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Abstract – Universal characteristics of road networks and traffic patterns can help to forecast
and control traffic congestion. The antipersistence of traffic flow time series has been found for
many data sets, but its relevance for congestion has been overseen. Based on empirical data
from motorways in Germany, we study how antipersistence of traffic flow time-series impacts
the duration of traffic congestion on a wide range of time scales. We find a large number of
short-lasting traffic jams, which implies a large risk for rear-end collisions.

editor’s  choice Copyright c© EPLA, 2017

Introduction. – Intraurban road networks in agglom-
erations and megacities often operate near or above their
designed specifications in terms of, e.g., maximum ca-
pacities, which leads to congestion and increases travel
times [1]. Exceeding the specifications can also result
in an increased wear of important parts of the network
infrastructure, in particular bridges. During subsequent
maintenance works, the road capacities are typically re-
duced, which adds to the problem. Under these circum-
stances, road authorities are faced with the challenge of
optimal traffic assignment and control. To this end, uni-
versal characteristics of road networks and the according
traffic patterns [2] can help to identify systemic bottle-
necks [3]. While local traffic time series are best char-
acterised with identifying different traffic states and state
transitions [4,5], network aspects are well represented with
fractal scaling laws [2,6,7]. Both aspects are grounded
on empiric evidence in very diverse situations and are
well understood with microscopic models. Especially the
spatio-temporal behaviour of traffic patterns is explained
comprehensively with the three-phase traffic theory [8,9],
which distinguishes between free flow, synchronised traffic
and wide moving jams. The latter two phases are sum-
marised under the heading of congested traffic.

Empirical studies find fractal properties in local traf-
fic time series [10–17], also based on methods like de-
trended fluctuation analysis (DFA) [18,19]. These findings
are consistent with results from cellular automata traffic
flow models [17,20]. Fractal modelling based on fractional
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Brownian motion (fBm) [21] was used for forecasting traf-
fic flow [22]. fBm is a generalisation of the Wiener pro-
cess (also known as random walk). Its fractal character
is a self-similarity of the time series. If time is stretched
with factor A, the data is stretched with factor AH , where
the parameter 0 < H < 1 is known as the Hurst expo-
nent. For H = 1/2, fBm simplifies to the diffusion-like
behaviour of the Wiener process. For H > 1/2, fBm is
super-diffusive. Increments of the time series are long-
term correlated which is called persistent behaviour. In
this letter we are interested in the case H < 1/2. Then
we have sub-diffusive behaviour and anti-correlated incre-
ments, which is called anti-persistence. This implies large
fluctuations on short time-scales which reverse fast. The
implications of fractal time series for traffic breakdown are
not well understood up to now. This limits the implicative
relevance of fractal properties for the fine-tuning of traffic
models.

Here we study how the fractal nature of traffic flow time-
series impacts the duration of traffic congestion. We show
that the corresponding distribution is very broad. We
succeed in explaining it as a consequence of antipersis-
tence in traffic flow. For our empirical analysis, we use
traffic data from inductive loops located at cross-sections
i ∈ {1, . . . , 33} on the Cologne orbital motorways A1, A3
and A4 in Germany, which are depicted in fig. 1. Motor-
way traffic in this area has also been studied in [23–25].
The data set comprises traffic flows q(i, t), densities ρ(i, t)
and velocities v(i, t) averaged over 1-minute intervals t
of the year 2015 and all cross-sections i. A traffic flow
q(i, t) is defined as the number of vehicles passing the
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Fig. 1: (Colour online) Locations of traffic detector cross-
sections i (dots) on the Cologne orbital motorway. Specific
cross-sections are numbered counterclockwise. Map tiles by
Stamen Design, under CC BY 3.0. Data c© OpenStreetMap
Contributors.

Fig. 2: (Colour online) Velocity profile during Wednesday,
21 October 2015 along the cross-sections i specified in fig. 1.
The colours indicate vehicular velocities v(i, t) in km/h, aver-
aged over one minute windows on all possible lanes of a cross-
section. The white regions due to missing data are skipped in
the further data processing.

cross-section i on all lanes in minute t, whereas v(i, t) de-
notes the corresponding averaged vehicular velocities.

Statistics of traffic jams. – Figure 2 displays velocity
profiles vs. time for a specific day. At cross-sections 1 and
2, there is a fixed speed limit of 60 km/h. Sections 3–7
and 12–25 have fixed speed limits of at most 120 km/h,
whereas sections 8–11 and 26–33 are equipped with vari-
able speed limit signs. For cross-sections with numbers
larger than 25, traffic jams develop before 8:00, around
12:00 and around 16:00.

For understanding the spatio-temporal patterns shown
in fig. 2, we use definitions from three-phase traffic theory.
Free flow and congested traffic states can be distinguished
by calculating a minimum velocity of free flow v

(free)
min =

q
(free)
max /ρ

(free)
max , where q

(free)
max is the maximum free flow and

ρ
(free)
max is the maximum free density [8]. Then, states with

Fig. 3: (Colour online) Left: PDF of traffic congestion dura-
tions T for vjam = 50km/h in double logarithmic plot. Sym-
bols indicate different cross-sections, the black solid line is the
average over cross-sections 3 to 33. For comparison, power
laws T −γ with exponent γ = 3/2 (upper dashed line) and
γ = 2 (lower dashed line) are shown. Right: The average re-
sult (black solid line) changes only slightly for data reduced to
the first three months (crosses), or for reduced vjam = 20km/h
(dotted line).

v(i, t) < v
(free)
min are considered congested. However, this

separation becomes erroneous where speed limits change
often. To identify congested traffic, we therefore consider
times and cross-sections with v(i, t) < vjam below a fixed
threshold velocity vjam = 50 km/h as congested.

In fig. 3 we show the probability density function (PDF)
of traffic congestion durations T . We identify a local
congestion of duration T , if at a certain cross-section i
we have

v(i, t) ≥ vjam, (1)

v(i, t + T + 1) ≥ vjam and (2)

v(i, τ) < vjam (3)

for t < τ ≤ t+T . The resulting distribution is very broad.
The dashed lines provide power laws T −γ for comparison,
with γ = 3/2 and γ = 2. As shown, the results are qualita-
tively the same for different vjam as well as for data reduced
to the first three months. Summarising, we find a robust
power law behaviour with exponents in the range γ = 3/2
up to γ = 2. The power law behavior starts at about
T = 5 min. A cutoff around 200 minutes results from the
limited duration of rush hours. Importantly, the small ex-
ponent γ implies that traffic congestion durations on all
scales from minutes to hours are relevant. Overall, jams of
duration T < 5 min contribute about 8% to the total sum
of jam hours, jams with 5 min ≤ T ≤ 10 min add 11%,
jams with 10 min < T < 100 min add 44%, and jams with
100 min ≤ T ≤ 200 min add 19%. We concentrate on the
power law regime of jam durations 5 min ≤ T ≤ 200 min,
as it spans almost two orders of magnitude and it de-
scribes how long-lasting and short-lasting jams relate to
each other. For smaller exponent γ, the short-lasting jams
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Fig. 4: (Colour online) Probability Pjam that during up to
five minutes with q > qthr the velocity falls below vjam, vs.
threshold flow qthr. Black lines are for cross-section 11 and
red lines for cross-section 33. Line styles are solid for the days
until 24 Mai 2015 and dashed for the remainder of the year.
Error bars are based on the standard deviation of event counts,
assuming Poisson statistics.

would be suppressed, while for larger exponent γ, the long-
durations would be of minor importance.

To link congestion durations with traffic conditions lead-
ing to a traffic breakdown, we analyse traffic flow time-
series and the reaction of the velocity on large flows.
Traffic breakdowns occur at bottlenecks with some prob-
ability, if large traffic flows are present [8,9]. We use a
fixed threshold flow qthr to calculate the breakdown prob-
ability Pjam(i, qthr) with the following algorithm: Consider
all events with q(i, t) > qthr and v(i, t) ≥ vjam, where in
each of the following minutes ∆t ∈ {1, . . . , 5} min it holds
separately either

v(i, t + ∆t) < vjam (jam occurs) or (4)
v(i, t + ∆t) ≥ vjam and q(t + ∆t) > qthr. (5)

Among these events, events with traffic breakdown have
v(i, t + ∆t) < vjam for at least one ∆t, with ∆t after the
traffic breakdown being ignored. The fraction of traffic
breakdown events yields the breakdown probability Pjam,
where the minimum free flow q in the considered time
interval is restricted to qthr ± 2 min−1.

In fig. 4 we present resulting breakdown probabilities
for cross-sections 11 and 33 and varied threshold flow qthr,
split into time intervals until 23 May 2015 and starting
from 27 May 2015. For all curves, a sharp jump can be
observed. The minimum flow with breakdown probabil-
ity Pjam = 1 is denoted as q

(free)
max [9]. We find q

(free)
max in the

range 50 min−1 to 51 min−1 for cross-section 11, and values
from 74 ± 1 min−1 up to 97 ± 2 min−1 for cross-section 33.
The maximum free flow q

(free)
max varies strongly between the

cross-sections, mainly because of the different number of
lanes at each section. At cross-section 33, the maximum
free flow reduces strongly in the second time interval be-
cause of a changed lane configuration at an on-moving

Fig. 5: (Colour online) Traffic flow time series q(t) for road
section 22 on Tuesday, 14 July 2015. The duration Tthr of a
period with q > qthr = 60 min−1 is indicated with a double
arrow.

construction site. At other cross-sections, the maximum
free flow stays almost constant over the year.

Knowing that above a certain qthr traffic breakdown is
likely to occur within a few minutes, we further analyse
for how long traffic flow exceeds qthr, but does not break
down [26]. Should q

(free)
max be reduced to the smaller flow

qthr (for example due to construction works), traffic jams
would occur as long as q > qthr. In fig. 5, traffic flow
time series for Tuesday, 14 July 2015 are displayed. The
time series shows strong fluctuations for short times, and
a trend with one rush hour around 8:00 and a second rush
hour around 16:00. Let us assume a threshold flow of
qthr = 60 min−1, corresponding to the red line. We iden-
tify durations Tthr during which the flow exceeds a certain
threshold qthr, i.e., q > qthr. Due to the fluctuations in
q(t), we expect shortest durations Tthr down to a minute.
In fig. 5 the largest duration Tthr is highlighted with the
double arrow and spans almost three hours. The PDF
of Tthr for different cross-sections and thresholds qthr are
shown in fig. 6. On the left, we use 250 days without a
single minute of traffic jam in cross-section 22. For the
threshold at the large flow qthr = 110 min−1 (black sym-
bols), longer durations are not seen. This is because here
we restricted the data to days without traffic jam. Longer
durations with such high flow would result in a traffic jam.
For a smaller threshold qthr = 70 min−1 (red symbols) we
see a power law distribution of durations ∝ (Tthr)−γthr ,
with exponent close to γthr = 2. Were the critical flow
reduced to the smaller flow (for example due to recon-
struction works), the durations Tthr would translate into
traffic jam durations T . The PDF of traffic jam durations
shows a power law with exponent close to γ = 2, cf. fig. 3.
This result supports the interpretation that durations Tthr
of the traffic flow q(t) being above a threshold explain
the distribution of traffic jam durations T . Only short
traffic jam durations T are suppressed compared to short
Tthr, meaning that the distribution of jam durations T is
reduced compared to power law behaviour for T < 5 min,
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Fig. 6: (Colour online) PDF of durations Tthr, during which
the flow is above a threshold, q > qthr. The legends indicate
different choices of qthr. On the left, only days without detected
congestion at cross-section 22 are considered. On the right,
only days with at least four hours of congestion at cross-section
32 are considered. The dashed lines have exponents γthr = 3/2
and γthr = 2.

see fig. 3. This is because the traffic needs some time
to break down. Nevertheless, we already mentioned the
strong contribution of short-lasting jams even outside the
power law regime. For small threshold qthr = 15 min−1,
the longest duration Tthr can be as long as the whole work-
ing day, resulting in a peak at about 600 min or ten hours.
To illustrate that these statistical features of traffic flow
are not altered if the velocity breaks down, we consider
149 days with at least four hours with v < vjam a day, in
the second half of 2015 in cross-section 32. Results are
shown on the right of fig. 6.

Explanation. – To understand the durations Tthr with
q > qthr, we compare them with fractional Brownian mo-
tion (fBm) [21]. We denote the fBm random function as
BH(t̃) with Hurst exponent 0 < H < 1 and dimensionless
time t̃. The defining property of the fBm with BH(0) = 0
is its dependency structure [21] for times t̃, s̃ ≥ 0,

2〈BH(t̃)BH(s̃)〉 = t̃ 2H + s̃2H − |t̃ − s̃|2H , (6)

where 〈 〉 is the ensemble average over realisations.
The PDF of durations TfBm during which the time se-

ries exceeds a certain threshold Bthr, i.e., BH(t̃) > Bthr,
is known to scale with a power law as (TfBm)−γf Bm with
γfBm = 2 − H [27]. The traffic flow time series in fig. 5
shows strong fluctuations on short time scales, and thus
antipersistent, i.e., non-Markovian, behaviour with anti-
correlated increments and Hurst exponent H < 1/2 [21].
Another implication of antipersistent fBm is a subdiffusive
behaviour, with variance increasing sub-linear in time as

〈(BH(t̃ + ∆t̃) − BH(t̃))2〉 = |∆t̃|2H . (7)

This result can be derived from eq. (6). For small H it
implies that changes are large on short times and stag-
nating for longer times. The time dependence of the
variance can be used for estimating H from flow time
series q(t). To deal with the trend in the signal with

Fig. 7: (Colour online) Detrended standard deviation δ of the
flow time series q(t) vs. size of the sub-samples ∆t. The red
line corresponds to fig. 5, black lines to flow time series on
different times and cross-sections. The blue dash-dotted line
with exponent 1/2 corresponds to Brownian motion.

pronounced rush hours, we use detrended fluctuation
analysis (DFA) [18,19]. We divide the time series q(t)
of the day into sub-samples of length ∆t and correct the
linear trend in each sample. Then we calculate the stan-
dard deviation in each sub-sample, and average over all
sub-samples, to obtain the average standard deviation δ.
We repeat this procedure for different ∆t. In fig. 7 we
show how the detrended standard deviation δ depends on
the sub-sample size ∆t. The red solid line corresponds
to fig. 5. According to [19], the sub-sample size should be
chosen larger than 10 elements and smaller than about 1/4
of the full sample size. The Hurst exponent H can be iden-
tified as the slope of the linear fit in the log-log plot [19].
For the red curve we find H = 0.085. Other examples for
different days and cross-sections 15 and 32 are shifted for
better visibility. The dash-dotted line with exponent 1/2
corresponds to Brownian motion. With H < 1/2 we find
strong subdiffusive behaviour in a range from ten minutes
up to three hours. Performing DFA for single days on
all cross-sections, we find Hurst exponents between 0.038
and 0.24, with mean 0.088 and standard deviation 0.028.
Days with more than ten minutes of missing data are ne-
glected. For the Kerner-Klenov-Wolf cellular automaton
three-phase traffic flow model, anti-persistent behaviour
of the free traffic density is reported in [20]. With the use
of DFA, Hurst exponents down to H = 0.1 are found in
synthetic data. An analysis of real world data finds Hurst
exponents around H = 0.17 for free flow traffic [10]. An-
other study finds persistence in real traffic data, however
the data is not detrended there [11].

To understand the time evolution of q(t), let us assume
we identified the non-stochastic trend µ(t) and propose
the model qm, defined as

qm(t + ∆t) − qm(t) = µ(t + ∆t) − µ(t)

+ σ(t)
[
BH

(
t

t0
+

∆t

t0

)
− BH

(
t

t0

)]
. (8)
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Fig. 8: (Colour online) Autocorrelation α over time lag τ of
one-minute increments of the flow q averaged over all days
and cross-sections (black circles) compared with fBm with
H = 0.093 (red diamonds). Horizontal dotted lines indicate
the interval spanned by shuffled data. The inset represents an
enlarged part of the main figure.

The time-dependent function σ(t) is needed to adapt the
physical dimension and to account for a slowly varying
time dependence of the fluctuation strength. For the time
scale t0 we can use one minute. For H , we insert the Hurst
exponent as found empirically around H = 0.1. For H �=
1/2, the increments BH(t̃+∆t̃)−BH(t̃) are dependent for
different t̃ = n∆t̃. Therefore, the numerical generation of
time series is not as straightforward as for standard Brow-
nian motion. We find a strong negative autocorrelation
α(τ) = [〈∆q(t + τ)∆q(t)〉t − (〈∆q(t)〉t)2〉]/〈(∆q(t))2〉t of
one minute increments ∆q(t) = q(t+1)−q(t) for short time
lags τ , see the black circles in fig. 8. Results are averaged
over all road sections and all days with at most ten minutes
of missing data. For larger time lags τ , the autocorrela-
tion is dominated by noise. This result is consistent with
antipersistent fBm, as can be found with eq. (6). The red
diamonds show results for H = 0.093. This Hurst expo-
nent is also in good agreement with results from DFA, see
fig. 7. Notice that non-stochastic increments of the form
µ(t+1)−µ(t) are small compared to fluctuations on short
time scales, what allows us to investigate the autocorrela-
tion of q without subtracting the non-stochastic part.

Based on the model qm, we now investigate the dura-
tions Tthr with qm > qthr. For fBm, a power law with
exponent γfBm = 2 − H was reported in [27]. In our case,
we find γfBm = 2 − H ≈ 1.9, which is in good agreement
with the empirical findings for γthr in fig. 6. For fBm,
it was further found that the power law behaviour is even
present with an additional drift-like term [27]. In this case,
for negative drift there is a cut-off at large times, what is
also consistent with our empirical results, see for example
the red circles on the right of fig. 6. For positive drift, the
PDF at long durations T with qm > qthr are increased.
We see this effect in real data in fig. 6 for small qthr, the
yellow circles. In our model qm(t), the drift µ(t) would
be a function depending on the time of the day, the day

of the week and further factors. Also, fig. 5 indicates a
dependence of the fluctuation strength σ(t) on µ(t). How-
ever, the identification of this drift term goes beyond the
scope of this study.

Moreover, let us compare with scaling in other socio-
economic fields. Burst- and inter-burst durations T in
currency exchange markets have been found to scale as
T −3/2 [28]. This hints at normal diffusion and Markovian
behaviour. Examples of scaling in systems which are not
tuned to a phase transition are also known in the context
of coherent noise [29], what holds implications for adaptive
electricity markets [30].

Conclusion. – First, our results strongly corroborate
the antipersistent behaviour of traffic flow time series q(t):
The Hurst exponent around H = 0.1 from DFA, negative
autocorrelations of one minute increments hinting at Hurst
exponent around H = 0.09, and finally a power law T −γthr

for durations Tthr above thresholds q > qthr with exponent
around γthr = 2. The latter is connected with a Hurst
exponent H = 2−γthr close to zero, and therefore strongly
in the antipersistent regime. Taking all findings together,
we found a robust universal property of traffic flow, which
can be observed on different road sections, at different
times and with or without long times of congestion.

Second, we showed that congestion durations T are dis-
tributed in the same way as durations Tthr of the flow
above threshold. With identifying critical thresholds of
the flow qthr for our traffic data, we concluded that the
durations Tthr translate into traffic jam durations T .

This led us, third, to our main result that antipersis-
tence in traffic flow is a crucial property for understand-
ing patterns of traffic congestion. The fact that the traffic
flow can be described with a fractional Brownian motion,
with a subtle time dependence of fluctuations, and that it
strongly influences patterns of traffic breakdown, implies
a broad distribution of congestion lifetimes. Especially
for antipersistent fractional Brownian motion, the role of
short-lasting jams is increased. Accordingly we found that
short jams of duration T ≤ 10 min contribute 19% to the
total sum of jam hours. This is relevant for navigation
systems with congestion warning. Especially short-lasting
traffic jams bare a large risk for rear-end collisions. Also,
traffic models can benefit from our findings.
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