scm, Belcred, boss)} using the proposition attend_scm with the
obvious meaning.

Definition 6 (Safe Epistemic State). An epistemic state KD is safe if and only if it holds
that Φ 6∈ Bel(VA(KD)) for all (Φ, Bel, A) ∈ S(KD). We denote the set of all possible
safe epistemic states by Λ ⊆ Ω.

The condition Φ 6∈ Bel(VA(KD)) in the definition of a safe state refers to the world view
of an attacker maintained by D.

3.3 Functional Component for Secrecy

For an agent, the dynamics of an environment are reflected by the perceptions it receives
and influenced by actions it performs. The functional component of an agent deals with
the incoming perceptions, updates the current epistemic state accordingly, and determines
the next action to be performed.
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3.3.1 Basic Agent Cycle

For the general model we use a functional component ξ consisting of a change operator
◦ and an action operator act, i. e. ξ = (◦, act). We assume a set of possible actions
Act and a set of possible perceptions Per. . Since both, actions and perceptions imply
epistemic changes, actions and perceptions are generalized to pieces of information τ ∈
Γ = Act ∪ Per.
In each agent-cycle the next action a ∈ Act of an agent is determined by the current
epistemic state K ∈ Ω such that an agent is modeled by an action operator act : Ω→ Act.
Each agent D ∈ A is assigned a specific action operator actD. We denote the set of all
action operators by A. Updates to an epistemic state that are implied due to the
execution of an action or the incorporation of a perception are realized by a belief update
operator.

Definition 7 (Change Operator). We assume an operator ◦ which changes an epistemic
state K ∈ Ω given some information τ ∈ Act ∪ Per, such that K ◦ τ = K′ with K′ ∈ Ω.

The concept of the change operator taking epistemic states and new information is very
versatile. A belief change operator has to consider the type of epistemic state, adequate
operators for actions and for perceptions, different types of sequences of pieces of infor-
mation, the estimated effects on the views on other agents and the dynamics of secrets.
These tasks call for different types of operations, e. g, update and revision operators
[15, 19]. Here we use the term change operator as a general one and abstract from these
types and assume the proposed operator to deal with these appropriately.

Up to this point we defined an epistemic state and a safety condition on it with respect
to secrecy for a fixed point in time. We want to define secrecy of an autonomous agent
in a dynamic environment. An agent preserves secrecy if it never performs any action
that leads to an unsafe epistemic state. An agent starts with an initial epistemic state
which is changed by perceptions from the environment and the agents actions. The new
epistemic state is then given by the change of its current state by the information it gets
from its environment in form of a perception and by the information which action it has
performed. For an agent D with action function actD and some perception p ∈ Per an
agent cycle results in a new epistemic state determined by KD ◦ p ◦ actD(KD ◦ p). The set
of all possible successive epistemic states of agent D is determined by the set of initial
epistemic states Λ0

D and all respective successor states for all possible perceptions and
corresponding actions of D. i. e.

Ω◦,act(Λ
0
D, P er) = {K | K = K0 ◦ p0 ◦ actD(K0 ◦ p0) ◦ . . .

, p0, . . . , pi ⊆ Per, i ∈ N0,K0 ∈ Λ0
D}.

An agent preserves secrecy if its action and change operators are such that no unsafe
epistemic state can be reached by any possible progression of epistemic states.

Definition 8 (Secrecy-preserving Agent). Let D = (KD, (◦D, actD)) ∈ A be an agent.
Let Λ0

D be a set of safe initial epistemic states and Per be a set of perceptions. We call D
secrecy preserving with respect to Λ0

D and Per if and only if for all KD ∈ Ω◦,act(Λ
0
D, P er)

it holds that KD is safe.
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We require an agent with an initial safe epistemic state to act such that secrecy is not
violated for all possible perceptions it might receive. That is, we formulate secrecy mainly
as a requirement on the operator act. The determination of the effects of perceptions and
actions, however, is dependent on the agents change operator such that the latter sets
the conditions for the act operator. Therefore we discuss desirable properties of change
operators in the next section.

3.3.2 Belief Change Operations and Secrecy

Secrecy preservation as of Definition 8 is heavily dependent on the epistemic state of the
agent since we consider subjective secrecy from the respective agent’s perspective. In a
dynamic setting an agent has to adapt its epistemic state and thereby also its view on
other agents and its secrets. This makes the notion of secrecy dependent on the agent’s
way of information processing and adaptation of its own beliefs. The properties of the
change operator are hence significant for the resulting definition of secrecy preservation.
To make the importance of this operator clear, a completely ignorant agent would never
subjectively violate secrecy as it would ignore the violation of secrecy. We discuss desir-
able properties of an change operator and their effect on the resulting notion of secrecy.

The change operator changes the world view, agent views, and the secrets of an agent for
incoming perceptions and actions. The main difference between perceptions and actions
is that perceptions represent actions performed by other agents while actions represent
the actions the agent under consideration has performed. Both types of inputs thus have
different semantics and lead to different changes. Moreover, both types might not be
represented in the same language as the the belief components of the agent. Classically
belief change operators, however, satisfy categorical matching, i.ė. domain and codomain
are equal. To facilitate the use of classic belief change operators which are well developed
we split our change operator into sub-operations. For the interpretation of the input and
translation to the language of the respective belief component we introduce translation
operators

tW : Γ→ LW and tV : A× Γ→ LV .

Example 6. A perception might represent an act of communication between agents and
comprise of information about the sender of the information, the addressees, a timestamp,
and some logical content. The translation function has to process this complex information
into some sentence or set of sentences in the target language.

The result of the translation is then used to change the respective component by use of
specific revision operators

∗D : LW → LW and ∗A : LV → LV .

The latter operator reflects the revision strategy of agent A. Secrets are updated on the
basis of the agent’s updated beliefs and views such that the update operator for secrets
is dependent on these as well as on the incoming information, i. e.

∗S : LS × LW × LV × Γ→ LS.
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We assume that we can define the changes of the ◦ operator to the components by
suboperations. Formally we postulate that the effect of ◦ can be expressed by means of
the component specific operators, such that

VW (K ◦ τ) = VW (K) ∗D tW (τ), (1)
VA(K ◦ τ) = VA(K) ∗A tV (A, τ) and (2)
S(K ◦ τ) = S(K) ∗S (VW (K ◦ τ), V(K ◦ τ), τ). (3)

For secrecy preservation it is necessary that the agent does not give up any secrets upon
reflecting its own actions since it would be able to perform arbitrary actions without
violating secrecy by abandoning its secrets. Thus, the agent must not be able to preserve
a safe epistemic state by modifying its secrets for which we propose the following property.

Secrets-Invariance◦ If τ ∈ Act then S(K ◦ τ) = S(K)

The Secrets-Invariance property is restricted to inputs that are actions. These actions
are those of the agent itself and perceptions reflect changes in the environment or actions
of other agents. For the latter the postulate should not hold. That is, an agent should
not be able to ignore the fact that a secret has been revealed due to changes in the
environment or actions of other agents. This is expressed in the following property.

Acknowledgment◦ If τ ∈ Per then K ◦ τ is safe.

The changes to the set of secrets in order to achieve a safe epistemic state should be
minimal. That is, a secret should not be weakened without a reason, i. e. it it is violated,
it should not be strengthened and it should be weakened minimally.

Min-Secrecy-Weakening◦ If (Φ, Bel,A) ∈ S(K) and (Φ, Bel′,A) ∈ S(K ◦ τ) with
Bel 6= Bel′ then Φ ∈ Bel(VA(KD ◦ τ)) and there is no Bel′′ such that Φ 6∈
Bel′′(VA(KD ◦ τ)) with Bel′′ � Bel′.

Another secrecy relevant property of belief change arises from the changes to views of
other agents. An agent should not be able to preserve secrecy by ignoring the effects of its
own actions on the beliefs of potentially attacking agents. In particular the information
for some agent A contained in an action of D should be incorporated into D’s view on
A. This is formulated by the next property.

Awareness◦ If τ ∈ Act then tW (τ) ∈ VW (K ◦ τ) and for each A ∈ A tV (A, τ) ∈ VA(KD ◦
τ).

There might very well be actions which are not visible to all agents and therefore should
also not affect the view on all agents.

Example 7. If agent D communicating privately with some agent A it should change its
view on A but not its view on other agents.
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This is achieved by use of appropriate translation operators which select the relevant
information for each agent. For agents that are not affected by the information the
transformation function returns the empty set.

A more in-depth analysis of update operations depends on the actual formalization of
actions and perceptions and the resulting transformation operators and their properties.
Given the formalization given so far we can state that it satisfies the properties defined
above.

Observation 1. The satisfaction of Secrets-Invariance◦, Acknowledgment◦, Min-Secrecy-
Weakening◦ and Awareness◦ of the belief change operator of an agent corresponds to the
satisfaction of (P1), (P5) and (S3).

Presupposing appropriate translation operators satisfying Awareness◦ means that the
corresponding revision operator ∗ of has to satisfy success.

Success∗ Φ ∈ V ∗ Φ

Proposition 1. Given a belief change operator ◦B constructed as defined in (*). If the
corresponding inner change operator ∗ satisfies Success Φ ∈ V ∗ Φ, then ◦B satisfies
Awareness◦B .

Proof. By the construction given in (1)-(3) we have that VW (K ◦ τ) = VW ∗ tW (τ) and
VA(K◦τ) = VD,A∗tV (A, τ) such that tW (τ) ∈ VW (K◦τ) if and only if tW (τ) ∈ VW ∗tW (τ)
and tV (τ,A) ∈ VA(K ◦ τ) if and only if tV (τ,A) ∈ VD,A ∗ tV (A, τ). Given that ∗ satisfies
Success it holds that tW (τ) ∈ VW ∗ tW (τ) and tV (τ,A) ∈ VD,A ∗ tV (A, τ) and therefore
also tW (τ) ∈ VW (K ◦ τ) and tV (τ,A) ∈ VA(K ◦ τ) such that Awareness◦ is satisfied.

In the following we elaborate on the functional component of the agent model and its
aspects for epistemic secrecy.

3.3.3 BDI Model for Epistemic Secrecy

The framework of epistemic secrecy presented thus far focuses on the definition of epis-
temic secrecy and leaves the functional component of an agent abstract. In the following
we instantiate the functional component with a BDI agent model. We make an agent’s
desires and intentions explicit parts of its epistemic state K, which was only partially de-
fined before. Correspondingly, the update operator ◦ does not only realize the update of
the belief base, views and secrets of the agent but also updates its desires and intentions.

Definition 9 (BDI-State). We define a BDI-State as an epistemic state K = 〈{VW ,V ,S},
∆, I,KH〉. It consists of a world view VW , a set of secrets S, a set of agent views V =
{VY | Y ∈ A}, a set of desires ∆, a set of intentions I, and the agent’s know-how KH.
We refer to the first component as the beliefs B(K), or B if un-ambigouos, of the agent and
denote the set of all possible beliefs by B. It must hold that VW (B) = VW (K) = VW ⊆ LV ,
VY(B) = VY(K) = VY ⊆ LV and S(KD) ⊆ LS.
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Hence a BDI-State is safe if and only if its belief component is safe. In the following we
elaborate the ∆and I components of a BDI-State and generalize the notion of a secrecy-
preserving agent to account for the agent’s current state of desires and intentions.

We denote D as the set of all desires or possible goals an agent may have. These are
expressible in the belief-set language LBS where a desire is some element of the language
that an agent wants to be satisfied in its beliefs. An agent maintains a subset ∆ ⊆ D ⊆
LBS which resembles its current set of desires. Desires can be dynamically generated
and motivated by the agents motives. For the sake of simplicity of representation of the
topic of this paper we leave this aspect out of consideration and confer to [18] for details.
Every agent has at each moment one selected desire that is the goal it currently pursues,
denoted by selected(∆). For the sake of simplicity of presentation we assume here that
an agent has only one (top-level) goal at the same time. An extension to multiple goals
would be easily possible.

An agent also maintains a set of intentions I ⊆ I where I ⊆ LBS denotes the set of all
possible intentions. Intentions describe the aims of the agent that it currently pursues
in order to fulfill its selected goal. These are more concrete than desires. Every time
an agent selects a new goal from its desires, this goal becomes its top-level intention.
At any time the set I correlates directly to the currently pursued goal selected(∆) and
contains the next subgoals the agent wants to be satisfied in order to fulfill it. A subset of
the intentions are atomic in the sense that they are directly satisfiable by the execution
of one single action a. We assume here that this action is unique1. We denote this
set of atomic intentions by I ⊆ I. For each atomic intention I ∈ AtInt we denote
the corresponding action by α(I). For a set of atomic intentions I ′ ⊆ AtInt we define
α(I ′) = {α(I) | I ∈ I ′} and for a sequence α((I1, . . . , In)) = (α(I1), . . . , α(In)). The set of
all actions corresponding to the set of atomic intentions are the capabilities C = α(AtInt)
of the agent.

Example 8. An exemplary atomic intention is door_opened and the corresponding ac-
tion is α(door_opened) = open_door. Consequently performing the action open_door
leads to the satisfaction of the intention door_opened.

A stack of intentions is modeled by assuming a linear order � on I which reflects the order
of executability, i. e. if I � I ′ then I has to be executed before I ′. The order dependence
of subgoals is often partial and the agent has to decide the order of incomparable subgoals.
By assuming a linear order we assume that this decision is already reflected in the order.
Given an intention I we denote by pre(I) the sequence of intentions that have to be
satisfied for the satisfaction of I. More formally, we demand that for I ∈ I, pre(I) =
(I1, . . . , In, I) is such that Ii � Ii+1 for 1 ≤ i < n and {I1, . . . , In} = {J ∈ I | J � I}.
This representation can be extended to multiple goals by multiple stacks.

We define an operator which reflects the changes of the agent’s beliefs given some in-
tention. This operator can be used by the agent to simulate the epistemic effects of the
satisfaction of intentions prior to committing to them which is crucial for secrecy preser-
vation. Since intentions are expressed in that same base language as the beliefs of an

1This is no real restriction since for each alternative action for an atomic intention a distinct atomic
intention can be added.
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agent, standard revision operators for the language framework can be used.

Definition 10. The revision by intentions operator is an operator � : B× I→ B which
satisfies the following two properties:
Success: For each Bel ∈ Ξ and I ∈ I it holds that I ∈ Bel(B � I).
Consistency: For each Bel ∈ Ξ and I ∈ I it holds that Bel(B � I) is consistent.

The revision by a sequence of intentions (I1, . . . , In) is defined as the iterated revision
B � (I1, . . . , In) = (. . . ((B � I1) � I2) � . . . � In).

The revision by intentions operator reflects the changes of the satisfaction of an intention.
The actual actions necessary to satisfy the intention and effects thereof are not considered
but only the state of beliefs if the considered intention is satisfied.

For resource-bounded agents in highly dynamic environments it is seldom possible nor
effective to generate complete plans [21, 10]. On the one hand the time available might
not be sufficient to generate complete plans and on the other hand complete plans may be
invalidated before completion by the changing environment. In fact, classic BDI agents
do not perform look-ahead planning at all. The BDI model we present here is capable
of look-ahead planning of varying degree of detail and reasoning about plans and action.
We assume that each partial plan can be assigned a level of detail δ from an partially
ordered set ∆.

Definition 11 (Plan). Let I be an intention, Bel a belief operator and δ ∈ ∆ an element
of a complete lattice (∆,�δ). A partial plan πBelI,δ for I with respect to Bel and level
of detail δ is a sequence of intentions πBelI,δ = (I1, . . . , In) ⊆ I such that I ∈ Bel(K �
(I1, . . . , In)) where the certainty of the success of the plan is dependent on the belief
operator Bel ∈ Ξ.

The parameter δ denotes the level of detail of a plan given some measure of detail which
might reflect the amount of steps that are planned ahead or the amount of consecutive
atomic intentions. We assume that a complete plan that consists only of atomic intentions,
i .e. πBelI,δ>

= (I1, . . . , In) ⊆ AtInt is the plan with the highest level of detail δ>. As noted
above for simplicity of presentation we assume here that an agent has only one top-level
intention selected(∆) such that in every situation I = {πBelselected(∆),δ}. For the general
case we assume that the set of intentions can be partitioned into plans for a set of top-level
intentions I> = {I1, . . . , In}, i. e. I = {πBelI1,δ1

, . . . , πBelIn,δn
}.

In the abstract epistemic model of secrecy the epistemic state K is revised by the update
operator ◦ and the action of the agent is determined by the act operator based on the
current epistemic state of the agent. An agent cycle is modeled by these two operators. In
the following we develop an agent model and cycle which realize these abstract operators
by means of a set of suboperations. The functional-component ξ = (◦, act) is implemented
such that ◦ is implemented by the suboperations (belief update, opt, intention update, ) and
act is implemented by the execute operation. The operators for the functional component
are defined as follows, whereby P(ξ) denotes the power-set of ξ. The operator

belief update : B× Γ→ P(B)
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updates the beliefs of the agent. The operator

opt : B× P(D)× P(I)→ P(D)

determines the current options of the agent given its current epistemic state and current
intentions. Given its options the agent has to determine what it intents to do given its
beliefs, desires and currently pursued intentions.

intention update : B× P(D)× P(I)→ P(I)

The operator
execute : P(I)→ Act

returns an action that corresponds to a minimal atomic intention: execute(I) = α(min�(I)).
An agent cycle consists of the successive execution of the belief update, opt, intention update
and execute operators as illustrated in Figure 3. The abstract update operator ◦ up-
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Figure 3: BDI agent model

dates the entire epistemic state and is realized in the agent model not only through the
belief update operator but through the operators belief update, opt, and intention update.
The general update operator ◦ in the BDI context updates the belief, desires and inten-
tions of an agent. These suboperations are realized by the corresponding BDI operators
presented above and summarized in Figure 4. The belief update operator follows the

1 Input: Epistemic State K, new information τ
2 Output: New Epistemic State K′

3 K ◦ τ
4 B′ := belief update(B, τ)
5 ∆′ := opt(B′,∆, I)
6 I ′ := intention update(B′,∆′, I)
7 return K′ = 〈B′,∆′, I ′,KH〉

Figure 4: General Update Operator implementation

structure of the change operator given in Section 3.3.2 which is depicted in Figure 5. We
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1 Input: Beliefs B, new information τ
2 Output: New Beliefs B′
3 belief update(B, τ)
4 V ′

W := VW ∗D tW (τ)
5 V ′ := ∅
6 for each VA ∈ V
7 V ′ := V ′ ∪ VA ∗A tV (A, τ)
8 S ′ := S(K) ∗S (V ′

W ,V ′, τ)
9 return B′ := {V ′

W ,V,S ′}

Figure 5: Belief Update implementation

assume that the respective operators satisfy Constant-Secrets◦, Awareness◦, Success∗,
Acknowledgment◦. We already described the opt and intention update operators. The act
operator is implemented by the execute operator such that act(K) = execute(I(K)).

Our goal is to design a secrecy-preserving agent, i.e. an agent that does not perform
any secrecy violating action. As argued before: the more closely secrecy preservation is
integrated into the agent model the more options for utility optimization under secrecy
constraints is possible. To this end we want to determine all parts of the BDI model and
cycle that can contribute to secrecy preservation. In the first stage of an agent cycle the
agent selects a goal to pursue. At this point the agent does not account for all effects
of acting towards a goal and is not aware of the necessary actions, especially in dynamic
environments. However, the agent can already check whether a goal violates secrecy in
principle while deliberating on what to do. That is, it considers if the satisfaction of the
goal in itself entails the revelation of a secret. Since this is not sufficient to guarantee
preservation of secrecy the agent has to check for principally secrecy violating subgoals
and for secrecy violating sequences of intentions, i. e. plans, in the means-end-reasoning
phase.

We extend the definition of a safe epistemic state towards a safe BDI-state for a definition
of a secrecy-preserving agent which lead to stricter notions of a safe state.

Definition 12 (Safe BDI-State). A BDI-state K = 〈{VW ,S, V}, ∆, I,KH〉 is bdi-safe
iff B is safe and for all I ∈ I : B � pre(I) is safe.

The definition of a bdi-safe state assures that the sequence of actions up to the satisfaction
of the intention no secrecy violating action is required for the satisfaction of the intention.
This demands the agent to consider its current plans, which might be incomplete, to
determine whether these violate secrecy. We can strengthen the notion of a bdi-safe state
by requiring a level of detail of the current plans.

Definition 13 (δ-safe State). A BDI-state K with K = 〈{VW ,S, V}, ∆, I,KH〉 is δ-safe
iff B is safe and I is a plan with detail of at least δ and for all I ∈ I B � pre(I) is safe.

Preserving Secrecy The act operator is defined by the execute operator which solely
depends on the current state of the intentions of the agent. If an agent is in a strictly
safe BDI-State K, then the satisfaction of all of its intentions in the planned order does
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not violate secrecy. This holds in particular for any atomic intention. Since the action it
performs directly corresponds to its first atomic intention act(K) does not cause violation
of secrecy such that K ◦ act(K) is safe. If an agent maintains a strictly safe BDI-State, it
adapts dynamically to its perceptions and update its beliefs and intentions accordingly
such that act(K) cannot return an action which violates secrecy.

Definition 14. An intention update operator is δ-secrecy-aware if for all B, D, I: B ◦
intention update(B,D, I) is δ-safe.

Given the previous results we elaborate on the implementation of secrecy-aware intention
update operators in the following. To ensure secrecy preservation the agent has to make
sure that all subgoals and actions towards their realization do not violate secrecy. While
doing so it also has to take changes in the environment into consideration. To this end
a whole set of intentions, i. e. a plan, has to be considered when considering secrecy and
not only a single (atomic) intention. For this check define an operator which is capable
of simulating the effect of the satisfaction of intentions and whole sequences of intentions
and to determine if confidentiality would be violated.

Definition 15 (Violates operator). Given a set VD of degrees of violation with a partial
order �VD, such that (VD,�VD) forms a complete lattice. The violates operator is a
function violates : P(B)× P(I)→ VD.

The violates operator can be used by other operators to simulate effects prior to commit-
ment to an output. The operator allows for simulating the effects of arbitrary (ordered)
sets of intentions and not only for atomic intentions or the corresponding actions re-
spectively. Therefore the violates operator can be used by the intention update operator
to check whether a high level intention necessarily violates secrecy.The earlier secrecy
violation is determined the smaller is the risk of violating it and the less is the amount
and cost of replanning. Note that it is easily possible to extend the violates operator to
evaluating the severeness of secrecy violation. The general form of the violates operator
determines a degree of violation rather than a binary evaluation of secrecy. This is useful
for complex planning and notions of recovery safe agents. For any violates operator the
strict preservation of secrecy corresponds to the degree of violation > = t(VD). A basic
violates operator is a binary one.

Definition 16 (Violates operator). Let B be a beliefs component and I a set of intentions.
Let
VDbinary = ({true, false}, {(true, false), (false, false),

(true, true)}) and violates(B, I) =

{
true if B ◦ I is safe
false if B ◦ I is not safe

In means-end reasoning a BDI agent typically has, besides its beliefs about the state
of the world, structural beliefs, or know-how, in form of a plan library [38]. This plan
library supplies subgoals to a given goal which, iteratively performed, generates a plan.
Abstractly we formalize this by means of a subgoal-generation operator as illustrated
in Figure 7. We implement this planing component by the an approach to know-how
based on the one presented in [32, 17]. The know-how is a general approach that allows
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for means-end reasoning similarly to many other approaches used in agent programming
languages [8]. Unlike classic approaches it allows an agent to reason about its know-how
on the same level as with any other beliefs. For secrecy preservation alternative, secrecy
preserving, plans can be expressed in the agents know-how.

Definition 17 (Know-How Statement). A know-how statement σ is a tuple

σ = (a, (s1, . . . , sn), {c1, . . . , cm})

with goals a, s1, . . . , sn ∈ I, a /∈ {s1, . . . , sn} and literals c1, . . . , cm. The goal a is called
the target, the goals s1, . . . , sn are called the sub-targets, and the elements c1, . . . , cm are
called the conditions of σ.

Besides the belief base and the know-how base, a record describing the current state of
the plan deliberation is needed to fully describe an agent’s intentional state. Also to keep
track of already failed plan deliberations we use a notion of intention tree similar to e. g.
[29, 39] which generalizes the notion of an intention stack.

Definition 18 (Intention tree). An intention tree TI is a tree with two sorts of nodes
with the root node being a goal and for every node K it holds that (a) iff K is a goal, then
every child of K is a know-how statement σ with goal(σ) = K, (b) iff K is a know-how
statement σ, then the (ordered) children of K are the subgoals of σ. Furthermore there
is exactly one node, that is additionally labelled “current”, which is also returned by the
operator curr(TI). Furthermore the empty tree T ∅I is also an intention tree with curr(T ∅I )
being undefined.

Informally speaking, an intention tree TI captures the current state of the pursuit of a
goal. The initial state of an intention tree is described by a root node R that is labeled
with “current”.

In Figure 6 we give the pseudo-code of the intention update operator based on know-
how. For a complete operationalization of the basic know-how means-end reasoning
procedure via state transition systems and an implementation in ASP we refer to [33]. The
intention update can be divided into two operators. The deliberation operator updates
the current goals of the agent based on its current desires, beliefs and intentions. Hereby
the feasibility of desires and their priority as well as the commitment and reconsideration
of current intentions have be handled adequately. Since intention reconsideration, and
desire generation and prioritization is a rather complex task in itself, we do not go into
details on these here. and confer to [26] and [18] respectively.

Themeans_end_reasoning operator determines all know-how statements for curr(I) whose
conditions are satisfied (19), whose subgoals are consistent with the current set of inten-
tions (20) and whose subgoals are not generally violating secrecy in the context of the
current partial plan (21). If there are no know-how statements satisfying all conditions,
then the curr(I) cannot be satisfied and it has to be backtracked to an appropriate point
in the intention tree which is determined by a backtracking operator (9). Otherwise the
resulting know-how statements are added as children of curr(I) (11) and on of them is
selected (12). The subgoals of the selected know-how statement replace its intention (13).
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1 intention update(B,∆, I)
2 deliberation(B,∆, I)
3 means_end_reasoning(B, I, δ)
4

5 means_end_reasoning(B, I, δ)
6 do
7 kh= subgoalgen(B, I, curr(TI), δ)
8 if kh = ∅ then
9 backtrack

10 else
11 children(I) := kh
12 selected(kh) = select kh statement
13 I = I \ {I} ∪ {s1, . . . , sn}
14 curr(TI) = select non atomic element of I
15 until I has reached detail δ
16

17 subgoalgen(B, I, I, δ)
18 kh = get all kh statements for I
19 kh = kh \{I | {c1, . . . , cm} 6⊆ Bel(W ∗ pre(I) \ I)}
20 kh = kh \{I | B ∗ (pre(I) \ I) ∪ {s1, . . . , sn} inconsistent}
21 kh = kh \{I | violates(B, pre(I) \ I) ∪ {s1, . . . , sn}}
22 return kh
23

24 violates(B, I)
25 Btemp := B � I
26 if Btemp is safe then
27 return false
28 else return true

Figure 6: The intention update operator

The curr mark is set to another non-atomic intention according to the planning strategy.
These steps, (7) to (14), are repeated until the desired detail of planning is reached. The
binary violates operator creates a temporary copy of the current beliefs of the agent and
simulates the revision by the given set of intentions.
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4 The Angerona Framework

The Angerona framework is a Java based framework for the implementation of multi-
agent systems, with a strong focus on knowledge based agents. We can distinguish
between the pure agent framework for the development of knowledge based agents and
the multiagent framework which contains the infrastructure to run a multiagent system
based on agents from the agent framework.

The architecture of the agent framework is based on the concepts described in the previous
parts of this report. It has a similar structure such that the same levels of abstraction
can be realized which makes for a very versatile and flexible framework. The resulting
framework allows the development of knowledge based agents that can be based on a
variety of logical formalisms. The functional component can be freely defined such that
very different agent concepts can be implemented. The secrecy agent model that is
described in Section 3.2 and Section 3.3 is implemented as an agent model in Angerona.
That means the flow of the agent cylce is defined by ordering different operation types .
The implementation of the operators in the agent cycle can be exchanged. Moreover, the
ASP instantiation as knowledge representation mechanism is fully implemented.

The multiagent framework provides the infrastructure for the implementation and the
integration of an environment simulation. It provides mechanisms for the communication
between the agents and their interaction with the environment and it also provides a
graphical user interface for visualizing the simulation, the agents with their knowledge
and for controlling the simulation.

This section first describes the agent framework of Angerona in Section 4.1. In Section
4.2 we elaborate on the overall multiagent framework. Then the structure of the epistemic
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and the functional component for the BDI Model for Epistemic Secrecy and the way these
concepts are realized in Angerona are elaborated in Section 4.3 according to the concept
descriptions of Section 3.2.

According to the different layers of abstraction and the resulting structure Angerona
can be used on different levels. In this work we distinguish between three roles, which
represent different perspectives on the Angerona framework and can be used to describe
several use-cases for the framework.

• The user uses Angerona to perform simulations. She changes the configuration
files and uses different plug-ins to customize her simulations. She does not changes
or creates agent models or knowledge representation mechanisms.

• The plug-in developer implements plug-ins to extend the functionality provided by
the Angerona framework. He can add new knowledge representation mechanisms
or agent models. He does not change the Angerona core code.

• The core developer works on the Angerona core code to adapt the framework to
make it more flexible and usable for external plug-in developer and user .

4.1 The Agent Framework

In Section 3.1 a general definition of a knowledge based agent is given in Definition 1.
According to this, an agent comprises of (K, ξ): the functional component ξ and the
epistemic state K which represents the knowledge of the agent.

In Angerona this general model is reflected by a plug-in architecture, which is build
up of plug-ins, modules, data components and operators. A plug-in defines a category
that can be extended, like a knowledge representation mechanism and consists of one
or multiple modules. A module is either a data component or an operator. Both, data
components and operators are explained in Section 4.1.1.

Implementation Detail. Plug-ins are used to load code during runtime, for this the
Java implemention uses the Java Simple Plugin Framework (JSPF ) [24]. JSPF heavily
uses the Java features annotations and reflection to provide code contained in external
jar files at runtime. Annotations allow to mark Java classes and interfaces with meta
information which can be read using reflection. Reflection allows to get source informa-
tion about classes during runtime. Getting the list of methods of a class is an example
for reflection. For further details see [22, 23]. The plug-in architecture creates a clear
modularization and allows us to easily exchange the implementation of the epistemic and
functional components. Thus, a plug-in developer can change the behavior of the frame-
work without changing the core framework code.

Angerona uses an entity-component system 2 to describe it’s agents, thereby Angerona
differentiates between operators, which are functional components and agent components ,

2<http://www.gamedev.net/page/resources/_/technical/game-programming/
understanding-component-entity-systems-r3013
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Module Category Functionality
Belief base KR A belief base with a specific knowledge represen-

tation mechanism
Reasoner KR Reasons the belief-set by using a belief base as in-

put
Change KR Changes a belief base if the agent learns new in-

formation
Translator KR Translates perceptions to the language of the KR
Operator functional An operator of the functional component
Component data An extension of the agent model (additional data

like motivations or know-how [32] for example)
Environment-
Behavior

simulation Changes the simulation process and the communi-
cation with external software

View GUI Adds an UI element that shows internal data

Table 1: Plugin Architecture divided into Modules

which are the data components of the agent. This leads to a strict separation of data and
functionality of the agent, such that the behavior of an agent is defined by thoses com-
ponents. The belief base of an agent is a specialized data component and is explained in
full detail in Section 4.1.3. The plug-in architecture allows a plug-in developer to extend
and exchange those components.

Table 1 shows all the modules that can be provided by a plug-in developer through a
plug-in. Beside the modules corresponding to the belief base plugin and the operator
plugin all the other modules that can be part of a plug-in are defined. The simulation
plug-in can be used to adapt the multi-agent simulation, such that it communicates with
external software for example and the GUI plug-in is used to create custom UI-Views for
data-components for example.

Section 4.1.1 explains how a set of Operator modules is used to define the behavior of an
agent and how it can be used to realize the concepts of Section 3.1. Then the Angerona
Script Markup Language (ASML), which is used to define the agent cylce, is explained in
Section 4.1.2. Section 4.1.3 describes how the modules of the KR 3 category can be used
to implement different knowledge representation mechanism that are uniformly usable
by an agent. In Section 4.1.4 the interaction between the KR modules is explained
that altogether form the change beliefs operation. The Environment-Behavior of the
simulation plug-in and the Views of the GUI plug-in are not part of the agent framework
but of the multi-agent framewore and are therefore explained in Section 4.2.

4.1.1 Modular Agent Building Block

This Section introduces the concept of operation types, which are used to differentiate
operators on an abstract level. That means we distinguish between an abstract level,
which only defines operation types to define an agent model and an instantiation level,

3KR is a shortcut for knowledge representation

25



which instantiates operators with a specific operation type. In Angerona a set of oper-
ation types and an execution order on that set is used to define an agent model. After
the functional component, that consists of operation types, operators and the agent cycle,
is introduced the Section also introduces the agent components and shows that a belief
base is a special agent component .

To give the user a high flexibility Angerona allows the definition of custom agent
models. Therefore a concept called operation type is used.

Definition 19 (An operation type). is a triple (n, in, re) containing a unique name n.
A set of input parameters in and return type re. A set O of operation types is called
consistent iff ∀(n1, in1, re1), (n2, in2, re2) ∈ O : n1 6= n2

Every operator has an operation type. If two operators have the same operation type,
that means an operation type with the same name, they are called interchangeable.

Implementation Detail. If an agent contains a set of interchangeable operators then
Angerona’s default policy is to use the preferred operator that is selected in the config-
uration file, see the Appendix A.4 for more details.

Example 9. If the operators A and B both have the operation type subgoal generation.
But another operator C has the operation type violates. Then A and B are interchangeable
but neither A and C nor B and C are interchangeable.

Given the definition of operation types building an agent model is straightforward by
defining the used operation types and an execution order.

Listing 1: Simple BDI Agent Cycle in Pseudo Code
1 Bel ie fUpdate ( )
2 Des i re sGenerat ion ( )
3 I n t e n t i o nS e l e c t i o n ( )

Listing 1 shows a basic BDI agent cycle in pseudo code using the three operations Be-
liefUpdate, DesireGeneration and IntentionSelection. All three have different operation
types :

Example 10 (Possible operation types for the BDI cycle). The following list shows ex-
emplary operation types for the pseudo code listing above.

• BeliefUpdate → (’brf ’, Ω× p, Ω)
with operation type ’brf ’ expecting the agent’s epistemic state and a perception as
input and outputs the new epistemic state of the agent.

• DesireGeneration → (’desgen’, Ω×∆, ∆)
with operation type ’desgen’ expecting the agent’s epistemic state and its desires as
input and outputs the new desires of the agent

• IntentionSelection → (’intsel’, Ω×∆× I, I)
with operation type ’intsel’ expecting the agent’s epistemic state, its desires and
intentions as input and outputs the new selected intention
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With the operation types in mind one can think of two levels for defining the functional
component of an agent in Angerona. On the first level operation types and an execution
order for them are defined. On the second level operators using one of the former defined
operation type are implemented. So the first level defines an abstract agent model and
the second level instantiates the agent model.

Figure 8: Agent, Components and Plugins

Figure 8 shows a UML diagram of the Angerona framework on a high abstraction level.
The functional component ξ is provided by a set of operators extending the BaseOper-
ator class. The Epistemic State of an agent contains a world belief base and a list of
views on the other agent’s beliefs. It also contains a list of agent components like desires,
motivations or know-how [32].

Every belief base is also an agent component but a belief base is a specialization because
it depends on operators which define it’s functionality. The belief base encapsulates the
data of a knowledge representation mechanism like ASP or ordinal conditional functions
(OCF) [28]. The UML diagram also indicates that the operators that are part of the
belief base are defined in a belief base configuration file which’s format is explained in
full detail in Appendix A.5.

Implementation Detail. The UML diagram also shows that a plug-in developer who
implements a belief base module has to implement a parse method to read the beliefs from
a string or a file. The available parsers in the Angerona framework use JavaCC [16]
to generate the parsing code.

The agent data components referred to as AgentComponent in the UML diagram
have an initalization method that gets invoked during the initalization of the agent. The
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method’s parameters are key-value pairs which are defined in data tags in the simulation
template XML file. The format of the simulation template XML file is fully defined in
Appendix A.3.

4.1.2 ASML based Agent’s Cycle

Today scripting languages allow to change the behavior of a complex software system
without changing its core code base. The change of the behavior caused by changing a
scripting file does not imply rebuilding the software. This allows fast prototyping because
the time intensive rebuilding process vanishes. Another advantage of some of the scripting
languages is that they are not as complex as an object oriented programming language
like Java.

Scripting languages can be differentiated by their type. There are shell languages, text
processing languages, application specific languages etc. The application specific lan-
guages have two sub types: The popular embeddable languages like Python, Perl, Ruby,
PHP etc. and the domain specific languages which are specialized to a single application.
Although the embeddable languages are more often used they have a lot of functionality
which might not be needed in every implementation and they are also harder to learn
than domain-specific languages with their small set of specialized commands. Therefore
the Angerona framework uses a domain-specific language with a specialized feature
and command set.

The Angerona Script Markup Language (ASML) is an XML format which defines
a scripting language for the Angerona framework. It is a domain-specific scripting
language and it is used to define the agent’s cycle. There are also plans to use ASML to
implement the operations of the belief bases in the future.

ASML allows a simple invocation of operations by providing the unique name of the
operation type. In addition control structures like if-then-else and loops allow the user
to decide how the script behaves by considering runtime variables. This section starts
by explaining the data structure which is internally used to allow the script interpreter
to access runtime variables. Then it explains the operation invocation of ASML with
the help of an example agent cycle script defined in ASML. This section aims to give an
understanding of the important concepts of ASML and its execution in the Angerona
framework. For a complete list of commands and a reference to write ASML scripts refer
to Appendix B.

The Interpreter Context The ASML interpreter is responsible to run a script and
reports errors, for this every interpretation of ASML runs in a specific context. The
context is similar to the scope term used by programming languages like Java. Such a
scope defines which variables or attributes are accessible on a specific part of the source-
code, like a class-method definition for example. In every ASML script a global context
exists which is empty in the default case. But several objects like agents or belief bases
can act as a context provider. These context providers have the responsibility to fill an
ASML context with variables which are accessible in ASML scripts by an identifier. If
the agent is used as context provider then its world belief base can be accessed through
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an ASML script by ’$world’. When scripting the agent’s cycle with ASML the agent is
used as context provider.

Implementation Detail. The variables in a context given by a context provider are
references which exist in the Java scope and are not deallocated after the script execution.
That means changes on variables that are exposed by a context provider are accessible for
another ASML script. But every variable created by an ASML script is only temporary
valid until the script execution ends and can therefore not be used by a second ASML
script that is executed later.

Operation Invocation The key feature of ASML is the invocation of operators, thus
allowing the definition of agent cycles like the simple agent cycle in Listing 1. For this
only the operation type and the required input parameter of the operation type has to
be given. The selection is handled internally by Angerona. Therefore every agent has
one preferred operator for every set of operators of a specific operation type. The initial
preferred operator is given by the agent configuration file and can be changed by a plug-in
developer .

Listing 2: Simple BDI Agent Cycle inASML

1 <if condition="$in.perception"> <operation type="brf">
2 <param name="information">$in.perception </param >
3 <param name="beliefs">$beliefs </param>
4 <operation >
5 </if>
6 <operation type="desgen">
7 <param name="information">$in.perception </param >
8 <operation >
9 <operation type="intsel">

10 <output >action </output >
11 <operation >
12 <execute action="$action" />

The Listing 2 shows the pseudo code of Listing 1 in ASML. An interpreter parses such
an XML file and executes every ASML command in the order it occurs in the XML file.
The if tag has a condition attribute and if this condition is true then the ASML code
between the opening and closing if tag is executed.

The operation tag has an operation type name as attribute and it’s inner elements define
a parameter map. This map is given as string key-value pairs. If a required parameter
is missing an error is logged and a default output value is generated by the operator
allowing the script to proceed. Every operation can save its output value in the context
by providing a name for the output value in the output element, like the intsel operation
type in the listing. This allows later commands like ’execute’ to use the output values of
previous operations.

’execute’ is a context depending command which makes an agent execute an action. It
does not invoke an operator like the operation element but is invokes the agent’s perform
action method and therefore the context has to be provided by an agent otherwise the
’execute’ command throws an error.
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4.1.3 Belief Base

A belief base is also an agent component but it is treated in another way because it
adapts a knowledge representation method in a general way. The default belief base in
Angerona is represented as a disjunctive logic program (DLP) under the answer set
semantics. An alternative implementation uses OCFs [28] for knowledge representation.
Belief bases using other representations like bayesian networks, a set of FOL formulas or
other types of logic programs are also possible.

Every knowledge representation is handled by the same interfaces and therefore the dif-
ferent representation methods are interchangeable for an Angerona agent. The agent
knows three operations that have to be implemented by a plug-in developer as an opera-
tor with a specific operation type: reasoning, translation and change. The following list
explains the operations in more detail:

• The Reasoner determines the belief set of a belief base. Therefore it instantiates
a belief operator as defined in Definition 3. The belief set is represented as set of
NLP facts.
Input: Belief base
Output: Set of literals as NLP facts.

Alternatively the Reasoner processes a query by giving an answer value. The
query is given as a NLP fact.
Input: Belief base and NLP fact representing the query
Output: Answer value either true, false, reject or unknown

• The Translator translates a given perception or a given NLP program in the
belief base that represents the input parameter. This operator is important to
communicate with other agents that might use a different knowledge representation
mechanism.
Input: A NLP program or a perception
Output: A belief base

• The Change Operation changes the agent’s belief base by another beliefbase. An
implementation instantiates a revision ∗D for an agent’s belief base component as
defined in Section 3.3.2 on page 13 .
Input: A belief base
Output: A belief base

The reasoner, translator and change modules are all parts of the belief base plug-in. This
means that those three modules are implemented for one specific belief base type and
therefore for one specific knowledge representation mechanism. The belief base might
have several reasoners that define different behaviors like a credulous and a skeptic rea-
soner. Those reasoners represent the belief operators defined in Definition 3 on page 8
and multiple reasoners can be ordered like a belief operator family in Definition 4

Angerona uses the greatest common denominator of the different knowledge repre-
sentation mechanisms to allow the agents to use different representation methods inter-
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changeable. Nevertheless a plug-in developer can decide to extend the basic interfaces to
provide more enhanced features.

Example 11. The ASP reasoners are extended, such that they can provide the answer-
sets that are processed during the reasoning.

The above example shows that although Angerona has a small general interface it
allows the definition of more complex interfaces for specialized knowledge representation
mechanisms or agent models. The main disadvantage one faces when extending the
Angerona base interfaces is that the functional components of the agent model may
depend on a specific knowledge representation mechanism.

An agent A in the Angerona framework contains one belief base for every agent A′
in the simulation. The world belief base represents the current information avaible to
A. For every other agent A′ one belief base exists that represents the view of A on the
knowledge of A′, this represents the agent’s epistemic state as defined in Definition 2 on
page 8. This allows the agent to use different belief base modules for different agents.
The world belief base and all views of an agent together form the agent’s beliefs that
conceptually refer to the beliefs in a BDI model as defined in Definition 9 on Page 15.

Example 12. Alice decides to represents the belief base of Bob using ASP but wants to
represents the belief base of Claire using OCFs.

As the example illustrates there might be cases where the knowledge of different agents
has to be be represented by different representation mechanisms. The prediction of the
behavior of other agents and the effects of actions on other agents’ beliefs is better if
the belief base module that represents the view on the other agent’s belief base works in
the same way like the belief base module that is used by the other agent’s world belief
base. The optimal case is that both belief base modules are equal, that means they have
the same initial knowledge and use the same operator implementations for translation,
reasoning and changing the belief base. With those assumptions the prediction of the
other agents belief base is correct and therefore optimal. Nevertheless in most cases the
used belief base module of other agents and their initial knowledge is unknown and has
to be estimated.

4.1.4 Change Beliefs

Angerona’s core uses LBase facts and rules to represent knowledge but the agent’s belief
bases can use other knowledge representation mechanisms. DLPs under the answer set
semantics and ordinal conditional functions (OCFs) [28] are used to represent the knowl-
edge in most of the currently considered examples. There might be further knowledge
representation mechanisms added in the future and this section explains the concept that
allows uniform belief changes for different knowledge representation mechanisms.

A specific operation type called UpdateBeliefs is used by the agents to process the infor-
mation in a perception and add this information to the agent’s beliefs. This operation
type uses a perception as input parameter and an epistemic state as output. An instan-
tiation of the ChangeBeliefs operation type acts as mediator, that means it manages the
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sub-operations like selecting affected belief bases and the correct translation operator, for
the change process of the agent’s beliefs.

In Section 3.3.2 a formal definition of an agent’s belief change operation is given. Although
it is possible for a plug-in developer to implement a change belief operation which does
not stick to the formal concept it is recommended to use the standard implementation of
the change beliefs operator. This standard implementation acts as a mediator by selecting
the affected belief bases on the used operators. Therefore the translator represents the t
function and the beliefs operator represents the ∗ function defined in Section 3.3.2.

Figure 9: Change-Beliefs in Detail.

Figure 9 illustrates a change of an agent’s beliefs using the standard implementation. The
Figure contains all used operators. The most important operator is the change beliefs
operator because it is the mediator for the operation. It has to select the affected belief
bases, the used translator and change belief base operator . It delegates the output of the
translator to the specific change belief base operator .

In the base implementation the change beliefs operator selects every affected belief base.
Then it selects the appropriated translator which translates the perception or the set of
LBase literals into the same representation as the belief base. After that the preferred
change belief base operator is selected and invoked. These three steps are repeated for
every affected belief base. After the complete change of beliefs has been done the data
components get informed about the entire change by a changed beliefs event and can also
update their content corresponding to to the perception which causes these changes and
the changed beliefs.

Example 13 (Perception causing multiple Belief Base Changes). Imagine Employee,
Boss and Alice are in the same room. Employee tells Alice that he wants to attend the
strike-committee meeting. When Boss receives the information he has to update the views
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on Alice’s and Employee’s belief bases because he learned that both know that Employee
wants to attend the strike committee meeting.

4.2 The Multi-Agent Framework

Comparing the performance of different agent models and knowlege representation mecha-
nisms is an important goal in the research of knowledge representation and non-monotonic
reasoning.

Angerona uses the concept of a simulation to perform experiments to measure the
performance of different agent models and knowledge representation mechanisms.

This section introduces the multi-agent framework of Angerona. Section 4.2.1 starts by
explaining the different phases of the multi agent framework. Then Section 4.2.2 explains
the terms entity and component and their meaning for the Angerona framework. On
the basis of the entities and components Section 4.2.3 explains the Angerona report
facility which is used to show the progress of the simulation using the UI of Angerona.
The UI used by the Angerona multi agent framework is highly customizable. The
Angerona plug-in architecture allows the plug-in developer to implement custom UI
views to show the content of a data component or to provide alternative views for a
data component. In Section 4.2.4 a short explanation of the main UI controls of the
Angerona multi-agent system is given.

4.2.1 The Phases of the Multi-Agent Simulation

The Angerona framework uses several statements like: ’all plug-ins which are defined in
the core configuration file and are valid are also loaded’ and to decide if such a statement
is true at the current point in time Angerona uses different phases.

Those phases are the bootstrap, the simulation initialization and the simulation running
phase. Before the bootstrap phase nothing is initialized nor loaded and therefore no
statement is true. Every statement valid after the bootstrap phase is also valid during
and after the initialize simulation phase and every statement valid after the initialized
simulation phase is also valid during the running simulation phase.

Angerona starts with the bootstrap phase where it loads all found resources. Resources
are XML configuration files for the agent or belief base configuration or simulation tem-
plates etc. Those files are described in Appendix A. At the end of the bootstraping phase
the plug-ins given in the Angerona core configuration file are loaded too. After that
Angerona is ready to switch to the initialize simulation phase, is in a state where:

• All plug-ins which are listed in the core configuration file and are valid JAR packages
containing JSPF plug-in annotations are loaded.

• All syntactically correct configuration files and simulation templates are pre-loaded
and shown in the UI.
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• The log contains information about the circumstances of errors preventing the suc-
cessful load of configuration files, simulation templates or plug-ins.

The initialize simulation phase is invoked by the user when he/she has loaded and then
initializes a simulation. During this phase the framework instantiates the Environment
Behavior defined in the simulation configuration file. The Environment Behavior is
explained in the next paragraph. Then the agents with their functional and data compo-
nents are instantiated. As last step the initial version of the agent’s data components are
stored internally. This gives Angerona a starting point for tracking changes of those
data components. When the initialize simulation phase is done then Angerona is in a
state where:

• The Environment Behavior and all agent instances defined in the simulation tem-
plate and their functional and data components are created. Thus the simulation is
ready to run. This statement assumes that the plug-ins loaded during the bootstrap
phase provide all the needed implementations of functional and data component and
also of the Environment Behavior .

• The report system which is explained in more detail in Section 4.2.3, is initialized
and holds a report for every initial data component of the agents containing the
initial version of the data component as an attachment.

During the simulation phase the initalized simulation is processed. This phase highly
depends on the Environment Behavior which defines how an environment is simulated.
It can be used to communicate with external software for example. During the simulation
phase the user can proceed the simulation, by one tick or until it ends, by using the GUI
of Angerona.

The implementation of a custom Environment Behavior allows to integrate different envi-
ronments like a poker game application allowing a human agent to play against AI agents
or a grid world implementation allowing the agent to move in a world. Therefore the En-
vironment Behavior might communicate with an external program. Another option is
to implement the complete simulation in a plug-in. Whatever option is used the Envi-
ronment Behavior is responsible to handle the communication between the Angerona
framework and the environment simulation.

Example 14 (The Default Behavior). simulates no environment, but this is appropriate
to simulate the communication between agents. It’s main purpose is the delegation of
speech-acts between the agents. Such a speech-act is an action of the sending agent and
a perception for the receiving agent. The simulation invokes every agent’s cycle method
and immediately forwards the actions to their respective receivers. So it is possible that
Agent A sends an action in the first simulation tick and agent B receives it in the same
tick because B’s cycle runs later.

This is an adequate implementation for the experiments so far but more complex scenarios
with environmental constraints or that need fair timings for the receive of perceptions
have to use another Environment Behavior implementation. Therefore we plan to replace
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the default behavior in the near future with a behavior that delegates the speech-acts in
the next simulation tick. That means the agents receive the speech-acts one tick later
than they are send so that an agent B cannot send a speech-act that is received by agent
C in the same tick as the speech-act has been send and by agent A a tick later.

4.2.2 Entities and Components

The terms entity and component are essential in the Angerona framework. Angerona
uses the component based software paradigm [3] to provide flexibility and extensibility for
its agents. An entity is a uniquely identifiable object in the simulation, like an agent or a
belief base. It contains a set of components which define its behavior and data structure.
An agent is an entity which contains operators, belief bases and agent components. All
these are components in the sense of component driven software development. Belief
bases are entities which contain components defining their behavior. Those components
are the belief base’s operators.

Figure 10 shows an UML class diagram of the base classes implementing the entity and
component concept. An entity is any object of a simulation and has an object id of itself,
the object id of its parent object and a list of object ids of all of its child objects. An
agent component is an entity too. Therefore, agent components and belief bases store the
object id of the agent they are part of as their parent object. The agents do not have a
parent object but they store the object ids of the agent components and belief bases in
the list of their child objects.

Every data component has to support deep copying to keep track of its changes.

Implementation Detail. In Angerona this is implemented using the Java Cloneable
interface.

Such a copy of the data component represents the data component at a specific point
in time. Therefore the object ids of the source and the copied component are the same.
Although multiple Java objects share the same object id the object id remains unique for
the simulation. From the perspective of the simulation one data component represented
by multiple Java objects show the state of the data component at different points in
time.

To inform listeners about changes the base class of the agent components provides meth-
ods to fire property change events which can be received by assigned listeners. This allows
a loosely coupled communication between different components.

Example 15 (Component Communication). A component implementing the agent’s se-
crets informs assigned listeners about changes using the property change events. Every
other component is able to react to changes of the secrets of the agent without knowing
the implementation of the secret component.

4.2.3 Report-System

Angerona uses a report mechanism which allows the user to inspect the inner workings
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Figure 10: UML Diagram: Entities and Agent Components

of an agent. Although every change could be saved by operators when they invoke the
report system everytime a change occurs, the operators use the report mechanism to
inform the user about the important changes. Which changes are important is a decision
the plug-in developer has to make when he implements an operator. But in general those
changes are important that help the user to understand what happenend in the operator
internally.

Implementation Detail. At the beginning of the simulation the report system is also
used to save the initial versions of the data components of an agent.

A Report Entry is the basic part of the report system. Every entry contains a mes-
sage, the tick when it was posted, a reference to its poster, the real time when it occurred
and an optional attachment. The poster might be an agent or a component like an oper-
ator or a belief base. Because the scope in which the operator is called is also interesting
the report entry saves the callstack of the operators, whereby the agent is stored on the
top-level of the call-stack. The attachment is a data component, reports with attachment
are normally made when the attachment, for example a belief base, has changed.

The Report defines an interface to add report entries, access older report entries and
access only the report entries which contain a specific type of attachment. This allows
us to show a timeline of changes for a specific data component.

The report is the reason why every data component must support deep copying. Saving
references would change the report of the past if the agent changes its belief base after
the report.
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Implementation Detail. To keep track of copies of copies every data component saves
its copy depth as an integer. The mapping between original data components and their
copies is given by the unique ID of entities which is explained in Section 4.2.2.

Figure 11: Flow: From Report to UI.

UI-Integration Every UI View that shows the content of an agent data component
uses the report system to provide a timeline. Figure 11 shows the control flow from the
report methods of the operators through the Angerona framework to the UI. If a report
poster posts a report-entry the Angerona class gets informed first and stores the report.
After that the Angerona class informs every ReportListener about the new report entry.
Possible report listeners are UI views that show the content of agent’s data components.
Those report listners filter those entries that have attachments they are interested in and
if they receive an entry with such an attachment the redraw their content.

4.2.4 Angerona’s Graphical User Interface

Angerona uses a graphical user interface and it’s default perspective is shown in Figure
12. The shown perspective is separated into three docking panes. On the left side is the
resource pane. At the center is the workspace pane and at the bottom is the simulation
status pane. In Angerona docking panes are used to allow the user to customize her
workspace as in Eclipse or Visual Studio for example.

In Figure 12 the resource pane has one tab showing the different resources loaded by
Angerona so far. Therefore it uses a tree view. Every configuration file like the agent
and the belief base configurations or the simulation templates are displayed at the top of
the tree. Nearly at the bottom of the Figure a tree node for the simulation is displayed.

37



Figure 12: Angerona GUI - Overview

It contains an entry for every agent of the simulation. Every agent contains its world
belief base, its belief bases representing the view on other agents and more specialized
data components like secrets . The workspace pane shows one tab which displays a report
view. It shows all important events which are reported by Angerona like the change
of a belief base or the output of an operator. The workspace pane can also contain tabs
which are opened by the user by double clicking on a resource tree node. The simulation
status pane shows one tab which allows the user to run/restart a simulation and to load
other simulations.

Figure 13 shows the ASP belief base view of Angerona. It is opened as a tab for the
workspace pane. The user can open UI components to show data components by double
clicking on the tree nodes in the resource view which represent data components of an
agent. At the top of the ASP belief base panel is a navigation control which allows the
navigation through the different versions of the belief base during the simulation.

Implementation Detail. The navigation control internally uses a custom control called
counter control which consists of a text label in the middle and buttons on the left and
right side. The text label contains text of the form ’$actual/$max’. $actual means the
actual value of the counter variable and $max is the maximum counter variable. Whereby
the left button decreases and the right button increases the version counter variable if
possible.

The first counter control allows us to iterate over all report entries containing the belief
base as an attachment. The second counter control allows to iterate over the ticks.
It selects the first version of the belief base in the selected tick . The third counter
control allows the selection of the several report entries containing the belief base as an
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Figure 13: Angerona GUI - ASP Belief Base UI Component in Workspace Pane

attachment in the currently selected tick . So the third slider is useful to investigate what
happens in one specific tick .

Beneath the navigation panel is a list which shows the content of the belief base and the
literals which can be inferred using the belief base. The ASP belief base view also shows
the answer sets generated during the inference. The changes between the currently shown
belief base and it’s predecessor are expressed by colors. The color green means that the
literal is new in this version of the belief base and is not part of the previous version. The
color red means that the literal is not part of the belief base anymore but is part of the
previous version. The color black means no change to the previous belief base version.

4.3 Implementation of Secrecy Preserving Agents

The integration of the agent model described in Section 3 into the Angerona framework
consists of three major steps. The first step is the definition of the data components that
are needed by the agent model. Section 4.3.1 explains how desires, intentions, plans
and secrets are stored in the agent. This Section does not explains how a belief base
is integrated because this has been explained in Section 4.1.3. The second step is the
definition of the agent’s functional component by defining the operation types used by the
agent model. Section 4.3.2 describes the operation types purpose, their input parameters,
their return types and explains how the default implementation in Angerona behaves.
The last step is the definition of the agent cylce. This is done by defining an agent cylce
using the operation types and ASML script and is explained in Section 4.3.3.
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4.3.1 Data Components

This section describes the different data components implemented for the secrecy agent
model. The components described here only store data and send messages if they are
changed. How the data components are filled by the functional components is explained
in Section 4.3.2.

The (B)DI Part As mentioned earlier the beliefs of an agent are defined by its world
belief base, it’s views on other agents and it’s set of secrets. A desire contains a LBase
fact describing the desire. The agent component ’Desires’ is a collection of the described
desires.

Implementation Detail. An desire might also store the perception that lead the agent
to the desire.

A plan element represents a step in a plan. It is either an action or a subgoal. An action
can directly executed by the agent and corresponds to an atomic intention. A subgoal
in general is a complex, i.e. non atomic, intention in Angerona. The subgoal contains
a list of stacks of plan elements. The operators that change the plan data define if the
several stacks represent alternative or parallel plans. In the base implementation the
stacks represent alternative plans. A plan element also contains a user defined object
which can contain further information. Which information is stored in this object can be
decided by the plug-in developer .

Example 16 (User defined Object in Plan Element). One possible use-case of the user
defined object is to save a boolean flag that indicates if this plan element represents a
dishonest action. Such information allows to easily rate the plans after they are generated.

As the above example illustrates the user defined object can be used by the plug-in
developer to provide additional information that allows the rating of the plan. But one
can also think about more complex user defined objects that could help the planner to
identify steps of the plan that need re-planning, etc.

The plan component is an agent component which represents a simplified form of the
plan defined in Definition 11. It does not implement the level of detail δ. It contains a
collection of subgoals. There might be agents which are not qualified to perform a specific
type of action. Angerona uses the term capability to define which type of actions an
agent can perform.

Secrets The secrets are an agent component which implements the secrets S(D) of an
agent D. Like the desires the secrets component is implemented as a collection of secrets.
Every secret is defined as a triple (Φ, Bel,D). Bel is a beliefs operator , The agent who
has the secret does not want the agent D to reveal the secret piece of information Φ using
the operator Bel.

Example 17 (The emp’s secret). The emp has the secret that he does not want his boss
to know that he plans to attend a strike committee meeting and this secret is represented
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by the following triple as in Definition 5 on Page 11:
(attend_scm, Bel, boss)

As mentioned in Section 4.1.4 when the belief base of an agent changes, then every
component of the agent are informed. The secrets component checks if the changed
belief base is a view. If the world belief base is changed then the secrets needs no update
but otherwise the secrets might contain a secret that has to be kept safe from the agent
that’s view has been changed. If there are such secrets they have to be checked otherwise
they might become inconsistent and therefore must be dropped. Inconsistent means the
secret piece of information is already known by the agent.

4.3.2 Functional Components

Multiple operation types are defined to implement the secrecy agent model explained in
Section 3.3.3 into the Angerona framework. We start by defining operation types for the
functions belief update, opt, intention update, subgoal generation and violates. The following
paragraphs explain the task of each operation type, its input and output parameters and
the behavior of the base implementation. So this Section gives a plug-in developer an
overview on the secrecy agent model in the Angerona framework. For a full reference
of the parameters and settings used by the several operators see Appendix B.1.

change beliefs operator : It implements the managing part of the belief update opera-
tor. Together with the translator and change belief base operator it defines the complete
functionality of belief update. It is responsible to select the affected belief bases which are
updated. It is also responsible to select the used operators to translate and perform the
update. Further details of the change beliefs operator are given in Section 4.1.4. This
operator is part of the general Angerona framework. The plug-in developer can write
implementations that also inform other data components, like the secrets, but it is highly
recommend to loosely couple the data components and let them react to the change event
of the belief base.

generate options operator : It generates new desires for the agent. Its input is the
actual perception of the agent. Its output is the number of newly created desires. The
base implementation creates desires to react on different perceptions. If the agent receives
a Query for example the default operator creates the desire ’queryProcessing’ which stores
a reference to the query. This allows the agent to respond reactively to queries from other
parties.

intention update operator : It implements the deliberation and the selection of the
next atomic intention. Its input is the agent’s plan component and it’s desires, its output
the plan element containing the next atomic intention. Together with subgoal generation
operator it implements the intsel operator of the BDI model. The base implementation
iterates through every plan in the agent’s plan component and selects the first intention
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in the plan sequence. If this intention is atomic and it does not violate secrecy, then it is
selected by the intention update operator ; otherwise the iteration continues.

subgoal generation operator : It is the planner which is responsible to break complex
intentions down into atomic intentions and generates elements for the agents’ plans. Its
input is the agent’s plan component , its output is a boolean indicating if the agent’s plan
has changed. As long as no data driven concept, like know-how, is used for planning then
every scenario needs an implementation of the subgoal generation operator to perform
the scenario dependent planning. Together with intention update operator it implements
intsel of the BDI model. The base implementation has a general behavior to react to
queryProcessing desires. It creates two plans one giving an answer which confirms the
query (true) and the second plan is giving an answer denying the query (false).

violates operator : It checks if the execution of a single action or an entire plan vi-
olates secrecy. Its input is an action or a plan and the used version of the beliefs of
the agent. Its output is a boolean flag. The flag indicates if a violation occurred. The
base implementation uses the beliefs operator defined in the secrets to check if a secret is
revealed after an action is performed.

After the formal description of the different operation types and their base implementation
as operator the following example gives a clue on how the operators can interact during
the agent cycle.

Example 18 (Operator Sequence strike committee meeting). In the strike committee
meeting scenario the emp receives a query from the boss. The boss asks the emp if he
attends the strike committee meeting. Using the default operators of the secrecy agent
model in Angerona gives the following sequences of operator calls:
generate options operator creates a desire ’queryProcessing’
intention update operator finds no atomic intention yet
subgoal generation operator creates two plans (confirm,deny)
intention update operator selects the first action: confirm
violates operator returns a violation for confirm
intention update operator selects the next action: deny
violates operator returns no violation for deny
The action deny is performed by the agent emp

The secrecy agent model is an extension of the BDI model and contains all of its parts as
explained in Section 3.1. The change beliefs operator handles the change of the beliefs and
therefore implements the brf function in the BDI model. The generate options operator
maps to the desgen function of the BDI model. The intention update operator and subgoal
generation operator operators together map to the BDI intsel function. The extensions
are the data components for secrets and plans and also the violates operator which can
be used by the other operators to check if an action causes a violation before selecting
the action.
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4.3.3 Secrecy Agent Cycle

This Section explains the secrecy agent cylce that defines the behavior of an agent in the
secrecy agent model. Figure 7 on page 23 shows the agent cycle for the secrecy agent
model. The following listing represents the agent cycle in ASML and is used as default
agent cycle for the secrecy agent model in the Angerona framework:

1 <asml -script name="secrecyCycle">
2 <operation type="UpdateBeliefs">
3 <param name="information" value="$perception" />
4 <param name="beliefs" value="$beliefs" />
5 </operation >
6

7 <operation type="GenerateOptions">
8 <param name="perception" value="$perception" />
9 <output >newDesireCount </output >

10 </operation >
11

12 <assign name="running" value="TRUE" />
13 <while condition="$running ==TRUE">
14

15 <operation type="IntentionUpdate">
16 <param name="plan" value="$plan" />
17 <output >action </output >
18 </operation >
19

20 <conditional >
21 <if condition="$action ==null">
22 <operation type="SubgoalGeneration">
23 <param name="plan" value="$plan" />
24 <output >running </output >
25 </operation >
26 </if>
27 <else>
28 <assign name="running" value="FALSE" />
29 </else>
30 </conditional >
31 </while >
32

33 <execute action="$action" />
34 </asml -script >

At the beginning of each cycle the agent receives a perception from the environment and
changes its current beliefs using this perception. In the next step it updates its desires
using the generate options operator . After that the planning loop, which is represented by
the while tag in the ASML code listing, is executed trying to find the next atomic action.
If the intention update operator does not find an atomic intention the subgoal generation
operator is invoked to create new plan elements. The cycle invokes this loop until an
action is found or no new subgoals are created. The found action is invoked by using
the execute operation in ASML. Both, the subgoal generation and the intention update
operators might use the violates operator , which checks if a secret piece of information
would be revealed after the agent performs the action. The violates operator works with
copies of the beliefs. The data components are only informed about changes on the
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original belief bases and not on their copies. If an action is executed it is send to the
environment.

The behavior of an agent in the BDI secrecy agent model can be adapted by implementing
new operators. The plug-in developer can implement different implementations of the
belief update, opt, intention update, subgoal generation and violates functions by providing
other operator implementations. This allows the plug-in developer to implement several
concepts for a secrecy preserving agent model. Providing different agent cylce scripts
can further adapt the secrecy agent model. The ASML and the operation types give the
Angerona framework the flexibility to support several agent models that are completely
different to each other. It provides a library to perform experiments that measure the
performance of the different concepts like knowledge representation mechanism or even
entire agent models.

4.4 The Tweety Library

The tweety library [31] is a collection of sub libraries for artifical intelligence and knowl-
edge representation. It is open-source and available at Sourceforge. Angerona uses
the tweety core library, several tweety language libraries and several tweety translation
libraries for knowledge representation. The following list shows the tweety libraries that
are used by the Angerona framework:

• net.sf.tweety
core library providing base classes and interfaces

• net.sf.tweety.logics.commons
core library providing base classes and interfaces for logic languages

• net.sf.tweety.beliefdynamic
revision / change library for logic languages, provides base classes for revision and
change operations on belief bases

• net.sf.tweety.lp.nlp
language library implementing nested logic programs [20]

• net.sf.tweety.lp.asp
language library implementing disjunctive logic programs under the answer set
semantics[12]

• net.sf.tweety.logics.cl
language library implementing conditional logic and OCF reasoning [28]

• net.sf.tweety.logics.pl
language library implementing propositional logic

• net.sf.tweety.logics.fol
language library implementing first order logic
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• net.sf.tweety.logics.translators
translation library providing translation between:

– disjunctive logic programs and first order logic

– disjunctive logic programs and nested logic program

– first order and propositional logic

Tweety core provides base classes for knowledge representation, artificial intelligence and
reasoning and is a dependency of the Angerona core.

The tweety language libraries implement a representation for a logical language like first
order logic or DLPs. They provide a parser to parse files to belief bases. The language
libraries share the same interfaces for atoms, literals negations, conjunctions and disjunc-
tions allowing to read and change the constructs in the same way. Some of the languages
allow typed constants and typed predicate arguments. The libraries for first order logics
and for nested logic programs are dependencies of the Angerona core.

The tweety ASP library can represent disjunctive logic programs. It provides an interface
to use answer set solvers for those programs. The interface is implemented for CLASP,
Clingo, DLV and DLV Complex. This tweety language library is a dependency of the
ASP plug-in of the Angerona framework.

The tweety conditional logic library provides ordinal conditional function and reasoners
for them. It is used by the OCF plug-in of the Angerona framework.

5 Conclusion

In this work we approached the topic of secrecy from the perspective of an autonomous
epistemic agent. From this perspective information is uncertain and incomplete, secrets
are specific to other agents and vary in strength. In the first part we presented a general
epistemic agent model in which we define secrets and what it means to an agent to
preserve secrecy. To this end we introduced action functions characterizing the behavior
of an agent and a change operator which adapts the beliefs of the agent, its secrets and
views on other agents. To our knowledge no similar approach to secrecy from a subjective,
epistemic perspective of an agent has been put forward so far.

In the second part we elaborated an agent model for secrecy preservation. The model
incorporates secrecy preservation into the agent cycle such that secrecy violation can be
determined as early as possible. In [7] it has been discussed how techniques from the
database setting can be used for preserving secrecy in multiagent negotiation. There
a censor component is used to control the agents actions prior to execution which is
external to the agent cycle. Secrecy is checked in the last moment and the agent cannot
reason about secrecy. In said work the typical query-answer of databases setting has
been generalized to negotiation acts of agents. Here we allow for arbitrary actions. Our
approach of lifting secrecy evaluation to the deliberation process of an agent is close
to the consideration of secrecy preservation as a maintenance goal [36]. This indicates
that mechanisms for the satisfaction of maintenance goals, e. g., [14], might be used for
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preserving secrecy. Our notions of secrecy is formulated in a general epistemic model
of agents allowing for a variety of logical formalisms. It includes the modeling of the
beliefs of other agents and their reasoning behavior. This is not present in the agent
programming languages. Secrecy preservation is a very specific maintenance goal which
needs specific considerations, operators and models.

We see our framework as a good starting point for the development of secrecy preserving
agents and implementations of those. We have a running prototypical implementation
of our model based on the presented BDI model and an ASP reasoning and deliberation
component. In current and future work we will investigate the properties of secrecy in
our considered setting further. Especially with respect to handling uncertainty, non-
monotonic logics and planning under these circumstances. Evaluations of the approach
using the implementation are in progress.

5.1 Future Work

In this Section planned enhancements for future releases of Angerona are described.

5.1.1 Version aware Data Components

Currently the data components use a deep copy to save different version at specific point in
time. This leads to memory drawbacks and there exists better solutions from a conceptual
perspective.

The data component might be a container of different versions of its content. Concepts
of a version control system are useable like saving changesets instead the entire content.
The mental action of an agent can be represented as branches of the main sequence of
the data component changes. The responsibility of informing Angerona about changes
in the data components would move from the operators invoking the changes to the data
components which is a better solution.

5.1.2 ASML based Operation Definition for Belief Bases

The ASML based operation definition can be used to define the three belief base opera-
tions which are directly mapped to the beliefs operator , translator and change belief base
operator . Allowing multiple operators for those operations gives the belief base functional
component more flexibility.

Example 19. There a several ways to define a change operation for a belief base. Way
one might be an easy expansion using only one operator. Way two might use two steps
starting with a selection step to filter the new information beforehand and than merge
the information with the belief base. This can be accomplished using two operators with
different operation types.
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5.1.3 ASML for the Selection of the Operator Implementation

In the current version of Angerona mostly the default operator is used to perform a
specific operation type. The plug-in developer can use the Angerona core interface to
change the default operator but this behavior is plug-in dependent. This approach is not
so flexible because there might be plug-in A and plug-in B which do not depend on each
other. At the moment it is not possible to select between an operator implementation I1

of plugin A and I2 of plugin B because the plug-in developer of A does not know I2 and
the plug-in developer of B does not know I1, therefore a approach is needed that allows
the dynamic selection of the preferred operator during runtime.

The Angerona Script Markup Language could provide operator selector scripts to dy-
namically select the used operator. This allows the user to have more control over the
used operators of the agent.

Furthermore a new ASML command shall be introduces that allows the global change of
settings of an operator.

5.1.4 Annotation based Context Providers

Currently the generation of the context provider is fully automated and the accessible
variables are defined by all parameterless methods of the context provider that names
start with a ’get’. Thus the definition of the variables of the context provider for the
agent in Appendix B.2 is not optimal, there are variables accesible that are not need by
ASML and there are also duplicated variables. Therefore the use of annotations to mark
those methods that shall be accessible by ASML is a future task.

References

[1] Relax ng specification. http://relaxng.org/spec-20011203.html, 2001. [Online;
accessed 11-December-2012].

[2] Relax ng compact syntax tutorial. http://relaxng.org/
compact-tutorial-20030326.html, 2003. [Online; accessed 11-December-2012].

[3] Mikio Aoyama et al. New age of software development: How component-based
software engineering changes the way of software development. In 1998 International
Workshop on CBSE. Citeseer, 1998.

[4] Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in artificial intelli-
gence. Artificial Intelligence, 171(10-15):619–641, 2007.

[5] Joachim Biskup. Usability confinement of server reactions: Maintaining inference-
proof client views by controlled interaction execution. In Databases in Networked
Information Systems, volume 5999 of LNCS, pages 80–106. Springer, 2010.

47

http://relaxng.org/spec-20011203.html
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/compact-tutorial-20030326.html


[6] Joachim Biskup. Usability confinement of server reactions: Maintaining inference-
proof client views by controlled interaction execution. In Shinji Kikuchi, Shelly
Sachdeva, and Subhash Bhalla, editors, Databases in Networked Information Sys-
tems, volume 5999 of Lecture Notes in Computer Science, pages 80–106. Springer
Berlin / Heidelberg, 2010.

[7] Joachim Biskup, Gabriele Kern-Isberner, and Matthias Thimm. Towards en-
forcement of confidentiality in agent interactions. In Maurice Pagnucco and
Michael Thielscher, editors, Proceedings of the 12th International Workshop on
Non-Monotonic Reasoning (NMR’08), pages 104–112, Sydney, Australia, September
2008. University of New South Wales, Technical Report No. UNSW-CSE-TR-0819.

[8] Rafael H. Bordini, Lars Braubach, Mehdi Dastani, Amal El Fallah Seghrouchni,
Jorge J. Gomez-Sanz, João Leite, Gregory O’Hare, Alexander Pokahr, and Alessan-
dro Ricci. A survey of programming languages and platforms for multiagent systems.
Informatica, 30:33–44, 2006.

[9] Ronald J. Brachman and Hector J. Levesque. Knowledge Representation and Rea-
soning. Elsevier and Morgan Kaufmann Publishers, 2004.

[10] Michael E. Bratman, David J. Israel, and Martha E. Pollack. Plans and resource-
bounded practical reasoning. Computational Intelligence, 4(3):349–355, 1988.

[11] C. Farkas and S. Jajodia. The inference problem: a survey. ACM Special Interest
Group on Knowledge Discovery and Data Mining (SIGKDD) Explorations Newslet-
ter, 4:6–11, 2002.

[12] Michael Gelfond and Nicola Leone. Logic programming and knowledge representa-
tion: the A-Prolog perspective. Artificial Intelligence, 138, 2002.

[13] Joseph Y. Halpern and Kevin R. O’Neill. Secrecy in multiagent systems. ACM
Transactions on Information and System Security, 12:5:1–5:47, October 2008.

[14] Koen Hindriks and M. van Riemsdijk. Satisfying maintenance goals. In Matteo
Baldoni, Tran Son, M. van Riemsdijk, and Michael Winikoff, editors, Declarative
Agent Languages and Technologies V, volume 4897 of Lecture Notes in Computer
Science, pages 86–103. Springer Berlin / Heidelberg, 2008.

[15] Hirofumi Katsuno and Alberto Mendelzon. On the difference between updating
a knowledge base and revising it. In James F. Allen, Richard Fikes, and Erik
Sandewall, editors, Proceedings of the 2nd International Conference on Principles of
Knowledge Representation and Reasoning (KR’91), pages 387–394. Morgan Kauf-
mann, San Mateo, California, 1994.

[16] V. Kodaganallur. Incorporating language processing into java applications: A javacc
tutorial. Software, IEEE, 21(4):70–77, 2004.

[17] Patrick Krümpelmann and Matthias Thimm. A logic programming framework for
reasoning about know-how. In Proceedings of the 13th International Workshop on
Non-Monotonic Reasoning (NMR’10), 2010.

48



[18] Patrick Krümpelmann, Matthias Thimm, Gabriele Kern-Isberner, and Regina
Fritsch. Motivating agents in unreliable environments: A computational model.
In Franziska Klügl and Sascha Ossowski, editors, Multiagent System Technologies -
9th German Conference, (MATES 2011), Berlin, Germany, October 6-7, 2011. Pro-
ceedings, volume 6973 of Lecture Notes in Computer Science, pages 65–76. Springer,
2011.

[19] Jerome Lang. About time, revision and update. In Proceedings of the 11th Workshop
on Nonmonotonic Reasoning (NMR’06), 2006.

[20] Vladimir Lifschitz, Lappoon R Tang, and Hudson Turner. Nested expressions in
logic programs. Annals of Mathematics and Artificial Intelligence, 25(3-4):369–389,
1999.

[21] Paolo Mancarella, Fariba Sadri, Giacomo Terreni, and Francesca Toni. Planning
partially for situated agents. In Proceedings of the 5th international conference on
Computational Logic in Multi-Agent Systems (CLIMA’04), CLIMA’04, pages 230–
248, Berlin, Heidelberg, 2005. Springer-Verlag.

[22] Oracle. The java tutorials: Annotations. http://docs.oracle.com/javase/
tutorial/java/javaOO/annotations.html. [Online; accessed 10-December-2012].

[23] Oracle. Trail:: The reflection api. http://docs.oracle.com/javase/tutorial/
reflect/index.html. [Online; accessed 10-December-2012].

[24] T. Lottermann R. Biedert, N. Delsaux. Java simple plugin framework.
http://code.google.com/p/jspf/. [Online; accessed 10-December-2012].

[25] Anand S. Rao and Michael P. Georgeff. BDI-agents: from theory to practice. In
Proceedings of the 1st International Conference on Multiagent Systems (ICMAS’05),
San Francisco, 1995.

[26] Martijn Schut and Michael Wooldridge. Principles of intention reconsideration. In
Proceedings of the fifth international conference on Autonomous agents, AGENTS
’01, pages 340–347, New York, NY, USA, 2001. ACM.

[27] G. L. Sichermann, W. de Jonge, and R. P. van de Riet. Answering queries without
revealing secrets. ACM Transactions on Database Systems, 8:41–59, 1983.

[28] W. Spohn. Ordinal conditional functions: a dynamic theory of epistemic states. In
W.L. Harper and B. Skyrms, editors, Causation in Decision, Belief Change, and
Statistics, volume 2, pages 105–134. Kluwer Academic Publishers, 1988.

[29] John Thangarajah, Lin Padgham, and Michael Winikoff. Detecting and avoiding
interference between goals in intelligent agents. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI, pages 721–726. Academic Press,
2003.

[30] Matthias Thimm. Tweety - a comprehensive collection of java libraries for logical
aspects of artificial intelligence and knowledge representation.

49

http://docs.oracle.com/javase/tutorial/java/javaOO/annotations.html
http://docs.oracle.com/javase/tutorial/java/javaOO/annotations.html
http://docs.oracle.com/javase/tutorial/reflect/index.html
http://docs.oracle.com/javase/tutorial/reflect/index.html


[31] Matthias Thimm. Tweety - a comprehensive collection of java libraries for logical
aspects of artificial intelligence and knowledge representation. In Proceedings of
the 14th International Conference on Principles of Knowledge Representation and
Reasoning (KR’14), July 2014.

[32] Matthias Thimm and Patrick Krümpelmann. Know-how for motivated BDI agents
(extended abstract). In Decker, Sichman, Sierra, and Castelfranchi, editors, Pro-
ceedings of the 8th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS’09), May, 10–15 2009.

[33] Matthias Thimm and Patrick Krümpelmann. Know-how for motivated BDI agents
(extended version). Technical Report 822, Technische Universität Dortmund, De-
partment of Computer Science, February 2009.

[34] Leendert van der Torre. Logics for security and privacy. In Nora Cuppens-Boulahia,
Frédéric Cuppens, and Joaquin Garcia-Alfaro, editors, Data and Applications Secu-
rity and Privacy XXVI, volume 7371 of Lecture Notes in Computer Science, pages
1–7. Springer Berlin / Heidelberg, 2012.

[35] Frank van Harmelen, Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter.
Handbook of Knowledge Representation. Elsevier Science, San Diego, USA, 2007.

[36] M. Birna van Riemsdijk, Mehdi Dastani, and Michael Winikoff. Goals in agent
systems: A unifying framework. In Müller Padgham, Parkes and Parsons, editors,
Proceedings of the 7th International Conference on Autonomous Agents and Multi-
agent Systems (AAMAS’08), pages 713–720, May 2008.

[37] G. Weiss, editor. Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. MIT Press, Cambridge, MA, USA, 1999.

[38] Michael J. Wooldridge. An Introduction to MultiAgent Systems. Wiley, 2 edition,
2009.

[39] Shung-Bin Yan, Zu-Nien Lin, Hsun-Jen Hsu, and Feng-Jian Wang. Intention schedul-
ing for BDI agent systems. In Proceedings of the 29th Annual International Computer
Software and Applications Conference (COMPSAC’05), volume 1, pages 133–140,
2005.

50



A File Formats

This appendix describes every file format used by the Angerona framework by providing
its XML schema. To describe the schema the compact Relax NG schema syntax is used.
Relax NG allows more flexible definitions for the data formats. It strongly supports
unordered content. Relax NG also allows child elements to depend on the definition of
parent elements and it has a more compact syntax than W3C XML Schema. For further
details on Relax NG see [1, 2].

This appendix gives a snapshot on the Relax NG schema files at a specific point in time.
The most recent schema files are in the source control system of Angerona on the paths:
’software/fw/src/main/resources/angerona/fw/serialize/schema’
’software/fw/src/main/resources/angerona/fw/asml/schema’.

date of schema snapshots: June 24, 2014

A.1 Core Configuration

The core configuration file is used to configure the Angerona framework. The following
Relax NG schema describes the configuration file.

1 element c on f i g {
2 element p lug in { text }∗ &
3 element parameter {
4 a t t r i b u t e name { text } ,
5 a t t r i b u t e va lue { text }
6 }∗
7 }

The ’plugin’ elements contain text to describe the path to a plugin jar which shall be
loaded by the Angerona test application. The ’parameter’ elements contain name value
pairs. These pairs are accessible through the Angerona configuration facility. They can
be used by the user to change Angerona’s application and plugin behavior.

Example 20. The ASP beliefs operator of the ASP plugin uses the Angerona config-
uration facility to decide which ASP solver it uses. The facility is also used to get the
path to the several ASP solvers.

A.2 Operator Sets and XML References

Angerona uses two Relax NG schemas as references in more complex schemas. The
operator set schema and the xml reference schema.

The following listing describes the content of an element which describes an operator set.

1 s t a r t = (
2 element de fau l t−operator { text}&
3 element operator−c l s { t ext }∗
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4 )

An operator set is a set of operators with the same operation type. It has to define at
least one default operator using the element ’default-operator’. The user can also define
an arbitrary count of alternative operators using the ’operator-cls’ elements. The inner
text of the elements has to be the full java class name of the operator.

The following Relax NG schema is used to describe the XML format used by simplexml
to reference other XML files within an XML file. It describes the content of an XML
element which links to another XML configuration file.

1 s t a r t = (
2 a t t r i b u t e source { text }
3 )

The attribute ’source’ contains the path to the external XML configuration file. Because
the Java class used to read the external files is given as an annotation in the code of the
Java class which links to the external file the full java class name of the classes responsible
for including the external files must not be known. But for completeness Table 2 maps
the classes responsible for loading external XML configuration files to their types.

De/Serialize Class Configuration Type
angerona.fw.serialize.AgentConfigImport agent configuration
angerona.fw.serialize.BeliefbaseConfigImport belief base configuration
angerona.fw.serialize.CommandSequenceSerializeImport agent cycle

Table 2: Mapping: Java XML De/Serialization Classes to Configuration Types

A.3 Simulation Template

The simulation template files are used to generate simulations. They give Angerona the
needed information to initialize a simulation. The following Relax NG schema describes
the content of a simulation template file.

1 grammar {
2 s t a r t = sc
3 sc = element s imulat ion−c on f i gu r a t i on {
4 element name { text } &
5 element behavior { t ext } &
6 element category { text } ?
7 element d e s c r i p t i o n { text } ?
8 a i+
9 }

10

11 a i = element agent−i n s t ance {
12 element name { text } &
13 element b e l i e f b a s e−name { text } ?
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14 element agent−c on f i g {
15 ex t e rna l "xml_ref . rnc "
16 } &
17 element b e l i e f b a s e−c on f i g {
18 ex t e rna l "xml_ref . rnc "
19 } &
20 element view−c on f i g {
21 a t t r i b u t e name { text } &
22 ex t e rna l "xml_ref . rnc "
23 }∗
24 element data {
25 a t t r i b u t e key { text } ,
26 t ex t
27 }∗
28 }
29 }

A simulation template consist of a name for the simulation, a behavior for the simulation
and at least one agent instance. The name can be given by the user and it has to be unique
because the Angerona UI does not show more than one simulation template when
several simulation templates exist which share the same name. The text in the ’behavior’
element of the simulation has to be the full java class name of a class containing an
implementation for an environment behavior. The elements ’category’ and ’description’
are optional. The description shortly describes the scenario. The category is used to group
similar scenarios together. A category can be hierarchically by using the ’/’ character,
such that a category ’asp/scm’ means the scenario belongs to the subgroup scm of the
group asp.

In every ’agent-instance’ element a name is defined. The name of the agent instance
has to be unique in the scope of the simulation. An element ’beliefbase-name’ is used
to define another prefix of the belief base file name. This element is optional and in the
default case the agent’s name is used as prefix for the belief base file. The belief base
implementation used by the agent defines the postfix of the belief base file. The belief
base content is read from multiple files located in the same directory as the simulation
template file. Those belief base files are explained in more detail in Appendix A.6.

The element ’config’ links to an agent configuration file which is explained in Appendix
A.4. The element ’beliefbase-config’ links to a belief base configuration file which is
explained in Appendix A.5. The belief base config given in the ’beliefbase-config’ element
is used as base implementation for all belief bases of the agents, that means for its world
belief base and all of it views. Nevertheless the ’view-config’ element can be used to use
another belief base implementation for a specific view. The element’s attribute ’name’
maps the config to the view of the agent with the given name, such that an agent can
use different implementations of belief bases for its views on the several agents in the
simulation.

An agent instance can contain an arbitrary count of data elements. Every data element
has a key attribute and an inner element text. This allows the definition of key value
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pairs which are saved as a map and delegated to the initialization methods of the agent
components .

Example 21 (Know-how initialization). The inner text of a data element with the key
’know-how’ is parsed by the know-how component and uses as initial data for the know-
how statements.

A.4 Agent Configuration

The agent configuration files is used to define the agent model of an agent instance using
the following Relax NG schema.

1 element agent−c on f i gu r a t i on {
2 element name { text } &
3 element cyc le−s c r i p t {
4 ex t e rna l "xml_ref . rnc "
5 } &
6 element operat ion−s e t {
7 a t t r i b u t e operat ion−type { text } ,
8 ex t e rna l "op−s e t . rnc "
9 }∗ &

10 element component { text }∗
11 }

The given name has to be unique and is used as reference in the Angerona UI. The ele-
ment ’cycle-script’ links to an XML file defining the agent’s cycle using ASML. The agent
configuration has an arbitrary count of ’operation-set’ elements. They use the content of
an operator set element defined earlier and an extra attribute which gives the operation
type of the operators in the operator set. This allows the definition of different operator
sets for operation types like intention update for example. The ’component’ elements add
agent components to the agent. The given text has to be the full java class name of an
agent component .

A.5 Belief Base Configuration

Similar to the agent configuration file the belief base configuration file describes the used
operators of a belief base and the type of the belief base implementation. The following
Relax NG schema is used to define a belief base configuration file.

1 element b e l i e f b a s e−c on f i gu r a t i on {
2 element name { text } &
3 element r ea sone r s { ex t e rna l "op−s e t . rnc "} &
4 element change−ope ra to r s { ex t e rna l "op−s e t . rnc "} &
5 element t r a n s l a t o r s { ex t e rna l "op−s e t . rnc "} &
6 element b e l i e f b a s e−c l a s s { t ext }
7 }
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Like the agent configuration the belief base configuration contains a name which has to
be unique. It also defines the ’reasoners’, ’change-operators’ and ’translators’ elements
which are operator sets. But unlike the agent configuration’s operator set the operation
type is determined by the element name instead an extra attribute. This is possible
because the operation types for belief bases are definitely defined to this three types.
The belief configuration also contains an element ’beliefbase-class’ which has to be the
full java class name of the class implementing the belief base concept.

A.6 Belief Base Files

Every agent in the simulation uses N belief base files, where N is the number of agents
in the simulation. Those belief base files are used to generate the initial content of the
belief bases of the agents in the simulation initialization phase. The belief base files have
the following name schemata:

• World: ’$belief-base-prefix.$suffix’

• Views: ’$belief-base-preifx_$viewed-agent-name.$suffix’

Where ’$belief-base-prefix’ is either the name of the agent or the given name in the
’beliefbase-name’ element of the agent-instance configuration which is explained in Ap-
pendix A.3. ’$suffix’ is given by the used belief base implementation and is ’asp’ for ASP
and ’ocf’ for OCF. The ’$viewed-agent-name’ is the name of the agent that beliefs are
represented by the view.

Example 22 (Alice’s belief bases files). Alice uses OCF to represent her beliefs but the
view on Bob is represented by ASP, such that she uses the following belief base files:

• Alice.ocf

• Alice_Bob.asp

If one of the agents’ belief base files does not exists on the file system it is assumed to be
an empty belief base at initalization phase but a warning is logged.

During the initialization phase of Angerona the belief base instances of an agent’s world
beliefs and its views on other agents are created. Then the file contents are forwarded
to the parse method of the belief base implementation which is responsible to generate a
Java object from the given file.

B Angerona Script Markup Language

This Appendix contains a reference to the ASML script language used by the Angerona
framework. It starts in Appendix B.1 by giving a language reference that explains the
commands and concepts like control and iteration structures. Then Appendix B.2 ex-
plains which variables are accessible through the agent context provider.
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B.1 Language Reference

An ASML script consists of a sequence of ASML statements that are either commands,
control structures or iteration structures. The following Relax NG schema defines an
ASML script. The sub commands, control structures and the iteration structures are
explained in the sub sections.

1 grammar {
2 s t a r t = element asml−s c r i p t {
3 a t t r i b u t e name { text } &
4 cmd+
5 } |
6 cmd+
7

8 cmd = {
9 ex t e rna l " a s s i gn . rnc " |

10 ex t e rna l " invoke−opera t i on . rnc " |
11 ex t e rna l " c ond i t i o n a l . rnc " |
12 ex t e rna l "whi l e . rnc "
13 }
14 }

The above Relax NG schema can either be used as starting point for a script by using the
’asml-script’ element or it can be used inline by other parts of the ASML specification
like control and iteration structures.

B.1.1 ASML Command: assign

The command assign assigns a value to a specified variable. The variable is identified by
its name. If a variable with the given name exists in the context its value is overridden
otherwise the variable is generated and added to the context. The value is can be of
any type that means that an integer like 1, a floating point number like 3.14 or even a
complex type like a query: <boss query employee attend_scm> can be given.

Listing 3: Assign in ASML Code
1 <as s i gn name="counter " va lue="3" />
2 <as s i gn name="text " value="a s t r i n g text " />

1 element a s s i gn {
2 a t t r i b u t e name { text } &
3 a t t r i b u t e va lue { text }
4 }

B.1.2 ASML Command: invoke operation

The command invoke-operation calls the preferred operator of an specific operation type.
The operation type is given as attribute ’type’. The invoke-operation has an optional
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Operator Parameter Description
update beliefs information A logical expression or a perception
update beliefs beliefs The used beliefs to perform the update
violates information A logical expression, an action or a plan
violates beliefs The used beliefs to perform the violation

check
generate options perception The perception that is received in this agent

cylce, might be empty if no perception is re-
ceived.

intention update plan The used plan data component
subgoal generation plan The used plan data component

Table 3: Parameter of the Operator of the Secrecy Agent Model

’output’ element. The return value of the operation is saved in the context under the
name that is given as inner text of the ’output’ element. The invoke-operation command
also distinguish between parameters and settings. A parameter is used as an input for
the invoked operator, some of the parameters are required, some are optional. A setting
is used to change the strategy of an operation. For a setting a default value exists and
the ASML script has the ability to change the setting for the specific call. The default
intention update operator uses a setting ’allowUnsafe’ to determine if it shall use violation
checking before selecting an atomic intention. The Tables 3 and 4 list the parameters
and settings of the operators implemented so far. And the following listing shows the
Relax NG schema of the invoke-operation command.

1 element opera t i on {
2 a t t r i b u t e type { text } &
3 element param {
4 a t t r i b u t e name { text } &
5 a t t r i b u t e va lue { text }
6 }∗
7 element s e t t i n g {
8 a t t r i b u t e name { text } &
9 a t t r i b u t e va lue { text }

10 }∗
11 element output { text } ?
12 }

B.1.3 ASML: Control Structures

ASML uses control structures that are defined by the following Relax NG schema:

1 grammar {
2 s t a r t = cond
3 cond = element c ond i t i o na l {
4 element i f { cs } ,
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Operator Setting Description Default
a.f.e.o Intention-
Update-Operator

allowUnsafe If set to true the operator selects
atomic actions without checking for
violation.

false

a.f.e.o Subgoal-
Generation-
Operator

generateLies If set to true the operator generates
for every closed query that can be
answered honestly the invert answer
(lie) as alternative plan.

true

a.f.l.a Asp-
Reasoner

d Defines in how many percent of the
answer sets a literal has to be to be
deducted by the reasoner. A value
of one means it has to be in ev-
ery answer set (sceptical reasoner),
a value of zero means it has to be
in at least one answer set (credu-
lous reasoner) and a value of 0.75
means it has to be in 75 percent of
the answer sets.

1.0

a.f.k Knowhow-
Subgoal

allowUnsafe If set to true the operator also gen-
erates plans that contain actions
that violate secrecy.

false

Table 4: Settings of Operators

5 element e l s e i f { cs }∗
6 element e l s e { cs }?
7 }
8

9 cs = {
10 a t t r i b u t e cond i t i on { text } &
11 ex t e rna l "command_sequence . rnc "
12 }
13 }

This allows the ASML script developer to use control structures that contain at least one
if statement, an arbitrary count of elseif statements and an optional else statement.

Example 23. This example maps different color values to variable in ASML depending
on the index variable i.

Listing 4: Control Structures in ASML Code
1 <cond i t i ona l >
2 <i f c ond i t i on=" i==1">
3 <as s i gn name="co l o r " va l u e="red " />
4 </i f >
5 <e l s e i f c ond i t i on=" i==2">
6 <as s i gn name="co l o r " va l u e="b l u e " />
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7 </ e l s e i f >
8 <e l s e >
9 <as s i gn name="co l o r " va l u e="b l a c k " />

10 </e l s e >
11 </cond i t i ona l >

B.1.4 ASML: Iteration Structures

The ASML script implements a while loop as iteration structure. The following Relax
NG schema describes the loop.

1 element whi l e {
2 a t t r i b u t e cond i t i on { text } ,
3 ex t e rna l "command_sequence . rnc "
4 }

As inner element the command-sequence is used. Therefore the while element only needs
an attribute that defines the condition.

Example 24. A loop that iterates ten times and simulates a for loop:

Listing 5: Iteration Structures in ASML Code
1 <as s i gn name=" i " va l u e="0" />
2 <wh i l e c ond i t i on="$i <10">
3 <as s i gn name=" i " va l u e=" i+1" />
4 </whi l e>

B.2 Context Provider Variables

ASML script can use different context provider. In the cycle script the agent is used as
context provider.The agent’s context provides every variable that is accessible using a
getter method. This is achieved by using a ContextFactory that heavily uses reflection.
The following list shows the variables that are accessible through the agent context:

• beliefs - The beliefs of the agent, this data structure contains the agents custom
components, its world belief base and its views.
• capabilities - A list containing the actions an agent can perform.
• components - A list containing all data components of the agent.
• context - The context itself
• environment - The environment of the agent simulation.
• gUID - The global unique id of the agent
• name - The name of the agent.
• operators - A reference of the operator provider of the agent.
• operatorStack - The call-stack of operators
• parent - The id of the parent object (is null all the time)
• posterName - The currently active operator, might be the agent name if no operator

is explicitly called.
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• reporter - Reference to the agent.
• stack - Reference to the agent.
• string - The name of the agent.
• type - The type of the agent (interactive or ai).
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