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Abstract

Research in the field of nonparametric shape constrained regression has been

intensive. However, only few publications explicitly deal with unimodality although

there is need for such methods in applications, for example, in dose-response anal-

ysis. In this paper we propose unimodal spline regression methods that make use

of Bernstein-Schoenberg-splines and their shape preservation property. To achieve

unimodal and smooth solutions we use penalized splines, and extend the penalized

spline approach towards penalizing against general parametric functions, instead of

using just difference penalties. For tuning parameter selection under a unimodality

constraint a restricted maximum likelihood and an alternative Bayesian approach

for unimodal regression are developed. We compare the proposed methodologies

to other common approaches in a simulation study and apply it to a dose-response

data set. All results suggest that the unimodality constraint or the combination of

unimodality and a penalty can substantially improve estimation of the functional

relationship.
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1 Introduction

In a variety of applications a dependent variable increases with higher values of an inde-

pendent variable up to a maximum and then decreases again, i.e., the functional relation-

ship is unimodal. A prominent example is dose-response analysis, where the (beneficial)

effect of a substance increases with increasing dose up to a saturation point, after which

the effect starts to decrease again, as the substance might cause, for example, interfering

toxic effects.

While there exist a variety of parametric approaches to estimate a unimodal relationship,

we introduce in this paper a flexible semiparametric method for estimation of a smooth

unimodal function, based on spline functions which include polynomials as a special case

and which are particularly well-suited for shape-constrained function estimation.

Most common shape constraints used in the context of splines (and polynomials) are

monotonicity, convexity or concavity and log-concavity, because finite dimensional con-

straints on the spline coefficients ensure the desired shape constraint. See, for example,

Ramsay (1988), Kelly and Rice (1990), Wood (1994), Hazelton and Turlach (2011) and

Wang and Ghosh (2012) for different approaches. Essentially, these shape-constraints

induce non-negativity constraints on a derivative which can be ensured using constrained

optimization in non-Bayesian approaches (see e.g. Ramsay (1988) or Wang and Ghosh

(2012)) and by prior specification in Bayesian approaches (see e.g. Hazelton and Turlach

(2011)). The shape constraint of log-concavity (which also guarantees unimodality) can

be achieved by imposing concavity on the logarithm of the response, as, for example,

described in Eilers (2005). Yet, log-concavity is a stronger requirement and there exist

unimodal functions that are not log-concave.

However, the unimodality constraint does not reduce to a single positivity constraint on

a derivative of the modelled function and has received less attention in the spline liter-

ature so far. In an unpublished manuscript, Woodworth (1999) uses B-splines with a

certain hierarchical prior on the coefficients that guarantees unimodality. Unfortunately,

no general suggestions on the choice of the prior parameters and the knot sequence are

given. The incorporation of a smoothness penalty, which could be used to address the

problem of knot placement, is also not straightforward in this model.
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Even beyond splines, the literature on nonparametric estimation of a smooth unimodal

function is relatively sparse. The first approaches to unimodal regression date back to

the 1980s, see, for example, Frisén (1986), where pointwise least squares estimates are

produced by successively splitting the data into two possible subsets, applying an isotonic

and an antitonic regression and choosing the split with the minimal sum of squares. To

obtain a smooth function the pointwise estimates have to be interpolated or smoothed

in a second step. Even joining two smooth monotone estimates will not help, because it

yields estimates which are not smooth or even discontinuous at the mode. The problem

is that the shape constraint is imposed using two local monotonicity constraints instead

of one global constraint.

A different, but very general approach to incorporate shape constraints is data sharp-

ening, where the data points are shifted as little as possible so that the unconstrained

estimate fulfils the constraint. See, for example, Braun and Hall (2001) for an approach

to unimodal density estimation.

The outline of this paper is as follows: In Section 2 we first introduce a dose-response

data set from McLaren et al. (1990) to further motivate the need for unimodal regres-

sion in real applications. In Section 3.1 we illustrate the approximation power and the

shape-preservation properties of splines using the characteristics of Bernstein-Schoenberg

splines. The remainder of Section 3 then describes methods based on maximum likelihood

and penalized maximum likelihood with different penalties and a Bayesian approach to-

wards estimation of unimodal splines. Regarding the form of the penalty, which can also

be viewed as prior information from the Bayesian perspective, we first extend the finite

difference penalties described in Eilers and Marx (1996) to the case of unimodal regres-

sion. In a second step, we propose a novel approach to incorporate prior information by

penalizing against a parametric model, while still allowing for departures from it, when

the data suggest so. All proposed methods are implemented in R and the code is freely

available on CRAN (package uniReg) or from the authors. In Section 4 the introduced

methods are applied to the data example from Section 2 and their characteristics are

compared in a simulation study. The last section contains conclusions and an outlook.
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2 Unimodality in Dose-Response Data

Characterization of the dose-response relationship for desirable and undesirable effects

of a pharmaceutical compound is the central problem of its clinical development. The

prespecification of one dose-response model for analysis in the study protocol (before

data collection) is difficult, which is why practical methods often rely on specification of

a candidate set of parametric dose-response models (see e.g. Bretz et al., 2005) and on

model selection or model averaging. Unimodal regression is a nonparametric competitor

to these techniques.

A typical assumption in parametric as well as nonparametric dose-response analyses is

monotonicity. However, in a variety of cases this assumption can be challenged as the

interference of potential saturation or toxicity effects cannot be excluded. When consider-

ing a clinical utility index that combines efficacy and safety measures (see e.g. Khan et al.,

2009) one explicitly expects a unimodal relationship and a monotonically increasing curve

would be surprising to observe. But even when considering efficacy alone unimodality can

occur as in the example to follow. A unimodal shape constraint relaxes the assumption

of monotonicity and is adequate whenever an umbrella dose-response curve cannot be

excluded a priori.

The example data set originates from animal science, where the growth of pigs is eval-

uated in dependence of an increasing dose of a growth hormone. McLaren et al. (1990)

investigated the relationship between administration of porcine somatotropin and several

growth variables in 195 pigs. Details on the experimental procedure and data preprocess-

ing can be found in their manuscript. The (aggregated) data used here are the porcine

somatotropin dosage levels [mg/pig/day] (PST) and the least squares means and stan-

dard deviations of four response variables: Average daily gain of weight [kg/day] (ADG),

age at 103.5 kg [days] (Age), gain-to-feed ratio (G/F) and average daily feed consumption

[kg/pig/day] (ADF). The five dosage levels are 0, 1.5, 3, 6, 9 mg/pig/day and the means

and standard deviations at the respective levels correspond to 29, 29, 57, 58, and 22 pigs.

The data are plotted in Figure 1 and the actual data values can be found in Table H.1.

While the modes of the means of ADG, Age and ADF are at extreme doses (suggesting

monotone relationships), the means of G/F have an interior mode at dose 6. Since mono-
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tonicity is a special case of unimodality, it seems reasonable to relax the monotonicity

assumption and apply unimodal regression to all four variables (inverse unimodal for the

variables Age and ADF). The results are presented in Section 4.1.

3 Methods

3.1 Bernstein-Schoenberg Splines and Shape-Constraints

In this subsection we review some basic properties of Bernstein-Schoenberg splines (see,

for example, Goodman, 1995), to illustrate that a particular choice of B-splines is (i) a

sufficiently flexible basis and (ii) well-suited for shape-constrained modelling, as a simple

constraint on the B-spline coefficients ensures unimodality of a spline.

Let Nj,k+1(x) be the (normalized) B-spline basis function of degree k ≥ 1 with knots

τj, . . . , τj+k+1, which can be defined by the following recursion formulae: Nj,1(x) =

I[τj ,τj+1)(x), Nj,k+1(x) =
x−τj

τj+k−τj
Nj,k(x) +

τj+k+1−x
τj+k+1−τj+1

Nj+1,k(x) for j = −k, . . . , g. Explicit

expressions are also available for the B-spline basis functions, but numerically instable to

evaluate, which is why only the recursive definition is presented here. See Dierckx (1993)

for an introduction to the B-spline basis, or see Appendix I for a graphical representation.

The full sequence of knots for all basis splines is denoted by T = (τj)
g+k+1
−k and is here

restricted to τ−k = . . . = τ0 = 0 < τ1 ≤ . . . ≤ τg < 1 = τg+1 = . . . = τg+k+1 (coincident

boundary knots) and τj < τj+k+1 ∀ j = −k, . . . , g, where g ≥ 0 is the number of inner

knots.

Every linear combination of B-spline basis functions,
∑g

j=−k βjNj,k+1(x), with d :=

g + k + 1 so-called B-spline coefficients βj, belongs to the class of spline functions. The

Bernstein-Schoenberg (B-S) operator or Bernstein-Schoenberg spline of a function f has

specific coefficients and is defined for x ∈ [0, 1] as VTk f(x) =

g∑
j=−k

f(τ ∗j )Nj,k+1(x), where

τ ∗j =
1

k

k∑
i=1

τj+i, j = −k, . . . , g, are the so-called knot averages.

Important properties of the B-S splines are:
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(1) For w = 0, 1 it holds that, if f ∈ Cw[0, 1], then lim
k→∞

(VTk f)(w) = f (w) uniformly on

[0, 1].

(2) The number of sign changes of the B-S spline of a function f is not larger than the

number of sign changes of f itself.

Moreover, it can be shown, that the number of sign changes of a spline
∑g

j=−k βjNj,k+1(x)

is not larger than the number of sign changes of the coefficient sequence (β−k, . . . , βg).

This is called the variation diminishing property, which was introduced by Schoenberg

(1967). Carnicer and Pena (1994) even found the B-spline basis to be optimally shape

preserving for the space of spline functions. This property makes B-S splines very in-

teresting for shape-constrained regression. Concerning unimodality we can derive the

following lemma. To our knowledge its contents have not been stated in the literature in

this form and thus, we give a proof for it in Appendix A.

Lemma 1: Let f be a unimodal function on [0, 1] and T = (τj)
g+k+1
−k a knot sequence

with distinct inner knots and τ−k = . . . = τ0 = 0, τg+1 = . . . = τg+k+1 = 1. Then, the

corresponding Bernstein-Schoenberg spline, VTk f(x) =

g∑
j=−k

f(τ ∗j )Nj,k+1(x), is unimodal,

too.

The reverse implication does not necessarily hold, as can be seen from the counter exam-

ple in Appendix B.

For g = 0 the B-spline basis functions Nj,k+1(x) (j = −k, . . . , 0) reduce to the binomial

probabilities
(
k
`

)
x`(1 − x)k−` (` = 0, . . . , k) (see Figures I.1 and I.2) and the B-S splines

reduce to the Bernstein polynomials, Bkf(x) =
∑k

`=0 f
(
`
k

) (
k
`

)
x`(1 − x)k−`, which have

been increasingly employed for shape-constrained regression, see, for example, Chang

et al. (2005) or more recently Wang and Ghosh (2012). Here, we prefer B-S splines since

they are a straightforward, more flexible generalization of Bernstein polynomials and con-

vergence faster than the latter for suitably chosen knot sequences (cp. Marsden, 1970).

In summary, a unimodal function f ∈ Cw[0, 1] (w = 0, 1) can be approximated by a spline

s(x) =
∑g

j=−k βjNj,k+1(x) with βj = f(τ ∗j ) with uniform convergence properties, which

is unimodal because of the shape-preserving property. The same is true for functions on
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arbitrary intervals [a, b] since their support can always be transformed to [0, 1].

B-S splines are a tool in approximation theory problems, but will be used here for a

regression problem. Since the functional relationship f between predictor and response

is unknown, we cannot choose βj = f(τ ∗j ), but have to estimate the B-spline coeffi-

cients β = (β−k, . . . , βg) from data. As follows from Lemma 1, it is sufficient to restrict

the B-spline coefficients to form a unimodal sequence, i.e., that there exists an index

m ∈ {−k, . . . , g} for which β−k ≤ . . . ≤ βm−1 ≤ βm ≥ βm+1 ≥ . . . ≥ βg, to ensure

unimodality of the fitted spline. In the following, new fitting procedures are derived for

the case when a unimodality constraint is desired.

3.2 Maximum Likelihood

Suppose there are n pairs of observations (xi, yi), xi ∈ [a, b] ∀i, and the underlying model

is Yi = s(xi) + εi =

g∑
j=−k

βjNj,k+1(xi) + εi with εi ∼
i.i.d.
N (0, σ2).

When using the maximum likelihood approach the aim is to find a spline function s

that minimizes the sum of squared residuals
n∑
i=1

(yi − s(xi))
2 = ‖y −Bβ‖22, where

y = (y1, . . . , yn)′ and B = (Nj,k+1(xi))i=1,...,n,j=−k,...,g is the matrix of B-spline basis

functions evaluated at the observation points x1, . . . , xn. The minimization problem

arg min
β
‖y −Bβ‖22 is quadratic in β, if the spline degree, the number of knots and the

positions of the knots is fixed. Without imposing shape restrictions and if the number of

distinct x-values is greater or equal d, B′B is invertible and the unique solution is simply

β̂ = (B′B)−1B′y.

Suppose now that the shape of the spline is constrained to be unimodal with a fixed

mode m of the B-spline coefficients. Under this constraint, the minimization has to be

done for the set of all vectors β satisfying βj ≥ βj−1 ∀j = −k, . . . ,m and βj ≤ βj−1
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∀j = m+ 1, . . . , g. This can be written as the linear constraint A′mβ ≥ 0 with

A′m =



−1 1
. . . . . . 0
−1 1

1 −1

0 . . . . . .

1 −1


← m-th row

∈ R(d−1)×d.

This quadratic programming problem has no explicit solution, but can be solved efficiently

and reliably, see for example the R package quadprog (Turlach and Weingessel, 2011).

Usually the mode of the coefficient vector will be unknown and must been learned from

data. We propose to fit a unimodal spline for each possible choice of m ∈ {−k, . . . , g}

and then select the fit with the lowest residual sum of squares. This idea is similar to

the one in Frisén (1986), but a global shape constraint is used instead of two local ones.

An alternative is to take a (Bayesian) average over different choices of the mode, which

is done in Section 3.5.

Another problem arises already before fitting any least squares spline: the choices for the

degree of the spline and the number and the positions of the knots. Regarding the spline

degree we propose to use splines of degree k = 3 as recommended by Dierckx (1993). As

for the number and the position of the knots we prefer a penalized spline approach that

will be explained in the following subsection.

3.3 Penalized Maximum Likelihood

Eilers and Marx (1996) proposed to use a relatively large number of knot positions (com-

pared to the number of the predictor values and the variation in the data) and a penalty

term in the objective function to find a compromise between over- and underfitting. In

their approach a finite difference penalty on the B-spline coefficients is used, that is,∥∥∥∥ 1

σ
(y −Bβ)

∥∥∥∥2
2

+ λ

g∑
j=−k+q

(∆qβj)
2 (1)

is minimized, where ∆βj = βj − βj−1, ∆2βj = ∆(∆βj) = βj − 2βj−1 + βj−2 and so on.

The parameter λ > 0 enables tuning of the penalization. In matrix notation the objective
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function is given by
∥∥∥∥ 1

σ
(y −Bβ)

∥∥∥∥2
2

+ λ ‖Dqβ‖22 , where Dq ∈ R(d−q)×d is the matrix

representation of the finite differences of order q, for example,

D2 =


1 −2 1 0

1 −2 1

0
. . . . . . . . .

1 −2 1

 ∈ R
(d−2)×d.

Eilers and Marx (1996) propose to use second order differences (q = 2) and a knot se-

quence that is equidistant even beyond the boundary knots, that is, τj = a+j b−a
g+1

∀ j =

−k, . . . , g. In this case the penalty term is zero for linear in- or decreasing coefficient

sequences and thus, one penalizes against linear functions. So for the difference penalty

we deviate from the knot sequence definition in Section 3.1.

To enable inclusion of other penalties (see also Section 3.4) we will use a generalized

penalty term, i.e., λ
∥∥∥Ω 1

2 (β − β0)
∥∥∥2
2
, in the following. In the case of the difference penalty

we thus have β0 = 0 and Ω = D′qDq.

For fixed λ and σ and without imposing a shape constraint the penalized objective func-

tion is minimized by β̂ =
(

1
σ2B

′B + λΩ
)−1 ( 1

σ2B
′y + λΩβ0

)
. The constrained problem

can again be solved using quadratic programming algorithms and performing model se-

lection over the mode using the residual sum of squares criterion.

In real applications the standard deviation σ is usually unknown and has to be estimated

as well. If it is possible to attain an accurate estimate from preceeding trials or from the

data itself, as, for example, in dose-response trials, then the above process works fine. In

other cases, it is still possible to iterate between estimation of σ given an interim estimate

of β and estimation of β given an interim estimate of σ until some defined convergence.

As mentioned before, we have to choose the tuning parameter λ so that the penalization

gives a compromise between overfitting and underfitting. In simple regression problems

the method of choice is often leave-one-out cross-validation, where the hat matrix H for

which ŷ = Hy can be used as a shortcut for the estimation of the tuning parameter.

But when estimating β (and calculating ŷ) under the unimodality constraint, such a ma-

trix and thus a similar simple way of calculating the cross-validated tuning parameter is

not available. In what follows we will describe a restricted maximum-likelihood (REML)
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approach towards estimation of λ, as this can relatively straightforwardly be extended to

the constrained case. We follow an approach, for example, taken by Wood (2011) in other

penalized likelihood problems, where no shape contraint is present, and assume that β is

distributed according to the following (possibly improper) prior: β|λ ∼ NSm(β0, λ
−1Ω−),

where Ω− ∈ Rd×d is the pseudo-inverse of Ω if r := rank(Ω) < d, and the regular inverse

otherwise, and Ω and β0 ∈ Rd correspond to the respective components in the penalty

term. The notation NM(µ,Σ) stands for a multivariate normal distribution with mean

µ and covariance matrix Σ truncated on the set M ⊂ Rd. For M = R
d there is no

shape constraint. The unimodality constraint can be imposed using the set of unimodal

coefficient vectors β with mode m, that is Sm := {β ∈ Rd : A′mβ ≥ 0}. The tuning

parameter λ is distributed with p(λ), a prior density on (0,∞).

One can show that the joint posterior of β and λ, p(β, λ|y), is proportional to

p(λ) λ
r
2

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0λΩβ0

)
exp

{
−1

2
(β − eλ)′E−1λ (β − eλ)

}
ISm(β),

where Eλ :=

(
1

σ2
B′B + λΩ

)−1
and e′λ :=

(
1

σ2
y′B + λβ′0Ω

)
Eλ and cpriorλ is the nor-

malizing constant of the prior, that is, the prior probability of the truncation set Sm.

Moreover, we obtain the marginal density of λ by integration over β, i.e.,

p(λ|y) =

∫
p(β, λ|y)dβ ∝ p(λ) λ

r
2 |Eλ|

1
2
cpostλ

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
λβ′0Ωβ0

)
, (2)

where cpostλ is the probability of the set Sm under the multivariate N (eλ,Eλ)-distribution

and can be interpreted as the normalizing constant of the posterior of β. More detailed

derivations are given in Appendix C.

In the unconstrained case both normalizing constants are equal to one since we have to

integrate over the whole Rd instead of over Sm. Under the unimodality shape constraint

the normalizing constant cpostλ can be approximated numerically (see, for example, the

R package mvtnorm, Genz et al. (2012)). When the prior is proper (Ω is positive def-

inite), cpriorλ can be calculated in the same way. If not, as, for example, when using a

difference penalty, we propose to use cpriorλ from the normalizing constant of a slightly

modified proper prior. If Ω is determined by a general difference matrixDq, the modified

covariance matrix of the prior is given by Ω̃ = 1
σ2
v
Id + λD′qDq. This can be interpreted

as a combination of ridge and difference penalty, where we propose to keep the "tuning
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parameter" σ2
v of the ridge penalty fixed, so that the influence of the difference penalty

still increases with higher λ.

Finally, an automatic choice of the tuning parameter λ based on REML estimation is

λ̂ = arg max
λ

p(λ|y), which can be found using optimization algorithms. This estimate of

λ can be used in the above described estimation procedure for β.

Again, as the mode m will be unknown, one can estimate λ and β for every possible

choice of m and choose the pair with minimal residual sum of squares. For an alternative

way of estimating the mode see also Section 3.5.

Since the described procedure is not invariant to scaling of the data, we propose to scale

the observations y into [−1, 1] and transform the fitted values back. For the applications

in Section 4 we choose σ2
v = 5, which can be thought of as uninformative since the βi

approximately also lie in [−1, 1].

3.4 Penalization against Parametric Functions

There are situations in which prior information exists from preceding experiments, as, for

example, in dose-response trials. Thus, one might have a particular parametric function

in mind to estimate the unimodal relationship, but one would like to safeguard against

mis-specification of this function (as discussed in Yuan and Yin (2011), for example). We

now present how to integrate this information in form of a penalty.

Suppose we want to penalized against the regression function f . The linear interpolant

of the points (τ ∗−k, β−k), . . . , (τ
∗
g , βg), which Dierckx (1993) calls the "control polygon" of

a spline, mimicks the form of the spline. Thus, it seems natural to penalize the difference

in the B-spline coefficients against the differences in the values of the fitted function f̂ at

the knot averages. Explicitly, the penalty term is
g∑

j=−k

{
(βj − βj−1)− (f̂(τ ∗j )− f̂(τ ∗j−1))

}2

=

g∑
j=−k

{
∆(βj − f̂(τ ∗j ))

}2

=
∥∥∥Ω 1

2 (β − β0)
∥∥∥2
2

(3)

with Ω = D′1D1 and β0 = (f̂(τ ∗−k), . . . , f̂(τ ∗g ))′.

In dose-response applications a possible choice of the parametric model is the sigmoid

Emax model (implemented, e.g., in the R package DoseFinding, Bornkamp, Pinheiro,
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and Bretz (2012)). One characteristic of this model is that it allows for a steep increase

in the response. Thus, if prior information suggests such a steep increase, it is possible

to incorporate this knowledge by penalizing the spline against the fitted sigmoid Emax

function. Explicitly, the regression function f(x) = E0 + E1
xh

EDh
50 + xh

with parameters

E0, E1, ED50 and h is employed in equation (3).

Since we have already seen in Section 3.3 that a penalty term can be formulated as prior

distribution of the regression coefficients, estimation of the penalty from the same data

resembles an empirical Bayes approach. When replacing maximization by averaging in

the procedures of the last two subsections we arrive at the Bayesian approach that will

be discussed in the next subsection.

3.5 Bayesian Approach

In contrast to performing model selection over a grid of possible values for the mode, one

can also think of model averaging based on a Bayesian approach. Here, the mode is ran-

dom, too, leading to the same likelihood model as before, but now the prior distributions

are β|λ,m ∼ NSm(β0, Ω̃
−1) and (λ,m) ∼ p(λ,m). We directly use the full-rank precision

matrix Ω̃ = 1
σ2
v
Id + λD′qDq here. The standard deviation σ > 0 and the penalty com-

ponents β0 and Ω̃ are assumed to be fixed, since they are either known from preceeding

experiments or can be estimated from the data leading to an empirical Bayes approach.

The joint posterior distribution factorizes as p(β, λ,m|y) = p(β|λ,m,y)p(λ|m,y)p(m|y).

Thus, we can generate a Monte Carlo random sample from the posterior distribution by

sampling successively from p(m|y), p(λ|m,y) and p(β|λ,m,y).

The marginal posterior p(β|λ,m,y) is again a multivariate normal density truncated onto

the set Sm, with posterior mean vector e′λ :=

(
1

σ2
y′B + β′0Ω̃

)
Eλ and covariance ma-

trix Eλ :=

(
1

σ2
B′B + Ω̃

)−1
, that is β|λ,m,y ∼ NSm(eλ,Eλ). Thus, random sampling

from this distribution is possible, for example, using the inverse Bayes formulae sampler

proposed by Yu and Tian (2011).

Similar to the derivation of the REML likelihood p(λ|y) (see equation (2)) in the last

subsection, we get the posterior p(λ|m,y) by integrating β out of the joint posterior.
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Explicitly, we obtain p(m|y) =
∫
p(λ,m|y)dλ and p(λ|m,y) = p(λ,m|y)

p(m|y) where

p(λ,m|y) ∝ p(λ,m) |Ω̃|
1
2 |Eλ|

1
2
cpostλ

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0Ω̃β0

)
=: w(λ,m).

Thus, p(λ|m,y) is a univariate density that is known up to a constant factor and sam-

pling is possible using, for example, the slice sampler introduced by Neal (2003).

The distribution of the mode can be normalized by p(m = m∗|y) =

∫
w(λ,m∗)dλ∑g

j=−k
∫
w(λ, j)dλ

.

As it is a discrete distribution on {−k, . . . , g}, random sampling is simple.

See Appendix D for a step-by-step derivation of the posterior distributions.

Because of the factorization of the joint posterior and successive sampling from the respec-

tive factors, the Bayesian method yields a Monte Carlo random sample with uncorrelated

draws from the joint posterior. Markov Chain Monte Carlo (MCMC) methods (inverse

Bayes formulae and slice sampler) are only necessary for generating a single draw from

p(β|λ,m,y) and p(λ|m,y) for each joint posterior sample. As for the REML approach,

we recommend to transform the observations y onto [−1, 1] before fitting the model, to

achieve a scale invariant procedure. For the applications we use independent priors for the

tuning parameter and the mode, that is p(λ,m) = p(λ)p(m), where p(λ) ∝ 1
λ
I[e−3,e10](λ)

and p(m) = 1
d
∀m ∈ {−k, . . . , g}. See Appendix F for details.

4 Applications

In this section the proposed methods are evaluated in dose-response applications and

compared to existing methodologies. First, the proposed methods are applied to the

growth hormone data set introduced in Section 2. In the second subsection a simula-

tion study is performed, which is motivated by the data situation typically observed in

pharmaceutical dose-response clinical trials, where increasing levels of a pharmaceutical

compound are administered in parallel to a large number of patients to investigate the

dose-response relationship.

All calculations are carried out using R, version 2.15.1 (R Core Team, 2012).
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Table 1: Weighted residual sums of squares of the exponential fit by McLaren et al.

(1990) and the three fitted unimodal regressions for all four response variables.

Difference penalty Bayes (Difference) Exponential fit Exponential penalty

ADG 0.471 1.847 0.018 0.023

Age 1.043 1.793 0.341 0.337

G/F 1.003 1.560 1.592 1.005

ADF 0.828 1.149 0.514 0.554

4.1 Growth Hormone Dose-Response Analysis

We use three different unimodal regression approaches to analyse the data presented in

Section 2: Maximum likelihood and Bayes, each with difference penalty, and maximum

likelihood with penalization against an exponential fit. The exponential fit was found in

McLaren et al. (1990) to fit the data best in terms of the coefficient of determination.

The estimated exponential relationships in dependence of the dosage x are ADG(x) =

0.7509 + 0.1523 (1− e−0.6204x), Age(x) = 183.2 − 12.27 (1− e−0.5x), G/F (x) = 0.2655 +

0.09982 (1− e−0.5036x) and ADF (x) = 2.932− 0.7913 (1− e−0.2097x). Those functions are

evaluated at the knot averages to calculate the vector β0 for the penalty.

For all three methods, we use g = 10 equidistant inner knots on the interval [0, 9] and the

given standard deviations are accounted for by weighting with the respective reciprocal

variances. For the Bayesian fits 1000 samples from the posterior are drawn and averaged.

In addition we retain the pointwise 2.5%- and 97.5%-quantiles of the fitted functions to

determine a 95% credible region. In the case of Age and ADF we reflect the data along

the x-axis before fitting and reflect the fitted values back. For all four response variables,

the three fitted unimodal regressions and the exponential fit are plotted in Figure 1 and

the weighted residual sums of squares are given in Table 1.

From the plotted functions we can see that the fits with difference penalty do not differ

very much (except for ADG), yet there are clear differences in their weighted residual

sums of squares (wRSS). The Bayesian method yields higher wRSS values and seems

to oversmooth the data. The credible regions lie close around the fitted curves and stay
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Figure 1: Scatterplots of PST dosage vs. means of the response variables ADG, Age,

G/F and ADF. The bars indicate 95% confidence intervals of a normal distribution with

the input means and standard deviations (compare Table H.1). The rows correspond

to the response variables and the columns to the fitted unimodal functions: Maximum

likelihood and Bayesian spline with difference penalty and maximum likelihood spline

with exponential penalty. For the Bayesian method the 95% credible regions of the fitted

functions are also shown.
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within the normal confidence intervals defined by the standard deviations at the observed

doses. For the variables ADG, Age and ADF the unimodal regression with exponential

penalty and the exponential fit are nearly identical, but in the case of G/F they differ more

clearly. For this variable the exponential model seems to be a mis-specification, because

all unimodal regressions, also the Bayesian one, have smaller wRSS. McLaren et al.

(1990) used the exponential fits to determine optimal dosages. For the G/F variable such

subsequent analyses would clearly yield different, presumably more appropiate results

using the unimodal fit.

Since we do not know the true underlying relationship we can only asses the different

results in terms of wRSS, from which we can derive that the maximum likelihood spline

with penalty against the preferred parametric function is more useful than just fitting the

parametric model: the difference in wRSS is small, when the parametric model already

yields a good fit, but the benefit can be substantial as in the case of the G/F variable.

To provide more insight in the usefulness of the proposed methods in comparison to

existing approaches the following subsection describes a simulation study where the true

underlying relationship is known and used for the assessment of the results.

4.2 Simulations: Pharmaceutical Dose-Response Trials

4.2.1 Data generation process

The evaluation of the proposed methods primarily follows Bornkamp et al. (2007), where

the simulation scenarios were selected so that they are realistic for Phase II trials (for

example, in terms of the dose-response shape, the number of doses and the signal to noise

ratio).

The data generation process always yields two data vectors: the vector x = (x1, . . . , xn)′

of observed predictor values (for example, doses) and the vector y = (y1, . . . , yn)′ of

observed response values. The vector x is restricted to take values from one of the

two equally spaced sequences a) (0, 2, 4, 6, 8) or b) (0, 1, 2, 3, 4, 5, 6, 7, 8). Each value is

observed with the same frequency, namely n
5
or n

9
times. Given the predictor values, the

responses are generated according to nine function profiles, that are shown in Figure 2.
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Figure 2: The nine function profiles used in the simulation study.

In comparison with Bornkamp et al. (2007) the logistic profile is left out as it is very

similar to sigmoid Emax, and four additional profiles are included, three of which have

a more pronounced unimodal shape (the two beta profiles and the peak profile) and an

exponential function, which is monotone, but convex. The actual values yi are simulated

by yi = f(xi) + εi, where εi ∼
i.i.d.
N (0, σ2) and the exact functional forms f are given in

Appendix E. The overall sample size and the standard deviation of the errors are set to

n = 250 and σ =
√

4.5, taken from Bornkamp et al. (2007). In the case of repeated

measurements at sequence (b), the samples size differs slightly: n = 252.

Altogether there are 18 combinations of those settings, see also Table H.2. For each of

those 18 scenarios 500 data sets are generated.
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4.2.2 Compared methods

Several parametric and nonparametric methods are compared using the above specified

simulation scheme. Regarding the proposed frequentist spline methods we compare meth-

ods with and without shape constraint and with and without penalization. We use cubic

splines and the knot sequence has by default g = 10 equidistant inner knots in [0, 8],

which is already large compared to the number of distinct x-values (5 or 9 respectively).

The second and third order difference penalty (see equation (1)) and the sigmoid Emax

penalty (see equation (3)) are included. When the unimodality constraint is active, we

additionally vary the way of choosing the tuning parameter. We either follow the REML

approach as described in Section 3.3 or we choose λ by "approximate REML", which

means that the unimodality constraint is not accounted for during tuning parameter op-

timization, resulting in the same tuning parameter as for the unconstrained models. Thus

there are two unpenalized models and three for each penalty.

We also fit four models based on Bernstein polynomials (as used, for example, in Wang

and Ghosh (2012)) by applying our penalized maximum likelihood procedure with g = 0

inner knots and degree k = 13 (which results in the same number of parameters as for the

other spline methods). This allows to evaluate the impact of a different selection of the

spline basis and to provide a direct comparison of cubic splines and polynomials. Again,

an unconstrained and a constrained model is fitted, each combined with the sigmoid Emax

penalty and, since the difference penalty does not make sense for coincident boundary

knots, with the ridge penalty
∑g

j=−k β
2
j .

Altogether there are 15 non-Bayesian procedures, 11 based on B-splines and 4 based

on Bernstein polynomials. Moreover, we consider three Bayesian methods applying the

proposed methodolody with 2nd and 3rd order difference and sigmoid Emax penalty. A

fourth Bayesian procedure uses the methodology of Gunn and Dunson (2005), where

one samples from the unconstrained model and transforms the coefficients into unimodal

sequences. The unconstrained samples are considered as a fifth Bayesian method in the

evaluation as well.

In addition to those 20 approaches, we include four models that do not make use of

splines: The two parametric methods are the sigmoid Emax and the beta model and we
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also include model averaging over different parametric models (linear, quadratic, Emax ,

sigmoid Emax , beta and exponential model), where the weights for averaging are calcu-

lated as described in Buckland et al. (1997) using the AIC criterion. The exact functional

forms of those models are given in Appendix F. The nonparametric method by Frisén

(1986) is a unimodal transformation of the response means at each dose, connected with

straight lines.

A short overview of all 24 methods is given in Table H.3 and a full description and imple-

mentation details can be found in Appendix F. All models are fitted to the 500 generated

data sets of each scenario. For the Bayesian analysis posterior means were calculated

based on 1000 posterior samples.

4.2.3 Evaluation methods

To compare the applied methods, four measures of mean relative loss (MRL), similar to

the ones in Morell, Otto, and Fried (2013), are computed. Here the loss of one method

in a certain simulation scenario is related to the loss of the best method in that scenario

and a mean value of the relative loss is obtained by averaging over a specified subset of

scenarios. The closer the MRL is to zero, the less we lose on average by applying this

method instead of the respective best methods.

The losses are based on certain performance metrics. MRL1 is based on the average

squared error in function prediction, that is, the mean of the squared differences between

the predicted and the true function values at the grid of x-values (0, 0.01, . . . , 7.99, 8),

while MRL2 and MRL3 capture the squared error in estimation of the modal value and

the mode location, which are interesting in dose-response analysis as estimators of the

maximum effect and the dose which yields it. Another characteristic often examined

in dose-response studies is the minimum effective dose (MED), the smallest observed

x-value that yields a certain response (see also Appendix G). The fourth loss measure

MRL4 is based on the percentage of simulated data sets, in which the MED was incorrectly

estimated. A more elaborate description of the performance measures can be found in

Appendix G.
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4.2.4 Results

The MRL values of the 24 methods are plotted in Figure 3. The subfigures in each row

correspond to the scenario subsets with 5 doses, R1 := {1, 3, . . . , 17}, and with 9 doses,

R2 := {2, 4, . . . , 18}. Means and standard deviations of the four measures of loss are also

given in Tables H.4 to H.11.

Except for the mean relative loss in estimation of the modal value (MRL2) over the

scenarios with 5 doses, where the model averaging performs best, always one of the con-

strained spline methods yields the smallest value of the loss measures MRL1 to MRL3.

More explicitly, with regard to mean relative loss in function estimation (MRL1) and in

estimation of the mode location (MRL3) the Bayesian methods with second and third

order penalty perform best.

Obviously the inclusion of the constraint mostly reduces the first three loss measures

both for unpenalized, penalized and Bayesian splines, and the constrained Bayesian ap-

proach always yields smaller values than the frequentists ones. The approximate REML

approach is most of the time better than the corresponding unconstrained spline and

worse than the exact REML constrained spline.

The Bayesian unimodal transformation method (Gunn and Dunson, 2005) has higher

loss MRL2 and MRL3 compared to our proposed Bayesian method and comparable loss

MRL1.

With regard to estimation of the MED (MRL4) the results look different. Here, the

beta model performs best (followed by the unpenalized constrained spline) and among

the penalized splines the performances of the unconstrained, the constrained (exact and

approximate REML) and the Bayesian versions are in reverse order. The Bayesian trans-

formation approach yields smaller values than the proposed Bayesian method. But re-

garding this fourth measure of loss, we should remark that in some scenarios even the

minimal relative frequency of incorrect detection (minimal loss) is very high, once as high

as 0.79. The methods presumably produce a smooth overall fit that is less beneficial for

estimation of the MED.

The best of the non-spline-methods for the performance measures MRL1 and MRL2 is

the model averaging technique and for MRL3 and MRL4 the beta model.
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Figure 3: Mean relative loss of the 24 methods in estimation of the function values

at the grid (0, 0.01, 0.02, . . . , 7.99, 8) (MRL1), of the modal value (MRL2), of the mode

location (MRL3) and of the minimum effective dose (MRL4). The rows correspond to

the four performance measures and the columns to the two subsets of the scenarios, over

which the mean is taken.
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Increasing the number of observed doses does not seem to make much difference for the

performance of the methods, except that MRL2 slightly grows for all models and MRL4

declines for the difference penalized models.

While the sigmoid Emax model itself is always one of the worst methods, the sigmoid

Emax penalized splines have smaller MRL. Regarding the Bernstein polynomials the sig-

moid Emax penalty performs mostly better than the ridge penalty and comparably to the

sigmoid Emax penalized B-spline methods, the loss in estimation of the modal value is

even slightly smaller.

5 Conclusions and Outlook

In this article we addressed unimodal regression and proposed a range of semiparamet-

ric shape-constrained spline regression techniques for this problem. We illustrated the

approximation power and the shape-preservation properties of splines using the char-

acteristics of Bernstein-Schoenberg splines and we showed that unimodality of a spline

function can easily be guaranteed by placing a linear constraint on the vector of B-spline

coefficients. Thus, maximum likelihood estimates can be found with quadratic program-

ming algorithms.

The problem of knot placement was addressed by choosing a large number of knots and

putting a penalty on the B-spline coefficients to avoid overfitting. Here the second and

third order difference penalties were used, which implicitly penalize against a linear and a

quadratic model. We generalized this approach to allow for penalization against arbitrary

parametric functions (for example, a sigmoid Emax model in dose-response applications).

All penalties favour some parametric model, but allow for departures from this model,

when the data suggest so. As an automatic choice of the tuning parameter for arbitrary

penalities we developed a restricted maximum likelihood (REML) estimate.

The proposed Bayesian approach relies on Monte Carlo random sampling. Since the joint

posterior distribution of the B-spline coefficients, the tuning parameter and the mode can

be factorized into the marginal posteriors, samples can be drawn by successively sam-

pling from the marginals. MCMC is only required for sampling a B-spline coefficient and
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a tuning parameter from their marginal, but the samples from the joint posterior are

independent.

When applying our methods to a real dose-response data set of McLaren et al. (1990),

we obtained evidence that penalized unimodal spline regression is to some extent able to

safeguard against model mis-specification.

A simulation study was conducted to compare the proposed methods among themselves

and to other frequently used regression models. The simulations showed that the combina-

tion of unimodal shape constraint and a penalty is promising, since adding the constraint

improves the fit. Averaging over the posterior mode distribution as in the Bayesian ap-

proach can improve the reproduction of the true function characteristics even further.

In this paper the prior for the mode was a uniform distribution on the different mode

locations. In many dose-response situations it is also sensible to split the prior prob-

ability equally between the case of monotonicity and the remaining mode locations,

which is another approach to include prior information, but safeguard against model

mis-specification.

The development of the proposed methods was motivated by dose-response analysis, but

the methodology is very general and can be used in many other areas of application.

We recommend to use penalized unimodal spline regression if a unimodal relationship

cannot be excluded a priori. If computation time is available, the Bayesian procedure is

preferable.

An interesting aspect for further research are confidence or credible regions. For the

Bayesian methods they are straightforward to obtain (and have been included in the

analysis of the real data set, see Figure 1), but for the maximum likelihood methods the

derivation of the estimator’s distribution under the shape constraint is not. Thus, boot-

strapping suggests itself, but there is still need to investigate its theoretical properties in

the presence of the shape constraint and its computational feasibility.

Furthermore, we expect the unimodal penalized spline regression to be large sample con-

sistent. A proof might be performed along the lines of Meyer (2012), but is beyond the

scope of this work. The author shows therein that the convergence rate for monotonicity

constrained penalized splines is at least that for unconstrained penalized splines, which

were shown to be consistent regression function estimators in Claeskens et al. (2009).
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A Proof of Lemma 1

Let f be a unimodal function on [0, 1] and T = (τj)
g+k+1
−k a knot sequence with distinct

inner knots and τ−k = . . . = τ0 = 0, τg+1 = . . . = τg+k+1 = 1.

We need to prove that the Bernstein-Schoenberg spline VTk f is a unimodal function.

Define β−k := f(τ ∗−k), . . . , βg := f(τ ∗g ). Then VTk f is given by VTk f(x) =

g∑
j=−k

βjNj,k+1(x),

which is a spline with B-spline coefficients βj. Since f is unimodal, the function values at

the knot averages and thus, the coefficients βj form a unimodal sequence, that is, there

exists an index m ∈ {−k, . . . , g} for which β−k ≤ . . . ≤ βm−1 ≤ βm ≥ βm+1 ≥ . . . ≥ βg.

The first derivative of VTk f is a spline function of degree k − 1 with B-spline coefficients

αj = k · βj − βj−1
τj+k − τj

, j = −k + 1, . . . , g (see, for example, Dierckx (1993), p. 14). As

we know that the inner knots are all distinct, we can conclude that τj+k − τj > 0 for

j = −k + 1, . . . , g. Thus, the sign of αj depends only on the sign of (βj − βj−1).

We have that ∃ m ∈ {−k, . . . , g}: β−k ≤ . . . ≤ βm−1 ≤ βm ≥ βm+1 ≥ . . . ≥ βg

⇒


αj ≥ 0 ∀ j, m = −k

αj ≥ 0 ∀ j ≤ m ∧ αj ≤ 0 ∀ j ≥ m+ 1, m /∈ {−k, g}

αj ≤ 0 ∀ j, m = g

i.e. the coefficient sequence of the derivative has at most one sign change. Hence, ac-

cording to the variation diminishing property, the derivative itself has at most one sign

change and VTk f is unimodal (including the special cases monotone increasing/decreasing

or constant).
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B Example: unimodal Bernstein-Schoenberg spline

of a non-unimodal function

Let g = 0 and k = 4, so that the knot sequence is τ−4 = . . . = τ0 = 0, τ1 = . . . = τ4 = 1

and the knot averages are τ ∗−4 = 0, τ ∗−3 = 0.25, τ ∗−2 = 0.5, τ ∗−1 = 0.75, τ ∗0 = 1. Further let

f̃ be a function with f̃(0) = 0, f̃(0.25) = 1, f̃(0.5) = 0, f̃(0.75) = 1, f̃(1) = 0.

Then the Bernstein-Schoenberg spline of f̃ is given by VTk f̃(x) = −8(x − 0.5)4 + 0.5 for

x ∈ [0, 1]. This is a unimodal function as it has only a single maximum at 0.5, but every

function f̃ with the specified function values is clearly not unimodal.
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C Derivation of equation (2)

Model:

y = Bβ + ε, B ∈ Rn×d,β ∈ Rd

y|β, λ ∼ N (Bβ, σ2In), σ2 > 0 known

β|λ ∼ NSm(β0, λ
−1Ω−), Ω− ∈ Rd×d,Sm := {β ∈ Rd : A′mβ ≥ 0}

λ ∼ p(λ)

where Ω− is the pseudo-inverse of Ω if r := rank(Ω) < d, and the regular inverse

otherwise.

Thus, the likelihood function is given by p(y|β, λ) ∝ exp
{
− 1

2σ2 (y −Bβ)′(y −Bβ)
}
.

For the (possibly improper) prior density of β we adopt the representation in Wood

(2011) using the pseudo-determinant | · |+ which is the product of all non-zero eigenvalues

of a square matrix, i.e.

p(β|λ) ∝ |λΩ|
1
2
+

cpriorλ

exp

{
−1

2
(β − β0)

′λΩ(β − β0)

}
ISm(β)

=
λ
r
2 |Ω|

1
2
+

cpriorλ

exp

{
−1

2
(β − β0)

′λΩ(β − β0)

}
ISm(β)

∝ λ
r
2

cpriorλ

exp

{
−1

2
(β − β0)

′λΩ(β − β0)

}
ISm(β),

where cpriorλ is the normalizing constant of the prior, that is, the probability of the

truncation set Sm under the N (β0, λ
−1Ω−)-distribution, and |Ω|+ denotes the pseudo-

determinant if r < d, and the regular determinant otherwise, which is independent of β

and λ.
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Then we derive the following for the joint posterior of β and λ:

p(β, λ|y)

=
p(β, λ,y)

p(y)

∝ p(β, λ,y)

= p(y|β, λ)p(β|λ)p(λ)

∝ exp

{
− 1

2σ2
(y −Bβ)′(y −Bβ)

}
λ
r
2

cpriorλ

exp

{
−1

2
(β − β0)

′λΩ(β − β0)

}
ISm(β) p(λ)

=
p(λ) λ

r
2

cpriorλ

exp

{
−1

2

(
1

σ2
(y −Bβ)′(y −Bβ) + (β − β0)

′λΩ(β − β0)

)}
ISm(β)

=
p(λ) λ

r
2

cpriorλ

exp

{
−1

2

(
(β − eλ)′E−1λ (β − eλ)− e′λE−1λ eλ + β′0λΩβ0

)}
ISm(β)

The last equality holds with Eλ =
(

1
σ2B

′B + λΩ
)−1 and e′λ = ( 1

σ2y
′B+λβ′0Ω)Eλ. This

can be seen as follows:

1

σ2
(y − Bβ)′(y −Bβ) + (β − β0)

′λΩ(β − β0)

=
1

σ2
y′y − 2

σ2
y′Bβ +

1

σ2
β′B′Bβ + β′λΩβ − 2β′0λΩβ + β′0λΩβ0

∝ β′
(

1

σ2
B′B + λΩ

)
︸ ︷︷ ︸

=:E−1
λ

β − 2

(
1

σ2
y′B + λβ′0Ω

)
β + β′0λΩβ0

= β′E−1λ β − 2

(
1

σ2
y′B + λβ′0Ω

)
Eλ︸ ︷︷ ︸

=:e′λ

E−1λ β + β′0λΩβ0

= β′E−1λ β − 2e′λE
−1
λ β + e′λE

−1
λ eλ − e

′
λE
−1
λ eλ + β′0λΩβ0

= (β − eλ)′E−1λ (β − eλ)− e′λE−1λ eλ + β′0λΩβ0

Thus we have

p(β, λ|y)

∝ p(λ) λ
r
2

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0λΩβ0

)
exp

{
−1

2
(β − eλ)′E−1λ (β − eλ)

}
ISm(β).
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Now equation (2) follows by integration over β:

p(λ|y)

=

∫
p(β, λ|y)dβ

∝
∫
Sm

p(λ) λ
r
2

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0λΩβ0

)
exp

{
−1

2
(β − eλ)′E−1λ (β − eλ)

}
dβ

=
p(λ) λ

r
2

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0λΩβ0

)∫
Sm

exp

{
−1

2
(β − eλ)′E−1λ (β − eλ)

}
dβ

∝ p(λ) λ
r
2

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0λΩβ0

)
×
∫
Sm

(2π)−
d
2 |Eλ|−

1
2 exp

{
−1

2
(β − eλ)′E−1λ (β − eλ)

}
dβ︸ ︷︷ ︸

:=cpostλ

=
p(λ) λ

r
2

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0λΩβ0

)
|Eλ|

1
2 cpostλ

= p(λ) λ
r
2 |Eλ|

1
2
cpostλ

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
λβ′0Ωβ0

)
,

where cpostλ is the probability of the truncation set Sm under the N (eλ,Eλ)-distribution,

which is the normalizing constant of the posterior of β since

p(β|λ,y)

=
p(β, λ|y)

p(λ|y)

∝
p(λ) λ

r
2

cpriorλ

exp
(
1
2
e′λE

−1
λ eλ − 1

2
β′0λΩβ0

)
exp

{
−1

2
(β − eλ)′E−1λ (β − eλ)

}
ISm(β)

p(λ) λ
r
2 |Eλ|

1
2
cpostλ

cpriorλ

exp
(
1
2
e′λE

−1
λ eλ − 1

2
λβ′0Ωβ0

)
∝
|Eλ|−

1
2 exp

{
−1

2
(β − eλ)′E−1λ (β − eλ)

}
ISm(β)

cpostλ

which is proportional to the density of the N (eλ,Eλ)-distribution truncated onto Sm.
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D Derivation of the posterior distributions in the

Bayes model

Model:

y = Bβ + ε, B ∈ Rn×d,β ∈ Rd

y|β, λ,m ∼ N (Bβ, σ2In), σ2 > 0 known

β|λ,m ∼ NSm(β0, Ω̃
−1), Ω̃ ∈ Rd×d,Sm := {β ∈ Rd : A′mβ ≥ 0}

(λ,m) ∼ p(λ,m)

Likelihood and prior density for β:

p(y|β, λ,m) ∝ exp

{
− 1

2σ2
(y −Bβ)′(y −Bβ)

}
p(β|λ,m) ∝ |Ω̃| 12

cpriorλ

exp

{
−1

2
(β − β0)

′Ω̃(β − β0)

}
ISm(β),

where cpriorλ is the normalizing constant of the prior, that is, the probability of the trun-

cation set Sm under the N (β0, Ω̃
−1)-distribution.

Then we derive the following for the joint posterior of β and λ and m:

p(β, λ,m|y)

=
p(β, λ,m,y)

p(y)

∝ p(β, λ,m,y)

= p(y|β, λ,m)p(β|λ,m)p(λ,m)

∝ exp

{
− 1

2σ2
(y −Bβ)′(y −Bβ)

}
|Ω̃| 12
cpriorλ

exp

{
−1

2
(β − β0)

′Ω̃(β − β0)

}
ISm(β) p(λ,m)

=
p(λ,m) |Ω̃| 12

cpriorλ

exp

{
−1

2

(
1

σ2
(y −Bβ)′(y −Bβ) + (β − β0)

′Ω̃(β − β0)

)}
ISm(β)

=
p(λ,m) |Ω̃| 12

cpriorλ

exp

{
−1

2

(
(β − eλ)′E−1λ (β − eλ)− e′λE−1λ eλ + β′0Ω̃β0

)}
ISm(β)

The last equality holds with Eλ =
(

1
σ2B

′B + Ω̃
)−1

and e′λ = ( 1
σ2y

′B + β′0Ω̃)Eλ analo-

gous to Appendix C.
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Thus we have

p(β, λ,m|y)

∝ p(λ,m) |Ω̃| 12
cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0Ω̃β0

)
exp

{
−1

2
(β − eλ)′E−1λ (β − eλ)

}
ISm(β).

Now by integration over β we obtain:

p(λ,m|y)

=

∫
p(β, λ,m|y)dβ

∝
∫
Sm

p(λ,m) |Ω̃| 12
cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0Ω̃β0

)
exp

{
−1

2
(β − eλ)′E−1λ (β − eλ)

}
dβ

=
p(λ,m) |Ω̃| 12

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0Ω̃β0

)∫
Sm

exp

{
−1

2
(β − eλ)′E−1λ (β − eλ)

}
dβ

∝ p(λ,m) |Ω̃| 12
cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0Ω̃β0

)
×
∫
Sm

(2π)−
d
2 |Eλ|−

1
2 exp

{
−1

2
(β − eλ)′E−1λ (β − eλ)

}
dβ

=
p(λ,m) |Ω̃| 12

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0Ω̃β0

)
|Eλ|

1
2 cpostλ

= p(λ,m) |Ω̃|
1
2 |Eλ|

1
2
cpostλ

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0Ω̃β0

)
=: w(λ,m),

where cpostλ is again the probability of the truncation set Sm under the N (eλ,Eλ)-

distribution, which is the normalizing constant of the posterior of β since

p(β|λ,m,y)

=
p(β, λ,m|y)

p(λ,m|y)

∝
p(λ,m) |Ω̃|

1
2

cpriorλ

exp
(

1
2
e′λE

−1
λ eλ − 1

2
β′0Ω̃β0

)
exp

{
−1

2
(β − eλ)′E−1λ (β − eλ)

}
ISm(β)

p(λ,m) |Ω̃| 12 |Eλ|
1
2
cpostλ

cpriorλ

exp
(

1
2
e′λE

−1
λ eλ − 1

2
β′0Ω̃β0

)
∝
|Eλ|−

1
2 exp

{
−1

2
(β − eλ)′E−1λ (β − eλ)

}
ISm(β)

cpostλ

which is proportional to the density of the N (eλ,Eλ)-distribution truncated onto Sm and

thus β|λ,m,y ∼ NSm(eλ,Eλ).
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Finally, the posterior distribution of the mode is p(m = m∗|y) =
∫
p(λ,m∗|y)dλ =∫

w(λ,m∗)dλ∑g
j=−k

∫
w(λ, j)dλ

, where each integral can be approximated using the Riemann sum

R∑
r=1

(λr − λr−1)
w(λr,m

∗) + w(λr−1,m
∗)

2
over the grid (λ0, . . . , λR), and the posterior of

the tuning parameter is p(λ|m,y) =
p(λ,m|y)

p(m|y)
.
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E Functional forms of the nine function profiles used

in the simulation study

1. Flat: f(x) ≡ 0

2. Linear: f(x) = 1.65
8
x · I[0,8](x)

3. Umbrella: f(x) = 1.65
(
1
3
x− 1

36
x2
)
· I[0,8](x)

4. Emax: f(x) =
1.81x

0.79 + x
· I[0,8](x)

5. sigmoid Emax: f(x) =
1.7x5

45 + x5
· I[0,8](x)

6. Beta 1: f(x) = 1.7 · Be(0.8, 2.5)
(
x
9.6

)0.8 (
1− x

9.6

)2.5 · I[0,8](x)

7. Beta 2: f(x) = 1.7 · Be(2, 1.8)
(
x
9.6

)2 (
1− x

9.6

)1.8 · I[0,8](x)

8. Exponential: f(x) = 0.123 · (exp(x
3
)− 1) · I[0,8](x)

9. Peak: f(x) = 1.7 · ϕ(x|3.3, 0.25)

ϕ(0|0, 0.25)
· I[0,8](x),

where Be(γ1, γ2) =
(γ1 + γ2)

γ1+γ2

γγ11 γ
γ2
2

for γ1, γ2 > 0 and ϕ(x|µ, σ) =
1√
2πσ

exp

{
−(x− µ)2

2σ2

}
for x, µ ∈ R, σ > 0.
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F Details on the fitting procedures

Abbreviations for the 24 methods compared in the simulation study and a short overview

of their characteristics are given in Table H.3. A more detailed description is given in

this section.

The methods can be divided into 20 semiparametric methods, 16 of which are based on

B-splines and 4 on Bernstein polynomials, one nonparametric method and 3 methods

based on parametric models.

For all spline-based methods we use cubic splines (k = 3) and the knot sequences are

chosen as follows: By default, there are g = 10 equidistant inner knots in [0, 8] and four

coincident knots at each boundary, which yields a knot sequence of length g+2k+2 = 18

and a parameter vector of length d = g + k + 1 = 14. Only for the difference penalized

methods the knots are equidistant also beyond the boundaries. In the case of the unpe-

nalized splines (models "un" and "cn") the number of estimable parameters (including σ)

is bounded by the number u of distinct x-values in the respective data set, which is 5 or

9, respectively. Thus, the knot sequence is shorter here, the number of inner knots equals

g = u− 5, which is 0 or 4, respectively. To avoid data scaling effects, the observations y

are projected onto [−1, 1] and the fitted values are transformed back.

The 11 frequentist spline regression methods are fitted using the function unireg in R

package unimodal. We fit two unpenalized maximum likelihood spline models, one un-

constrained (model "un") and one constrained (model "cn"). The same is done for second

and third order difference (models "ud2", "cd2", "ud3", "cd3") and sigmoid Emax pe-

nalized splines (models "us" and "cs"). When the unimodality constraint is active, we

additionally vary the way of choosing the tuning parameter. The models "cd2", "cd3"

and "cs" follow the REML approach as described in Section 2.3, while the models "cda2",

"cda3" and "csa" choose λ by "approximate REML", which means that the unimodality

constraint is not accounted for during tuning parameter optimization, resulting in the

same tuning parameter as for the unconstrained models "ud2", "ud3" and "us".

The Bayesian methods "cdb2", "cdb3" and "csb" follow the procedure described in Sec-

tion 2.5 with second and third order difference penalty and sigmoid Emax penalty. We use

independent priors for the tuning parameter and the mode, that is p(λ,m) = p(λ)p(m).
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The prior for λ is the Jeffreys prior p(λ) ∝ 1
λ
, which is restricted to the interval [e−3, e10] ≈

[0.05, 22026.47] due to numerical problems that occur for very small or large values of λ

and because an improper prior on the interval (0,∞) might result in an improper poste-

rior. The prior distribution of the mode is simply the uniform distribution on all possible

values, p(m) = 1
d
∀m ∈ {−k, . . . , g}.

The variance σ2
v in the proper NSm(β0, Ω̃

−1)-prior for β is chosen to be 5, which can be

thought of as uninformative since the βi approximately also lie in [−1, 1], the range of

the transformed y-values (see the control polygon characteristic in Section 2.4).

The integrals
∫
w(λ|j)dλ, j ∈ {−k, . . . , g} required for determining the posterior mode

distribution, p(m|y), are approximated by a Riemann sum using a grid of 200 values

between e−3 and e10. A sample from the marginal posterior of λ is drawn using an R

implementation of the slice sampler by Neal (2003). For computational efficiency updat-

ing was performed on log(λ)-scale and by taking samples from an approximation of the

likelihood, i.e., a smoothing spline of w(λ|m) fitted with the R function smooth.spline

on same grid as before.

Samples from p(β|λ,m,y), that is from the truncated multivariate normal distribution

NSm(eλ,Eλ), are obtained using an R implementation of the inverse Bayes formulae sam-

pler by Yu and Tian (2011).

A fourth Bayesian method, "trafo", uses the second order difference penalty and gener-

ates samples of the tuning parameter and the spline coefficients from the unconstrained

spline model. The sampled coefficient vectors are subsequently mapped onto the space of

unimodal vectors in Rd using the transformation procedure described in Gunn and Dun-

son (2005), formulae 2.2 and 2.3. The unconstrained samples (before transformation) are

also used as the fifth Bayesian method "udb".

For all Bayesian methods the resulting Monte Carlo sample from the joint posterior is of

size 1000 and the parameters are estimated by their posterior means.

We also fit constrained and unconstrained Bernstein polynomials by applying our max-

imum likelihood procedure with g = 0 inner knots and degree k = 13 (which results in

the same number of parameters as for the other spline methods). We penalize with the

sigmoid Emax penalty (models "uBPs" and "cBPs") and, since the difference penalty does

not make sense for coincident boundary knots, with the ridge penalty
∑g

j=−k β
2
j (models
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"uBPr" and "cBPr")).

The model averaging method "modAve" takes a weighted average of the dose-response

models "linear", "quadratic", "emax", "sigEmax", "betaMod" and "exponential",

fitted with the R function fitDRModel in R package DoseFinding (Bornkamp et al.,

2012). The weights for averaging are the models’ relative likelihood factors as described

in Buckland et al. (1997). The functional forms of those models are as follows:

1. linear: f(x) = E0 + γx

2. quadratic: f(x) = E0 + γ1x+ γ2x
2

3. Emax : f(x) = E0 + E1
x

ED50 + x

4. sigmoid Emax : f(x) = E0 + E1
xh

EDh
50 + xh

5. beta: f(x) = E0 + Emax · Be(γ1, γ2)
(

x
scal

)γ1 (1− x
scal

)γ2
6. exponential: f(x) = E0 + E1 ·

(
exp

(
x
γ

)
− 1
)

where Be(γ1, γ2) =
(γ1 + γ2)

γ1+γ2

γγ11 γ
γ2
2

for γ1, γ2 > 0 and scal = 9.6 is a fixed dose scaling

parameter.

The models "sigE" and "beta" are the stand-alone parametric sigmoid Emax and the beta

model and are also fitted using the R function fitDRModel.

The nonparametric method by Frisén (1986) (model "frisen") is a unimodal transforma-

tion of the response means at each dose, connected with straight lines. It is fitted by

calculating the means of y-values with same x-value and applying the R function ufit()

in R package Iso (Turner, 2011) to this sequence of means.
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G Measures of mean relative loss computed for eval-

uation of the simulation study

To compare the methods, that have been applied in the simulation study, several evalu-

ation characteristics have been computed.

First of all, the average squared error (ASE) in function prediction is assessed, that is,

the mean of the squared differences between the predicted and the true function values

at specified points z = (z1, . . . , zη) on the x-axis: ASE(f̂ρ,ν ; z) =
1

η

η∑
i=1

(f̂ρ,ν(zi)−fρ(zi))2,

where fρ is the function of scenario ρ ∈ {1, . . . , 18} and f̂ρ,ν its estimate using method

ν ∈ {1, . . . , 24}.

We obtain one value ASEκ(f̂ρ,ν ; z) of this measure for each data set κ = 1, . . . , 500. To

summarize the performance of method ν over all data sets of scenario ρ, we calculate the

mean ASE-value and define a measure of loss:

L1(ρ, ν) =
1

500

500∑
κ=1

ASEκ(f̂ρ,ν ; z = (0, 0.01, . . . , 8)), ν = 1, . . . , 24, ρ = 1, . . . , 18.

Other aspects for comparison of the methods are the modal value max
x∈[0,8]

f̂ρ,ν(x) and the

location mod(f̂ρ,ν) = arg max
x∈[0,8]

f̂ρ,ν(x) of the mode, which are interesting, for example, in

dose-response analysis as they describe the maximum effect of a drug and the dose level

which yields it.

Both values are determined with the help of the function optimize() in R package

stats and for both characteristics we can define a mean performance over all data

sets of one scenario as above. In the case of the modal value we execute the above

calculation steps of the mean ASE with z = (z1) = mod(f̂ρ,ν) and define the loss

L2(ρ, ν) =
1

500

500∑
κ=1

ASEκ(f̂ρ,ν ;mod(f̂ρ,ν)) for ν = 1, . . . , 24.

In the case of the mode location we also calculate the mean of a squared error as a mea-

sure of loss, namely L3(ρ, ν) =
1

500

500∑
κ=1

(mod(f̂ρ,ν) − mod(fρ))
2. For scenarios ρ = 1, 2

this loss is not defined, because a true mode location mod(fρ) does not exist for the flat

function profile.

For dose-response applications, another important characteristic is the minimum effective
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dose (MED), that is, the smallest (observed) predictor value that yields a response of at

least f(0) + δ for a given δ ≥ 0. Here δ = 1.3 as in Bornkamp et al. (2007) is used. The

loss L4(ρ, ν) in this context is chosen to be the percentage of data sets of scenario ρ, in

which the MED was incorrectly estimated with method ν (which is already a summary

of all data sets of one scenario).

Since comparing the 24 methods over 18 data scenarios is still quite unmanageable, we

follow Morell, Otto, and Fried (2013) by defining a relative loss (RL) of method ν in

scenario ρ:

RL`(ρ, ν) =
L`(ρ, ν)− L`(ρ, ∗)

ψ`(ρ)
, ` = 1, . . . , 4, ρ = 1, . . . , 18, ν = 1, . . . , 24,

where L`(ρ, ∗) = min
ν=1,...,24

L`(ρ, ν) is the minimal loss value achieved in scenario ρ by one

of the compared methods. The standardization factor ψ`(ρ) equals L`(ρ, ∗) for ` = 1, 2.

Regarding the losses L3 and L4 we face the problem that there are scenarios for which the

best method has zero loss. To avoid the problem of division by zero the standardization

factors are chosen to be ψ3(ρ) = max{mod(fρ), 8 − mod(fρ)}, which is the maximal

possible error since mod(f̂ρ,ν) and mod(fρ) both lie in [0, 8], and ψ4(ρ) = 1, which is also

the maximal possible error.

The closer RL`(ρ, ν) is to zero, the less we lose when applying method ν instead of the

best method in scenario ρ.

Finally we obtain an even more aggregated performance measure for all four criteria when

we take the mean of the relative loss of method ν over all scenarios or a specified subset

R of scenarios:

MRL`(ν) =
1

|R|
∑
ρ∈R

RL`(ρ, ν), ` = 1, . . . , 4, ν = 1, . . . , 24.

In the main article we show the mean relative loss for the subsets R1 := {1, 3, . . . , 17}

(scenarios with 5 doses) and R2 := {2, 4, . . . , 18} (scenarios with 9 doses). Notice again

that the flat scenarios (ρ = 1, 2) have to be left out in the case of loss L3.
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H Additional tables

Table H.1: Porcine somatotropin (PST) dosages [mg/pig/day] and least squares means

and standard deviations of the four performance variables from McLaren et al. (1990).

ADG = average daily gain of weight [kg/d], Age = age at 103.5 kg [d], G/F = gain-to-feed

ratio, ADF = average daily feed consumption [kg/pig/d].

PST dosage

0 1.5 3 6 9

ADG 0.751 (0.038) 0.842 (0.046) 0.881 (0.029) 0.897 (0.029) 0.907 (0.050)

Age 183 (3) 178 (4) 173 (2) 172 (2) 170 (4)

G/F 0.266 (0.009) 0.320 (0.009) 0.341 (0.006) 0.365 (0.006) 0.356 (0.009)

ADF 2.940 (0.050) 2.680 (0.060) 2.570 (0.040) 2.370 (0.040) 2.250 (0.060)
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Table H.2: The 18 scenarios used for data generation in the simulation study.

no. x-values sample size σ profile

1 (0,2,4,6,8) 250
√

4.5 Flat

2 (0,1,2,3,4,5,6,7,8) 252
√

4.5 Flat

3 0,2,4,6,8) 250
√

4.5 Linear

4 (0,1,2,3,4,5,6,7,8) 252
√

4.5 Linear

5 (0,2,4,6,8) 250
√

4.5 Quadratic

6 (0,1,2,3,4,5,6,7,8) 252
√

4.5 Quadratic

7 (0,2,4,6,8) 250
√

4.5 Emax

8 (0,1,2,3,4,5,6,7,8) 252
√

4.5 Emax

9 (0,2,4,6,8) 250
√

4.5 sigmoid Emax

10 (0,1,2,3,4,5,6,7,8) 252
√

4.5 sigmoid Emax

11 (0,2,4,6,8) 250
√

4.5 Beta 1

12 (0,1,2,3,4,5,6,7,8) 252
√

4.5 Beta 1

13 (0,2,4,6,8) 250
√

4.5 Beta 2

14 (0,1,2,3,4,5,6,7,8) 252
√

4.5 Beta 2

15 (0,2,4,6,8) 250
√

4.5 Exponential

16 (0,1,2,3,4,5,6,7,8) 252
√

4.5 Exponential

17 (0,2,4,6,8) 250
√

4.5 Peak

18 (0,1,2,3,4,5,6,7,8) 252
√

4.5 Peak
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Table H.3: The 24 models used in the simulation study. The table gives an abbreviation for each model and a short description of
it. Additionally - depending on the model type - information is given about the number of inner knots, if the unimodality constraint
was active or not, the type of the penalty, and the way, in which the tuning parameter and the mode location were determined.

Abbr. Model type Inner knots Constraint Penalty Estimation of λ Mode estimation

un cubic spline g = u− 5 no no – –
cn cubic spline g = u− 5 yes no – minizing RSS

ud2 cubic spline g = 10 no difference (2nd) REML –
cd2 cubic spline g = 10 yes difference (2nd) REML minizing RSS
cda2 cubic spline g = 10 yes difference (2nd) approx. REML minizing RSS

ud3 cubic spline g = 10 no difference (3rd) REML –
cd3 cubic spline g = 10 yes difference (3rd) REML minizing RSS
cda3 cubic spline g = 10 yes difference (3rd) approx. REML minizing RSS

us cubic spline g = 10 no sigmoid Emax REML –
cs cubic spline g = 10 yes sigmoid Emax REML minizing RSS
csa cubic spline g = 10 yes sigmoid Emax approx. REML minizing RSS

udb cubic spline (Bayes) g = 10 no difference (2nd) posterior mean –
cdb2 cubic spline (Bayes) g = 10 yes difference (2nd) posterior mean posterior mean
cdb3 cubic spline (Bayes) g = 10 yes difference (3rd) posterior mean posterior mean
csb cubic spline (Bayes) g = 10 yes sigmoid Emax posterior mean posterior mean
trafo cubic spline (Bayes) g = 10 yes difference (2nd) posterior mean transformation

uBPr Bernstein polyn. (k = 13) g = 0 no ridge REML –
cBPr Bernstein polyn. (k = 13) g = 0 yes ridge REML minizing RSS
uBPs Bernstein polyn. (k = 13) g = 0 no sigmoid Emax REML –
cBPs Bernstein polyn. (k = 13) g = 0 yes sigmoid Emax REML minizing RSS

sigE sigmoid Emax – – – – –
beta beta – – – – –

modAve model averaging – – – – –
frisen Frisén (1986) – yes – – minizing RSS
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Table H.4: Mean and standard deviation (in brackets) of the average squared error in function prediction, ASEκ(f̂ρ,ν ; z =
(0, 0.01, . . . , 8), for all methods ν = 1, . . . , 24 and for all scenarios with 5 doses (% ∈ {1, 3, . . . , 17}). Mean and standard deviation
are calculated over all κ = 1, . . . , 500 generated data sets. Thus the mean values are identical to the values of the first measure of
loss, L1(ρ, ν), defined in Appendix G.

Scen1 Scen3 Scen5 Scen7 Scen9 Scen11 Scen13 Scen15 Scen17
un 0.06 (0.05) 0.06 (0.05) 0.06 (0.05) 0.07 (0.05) 0.06 (0.05) 0.07 (0.05) 0.07 (0.05) 0.06 (0.06) 0.21 (0.07)
cn 0.04 (0.04) 0.05 (0.04) 0.05 (0.04) 0.07 (0.05) 0.06 (0.04) 0.06 (0.05) 0.06 (0.05) 0.04 (0.05) 0.18 (0.05)
ud2 0.03 (0.04) 0.04 (0.04) 0.05 (0.04) 0.07 (0.05) 0.06 (0.04) 0.08 (0.06) 0.07 (0.05) 0.05 (0.05) 0.19 (0.05)
cd2 0.03 (0.03) 0.04 (0.04) 0.05 (0.04) 0.06 (0.05) 0.06 (0.04) 0.08 (0.06) 0.07 (0.05) 0.05 (0.04) 0.18 (0.04)
cda2 0.03 (0.03) 0.04 (0.04) 0.05 (0.04) 0.07 (0.05) 0.06 (0.04) 0.08 (0.05) 0.07 (0.05) 0.05 (0.04) 0.18 (0.05)
udb 0.04 (0.03) 0.04 (0.04) 0.05 (0.04) 0.07 (0.05) 0.05 (0.04) 0.08 (0.06) 0.07 (0.05) 0.05 (0.05) 0.19 (0.06)
cdb2 0.03 (0.03) 0.04 (0.04) 0.04 (0.03) 0.05 (0.04) 0.06 (0.04) 0.10 (0.06) 0.08 (0.05) 0.05 (0.05) 0.17 (0.04)
trafo 0.03 (0.03) 0.04 (0.04) 0.05 (0.04) 0.06 (0.05) 0.05 (0.03) 0.08 (0.05) 0.07 (0.05) 0.05 (0.04) 0.18 (0.04)
ud3 0.05 (0.04) 0.05 (0.05) 0.05 (0.04) 0.07 (0.05) 0.06 (0.04) 0.08 (0.06) 0.07 (0.05) 0.06 (0.05) 0.20 (0.07)
cd3 0.04 (0.03) 0.05 (0.04) 0.05 (0.04) 0.07 (0.04) 0.06 (0.04) 0.07 (0.05) 0.07 (0.05) 0.05 (0.05) 0.18 (0.05)
cda3 0.04 (0.04) 0.05 (0.04) 0.05 (0.04) 0.07 (0.05) 0.06 (0.04) 0.07 (0.05) 0.07 (0.05) 0.05 (0.05) 0.19 (0.05)
cdb3 0.04 (0.03) 0.05 (0.04) 0.05 (0.04) 0.05 (0.04) 0.05 (0.04) 0.07 (0.05) 0.07 (0.05) 0.05 (0.05) 0.18 (0.05)
us 0.04 (0.04) 0.06 (0.05) 0.07 (0.06) 0.10 (0.07) 0.06 (0.04) 0.08 (0.06) 0.09 (0.06) 0.06 (0.05) 0.19 (0.05)
cs 0.04 (0.04) 0.06 (0.05) 0.07 (0.06) 0.10 (0.07) 0.06 (0.04) 0.09 (0.06) 0.09 (0.06) 0.06 (0.05) 0.19 (0.05)
csu 0.04 (0.04) 0.06 (0.05) 0.07 (0.06) 0.10 (0.07) 0.06 (0.04) 0.08 (0.06) 0.09 (0.06) 0.06 (0.05) 0.19 (0.05)
csb 0.04 (0.04) 0.06 (0.05) 0.07 (0.06) 0.10 (0.07) 0.06 (0.04) 0.10 (0.06) 0.09 (0.06) 0.06 (0.05) 0.18 (0.05)
uBPr 0.08 (0.08) 0.14 (0.08) 0.14 (0.09) 0.11 (0.08) 0.12 (0.08) 0.13 (0.09) 0.15 (0.11) 0.13 (0.07) 0.22 (0.09)
cBPr 0.08 (0.08) 0.13 (0.08) 0.13 (0.08) 0.09 (0.07) 0.12 (0.08) 0.13 (0.08) 0.16 (0.10) 0.12 (0.08) 0.23 (0.10)
uBPs 0.04 (0.04) 0.07 (0.06) 0.07 (0.06) 0.07 (0.05) 0.06 (0.05) 0.11 (0.08) 0.12 (0.08) 0.06 (0.06) 0.19 (0.06)
cBPs 0.04 (0.04) 0.07 (0.06) 0.07 (0.06) 0.07 (0.05) 0.06 (0.05) 0.10 (0.06) 0.11 (0.07) 0.06 (0.06) 0.19 (0.05)
sigE 0.04 (0.04) 0.07 (0.06) 0.08 (0.07) 0.12 (0.09) 0.06 (0.04) 0.23 (0.08) 0.14 (0.08) 0.06 (0.05) 0.19 (0.05)
beta 0.07 (0.07) 0.06 (0.05) 0.07 (0.06) 0.07 (0.06) 0.06 (0.05) 0.13 (0.15) 0.07 (0.05) 0.06 (0.07) 0.22 (0.09)
frisen 0.03 (0.03) 0.05 (0.04) 0.05 (0.04) 0.07 (0.05) 0.05 (0.04) 0.38 (0.06) 0.12 (0.05) 0.05 (0.05) 0.19 (0.05)

modAve 0.03 (0.04) 0.04 (0.05) 0.05 (0.05) 0.07 (0.05) 0.06 (0.04) 0.13 (0.15) 0.07 (0.05) 0.05 (0.05) 0.19 (0.06)
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Table H.5: Mean and standard deviation (in brackets) of the average squared error in function prediction, ASEκ(f̂ρ,ν ; z =
(0, 0.01, . . . , 8), for all methods ν = 1, . . . , 24 and for all scenarios with 9 doses (% ∈ {2, 4, . . . , 18}). Mean and standard deviation
are calculated over all κ = 1, . . . , 500 generated data sets. Thus the mean values are identical to the values of the first measure of
loss, L1(ρ, ν), defined in Appendix G.

Scen2 Scen4 Scen6 Scen8 Scen10 Scen12 Scen14 Scen16 Scen18
un 0.15 (0.08) 0.16 (0.08) 0.14 (0.08) 0.15 (0.08) 0.15 (0.08) 0.15 (0.08) 0.14 (0.08) 0.15 (0.08) 0.21 (0.08)
cn 0.08 (0.05) 0.07 (0.05) 0.08 (0.05) 0.08 (0.05) 0.08 (0.05) 0.09 (0.05) 0.08 (0.05) 0.06 (0.05) 0.16 (0.06)
ud2 0.04 (0.04) 0.04 (0.04) 0.05 (0.04) 0.06 (0.04) 0.06 (0.04) 0.07 (0.05) 0.06 (0.05) 0.05 (0.04) 0.17 (0.04)
cd2 0.04 (0.03) 0.04 (0.04) 0.05 (0.04) 0.05 (0.03) 0.06 (0.04) 0.07 (0.05) 0.06 (0.04) 0.05 (0.04) 0.16 (0.03)
cda2 0.04 (0.04) 0.04 (0.04) 0.05 (0.04) 0.06 (0.04) 0.06 (0.04) 0.07 (0.04) 0.06 (0.04) 0.05 (0.04) 0.16 (0.04)
udb 0.04 (0.04) 0.04 (0.04) 0.05 (0.04) 0.06 (0.04) 0.06 (0.04) 0.07 (0.05) 0.06 (0.04) 0.05 (0.04) 0.16 (0.04)
cdb2 0.03 (0.03) 0.04 (0.04) 0.05 (0.03) 0.05 (0.03) 0.06 (0.04) 0.08 (0.05) 0.07 (0.04) 0.05 (0.04) 0.16 (0.03)
trafo 0.04 (0.04) 0.04 (0.03) 0.05 (0.03) 0.05 (0.03) 0.05 (0.04) 0.07 (0.04) 0.06 (0.04) 0.04 (0.04) 0.15 (0.03)
ud3 0.05 (0.04) 0.06 (0.04) 0.05 (0.04) 0.06 (0.04) 0.06 (0.04) 0.07 (0.04) 0.06 (0.04) 0.05 (0.04) 0.17 (0.05)
cd3 0.05 (0.04) 0.05 (0.04) 0.05 (0.04) 0.06 (0.04) 0.06 (0.04) 0.06 (0.04) 0.06 (0.04) 0.04 (0.04) 0.16 (0.04)
cda3 0.05 (0.04) 0.05 (0.04) 0.05 (0.04) 0.06 (0.04) 0.06 (0.04) 0.06 (0.04) 0.06 (0.04) 0.04 (0.04) 0.16 (0.04)
cdb3 0.04 (0.04) 0.05 (0.04) 0.05 (0.04) 0.04 (0.03) 0.05 (0.04) 0.06 (0.04) 0.06 (0.04) 0.04 (0.04) 0.16 (0.03)
us 0.05 (0.04) 0.07 (0.05) 0.06 (0.04) 0.06 (0.05) 0.06 (0.04) 0.09 (0.05) 0.09 (0.05) 0.06 (0.05) 0.17 (0.04)
cs 0.05 (0.04) 0.07 (0.05) 0.06 (0.04) 0.06 (0.04) 0.06 (0.04) 0.09 (0.05) 0.08 (0.04) 0.06 (0.05) 0.17 (0.04)
csu 0.05 (0.04) 0.07 (0.05) 0.06 (0.04) 0.06 (0.04) 0.06 (0.04) 0.09 (0.05) 0.09 (0.04) 0.06 (0.05) 0.17 (0.04)
csb 0.06 (0.04) 0.07 (0.05) 0.06 (0.04) 0.06 (0.04) 0.06 (0.04) 0.10 (0.05) 0.08 (0.04) 0.06 (0.05) 0.17 (0.04)
uBPr 0.08 (0.08) 0.14 (0.08) 0.13 (0.08) 0.13 (0.08) 0.13 (0.09) 0.15 (0.08) 0.14 (0.09) 0.13 (0.08) 0.20 (0.08)
cBPr 0.08 (0.08) 0.11 (0.08) 0.11 (0.07) 0.09 (0.06) 0.11 (0.08) 0.12 (0.07) 0.12 (0.08) 0.12 (0.07) 0.20 (0.08)
uBPs 0.05 (0.04) 0.07 (0.06) 0.07 (0.05) 0.06 (0.05) 0.06 (0.05) 0.11 (0.07) 0.12 (0.06) 0.06 (0.05) 0.18 (0.06)
cBPs 0.05 (0.04) 0.07 (0.06) 0.07 (0.05) 0.06 (0.04) 0.06 (0.05) 0.10 (0.06) 0.10 (0.06) 0.06 (0.05) 0.17 (0.04)
sigE 0.05 (0.04) 0.07 (0.05) 0.07 (0.05) 0.07 (0.05) 0.06 (0.05) 0.20 (0.10) 0.12 (0.05) 0.06 (0.05) 0.18 (0.04)
beta 0.06 (0.05) 0.06 (0.05) 0.06 (0.04) 0.06 (0.04) 0.06 (0.04) 0.07 (0.06) 0.06 (0.05) 0.05 (0.05) 0.18 (0.05)
frisen 0.04 (0.04) 0.07 (0.04) 0.06 (0.04) 0.06 (0.04) 0.06 (0.04) 0.30 (0.04) 0.11 (0.04) 0.06 (0.04) 0.17 (0.03)

modAve 0.04 (0.04) 0.05 (0.04) 0.05 (0.04) 0.05 (0.04) 0.06 (0.04) 0.08 (0.06) 0.06 (0.05) 0.05 (0.04) 0.17 (0.04)
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Table H.6: Mean and standard deviation (in brackets) of the squared error in estimation of the maximum value, ASEκ(f̂ρ,ν ; z =

mod(f̂ρ,ν)), for all methods ν = 1, . . . , 24 and for all scenarios with 5 doses (% ∈ {1, 3, . . . , 17}). Mean and standard deviation are
calculated over all κ = 1, . . . , 500 generated data sets. Thus the mean values are identical to the values of the second measure of
loss, L2(ρ, ν), defined in Appendix G.

Scen1 Scen3 Scen5 Scen7 Scen9 Scen11 Scen13 Scen15 Scen17
un 0.12 (0.12) 0.07 (0.10) 0.06 (0.09) 0.07 (0.10) 0.08 (0.10) 0.06 (0.09) 0.06 (0.09) 0.09 (0.13) 1.97 (0.55)
cn 0.09 (0.10) 0.07 (0.10) 0.06 (0.08) 0.06 (0.08) 0.07 (0.09) 0.05 (0.08) 0.06 (0.08) 0.09 (0.13) 2.13 (0.55)
ud2 0.09 (0.13) 0.11 (0.17) 0.07 (0.10) 0.10 (0.15) 0.15 (0.17) 0.08 (0.11) 0.08 (0.10) 0.18 (0.27) 2.20 (0.62)
cd2 0.06 (0.09) 0.10 (0.12) 0.05 (0.07) 0.05 (0.09) 0.08 (0.12) 0.10 (0.13) 0.10 (0.12) 0.11 (0.16) 2.33 (0.57)
cda2 0.08 (0.12) 0.12 (0.18) 0.06 (0.09) 0.08 (0.13) 0.14 (0.17) 0.08 (0.11) 0.08 (0.10) 0.18 (0.27) 2.26 (0.61)
udb 0.11 (0.14) 0.13 (0.17) 0.06 (0.10) 0.10 (0.15) 0.13 (0.17) 0.08 (0.11) 0.08 (0.10) 0.18 (0.26) 2.08 (0.61)
cdb2 0.03 (0.05) 0.07 (0.10) 0.04 (0.05) 0.04 (0.06) 0.05 (0.07) 0.13 (0.16) 0.11 (0.12) 0.16 (0.19) 2.49 (0.50)
trafo 0.07 (0.10) 0.12 (0.17) 0.06 (0.09) 0.08 (0.12) 0.13 (0.17) 0.08 (0.11) 0.08 (0.10) 0.18 (0.25) 2.27 (0.57)
ud3 0.19 (0.25) 0.20 (0.32) 0.06 (0.12) 0.14 (0.23) 0.15 (0.23) 0.07 (0.10) 0.07 (0.09) 0.34 (0.49) 1.88 (0.71)
cd3 0.13 (0.17) 0.15 (0.21) 0.06 (0.09) 0.07 (0.12) 0.11 (0.18) 0.07 (0.10) 0.07 (0.09) 0.26 (0.33) 2.04 (0.63)
cda3 0.14 (0.18) 0.18 (0.28) 0.06 (0.10) 0.11 (0.18) 0.13 (0.21) 0.07 (0.10) 0.07 (0.09) 0.32 (0.43) 1.99 (0.65)
cdb3 0.06 (0.09) 0.10 (0.15) 0.05 (0.06) 0.05 (0.07) 0.07 (0.10) 0.07 (0.10) 0.07 (0.09) 0.21 (0.32) 2.33 (0.55)
us 0.08 (0.11) 0.07 (0.11) 0.04 (0.06) 0.04 (0.06) 0.06 (0.08) 0.12 (0.15) 0.13 (0.14) 0.10 (0.14) 2.22 (0.58)
cs 0.08 (0.10) 0.07 (0.10) 0.04 (0.05) 0.04 (0.06) 0.06 (0.08) 0.15 (0.16) 0.13 (0.13) 0.10 (0.14) 2.23 (0.58)
csu 0.08 (0.11) 0.08 (0.11) 0.04 (0.05) 0.04 (0.06) 0.06 (0.08) 0.12 (0.15) 0.13 (0.14) 0.10 (0.14) 2.23 (0.59)
csb 0.09 (0.13) 0.07 (0.10) 0.03 (0.05) 0.03 (0.05) 0.05 (0.07) 0.17 (0.17) 0.12 (0.12) 0.10 (0.14) 2.17 (0.58)
uBPr 0.13 (0.20) 0.09 (0.13) 0.10 (0.18) 0.09 (0.15) 0.07 (0.09) 0.11 (0.17) 0.11 (0.17) 0.10 (0.15) 2.21 (0.80)
cBPr 0.09 (0.13) 0.12 (0.16) 0.08 (0.11) 0.06 (0.11) 0.07 (0.09) 0.13 (0.18) 0.13 (0.17) 0.17 (0.23) 2.51 (0.89)
uBPs 0.08 (0.10) 0.07 (0.10) 0.04 (0.06) 0.04 (0.06) 0.06 (0.08) 0.13 (0.18) 0.13 (0.16) 0.09 (0.14) 2.22 (0.58)
cBPs 0.08 (0.10) 0.07 (0.10) 0.04 (0.05) 0.04 (0.06) 0.06 (0.08) 0.13 (0.15) 0.10 (0.12) 0.10 (0.14) 2.22 (0.58)
sigE 0.08 (0.11) 0.07 (0.11) 0.04 (0.06) 0.04 (0.06) 0.06 (0.08) 0.46 (0.22) 0.22 (0.16) 0.10 (0.14) 2.23 (0.58)
beta 0.15 (0.25) 0.07 (0.10) 0.06 (0.09) 0.05 (0.07) 0.09 (0.11) 0.17 (0.51) 0.07 (0.10) 0.09 (0.14) 1.98 (0.65)
frisen 0.06 (0.09) 0.08 (0.10) 0.04 (0.06) 0.06 (0.09) 0.06 (0.09) 0.60 (0.23) 0.22 (0.16) 0.09 (0.13) 2.45 (0.60)

modAve 0.07 (0.09) 0.06 (0.09) 0.05 (0.06) 0.05 (0.07) 0.06 (0.08) 0.18 (0.49) 0.08 (0.11) 0.10 (0.13) 2.27 (0.57)
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Table H.7: Mean and standard deviation (in brackets) of the squared error in estimation of the maximum value, ASEκ(f̂ρ,ν ; z =

mod(f̂ρ,ν)), for all methods ν = 1, . . . , 24 and for all scenarios with 9 doses (% ∈ {2, 4, . . . , 18}). Mean and standard deviation are
calculated over all κ = 1, . . . , 500 generated data sets. Thus the mean values are identical to the values of the second measure of
loss, L2(ρ, ν), defined in Appendix G.

Scen2 Scen4 Scen6 Scen8 Scen10 Scen12 Scen14 Scen16 Scen18
un 0.29 (0.27) 0.13 (0.21) 0.16 (0.21) 0.19 (0.23) 0.18 (0.24) 0.13 (0.17) 0.12 (0.18) 0.15 (0.20) 0.92 (0.53)
cn 0.30 (0.29) 0.14 (0.23) 0.15 (0.19) 0.17 (0.21) 0.18 (0.24) 0.11 (0.15) 0.09 (0.13) 0.14 (0.19) 1.20 (0.49)
ud2 0.11 (0.19) 0.13 (0.20) 0.08 (0.15) 0.12 (0.25) 0.20 (0.25) 0.07 (0.09) 0.06 (0.08) 0.21 (0.37) 1.85 (0.62)
cd2 0.08 (0.12) 0.11 (0.15) 0.05 (0.10) 0.05 (0.10) 0.12 (0.17) 0.09 (0.11) 0.07 (0.09) 0.12 (0.17) 2.09 (0.52)
cda2 0.10 (0.17) 0.14 (0.20) 0.07 (0.13) 0.10 (0.22) 0.19 (0.24) 0.07 (0.09) 0.06 (0.08) 0.21 (0.36) 1.92 (0.60)
udb 0.13 (0.19) 0.14 (0.22) 0.08 (0.14) 0.12 (0.25) 0.19 (0.25) 0.07 (0.09) 0.06 (0.08) 0.21 (0.35) 1.73 (0.57)
cdb2 0.04 (0.06) 0.09 (0.11) 0.04 (0.05) 0.04 (0.06) 0.07 (0.10) 0.10 (0.12) 0.08 (0.09) 0.21 (0.23) 2.15 (0.46)
trafo 0.09 (0.15) 0.14 (0.20) 0.07 (0.12) 0.09 (0.16) 0.18 (0.24) 0.07 (0.08) 0.06 (0.08) 0.21 (0.34) 1.87 (0.53)
ud3 0.24 (0.37) 0.24 (0.52) 0.07 (0.15) 0.19 (0.45) 0.22 (0.34) 0.06 (0.10) 0.05 (0.07) 0.45 (0.74) 1.54 (0.67)
cd3 0.15 (0.24) 0.18 (0.29) 0.06 (0.11) 0.08 (0.18) 0.15 (0.28) 0.06 (0.08) 0.05 (0.07) 0.29 (0.38) 1.80 (0.54)
cda3 0.17 (0.27) 0.22 (0.42) 0.06 (0.13) 0.14 (0.32) 0.19 (0.32) 0.06 (0.08) 0.05 (0.07) 0.41 (0.65) 1.69 (0.59)
cdb3 0.07 (0.12) 0.13 (0.21) 0.04 (0.06) 0.05 (0.10) 0.10 (0.17) 0.06 (0.07) 0.05 (0.07) 0.28 (0.41) 1.95 (0.51)
us 0.12 (0.18) 0.11 (0.13) 0.04 (0.06) 0.04 (0.08) 0.08 (0.12) 0.10 (0.11) 0.10 (0.11) 0.15 (0.21) 1.89 (0.55)
cs 0.12 (0.18) 0.11 (0.13) 0.04 (0.06) 0.04 (0.07) 0.08 (0.12) 0.11 (0.12) 0.09 (0.10) 0.16 (0.22) 1.93 (0.54)
csu 0.12 (0.18) 0.11 (0.13) 0.04 (0.06) 0.04 (0.07) 0.08 (0.12) 0.10 (0.12) 0.11 (0.11) 0.16 (0.21) 1.92 (0.56)
csb 0.15 (0.21) 0.10 (0.12) 0.03 (0.05) 0.03 (0.06) 0.07 (0.10) 0.11 (0.12) 0.09 (0.09) 0.16 (0.21) 1.80 (0.53)
uBPr 0.14 (0.19) 0.11 (0.15) 0.11 (0.17) 0.13 (0.20) 0.13 (0.19) 0.13 (0.18) 0.13 (0.20) 0.15 (0.20) 1.67 (0.84)
cBPr 0.11 (0.14) 0.13 (0.17) 0.08 (0.10) 0.08 (0.11) 0.10 (0.15) 0.11 (0.14) 0.10 (0.14) 0.24 (0.29) 2.03 (0.83)
uBPs 0.12 (0.17) 0.10 (0.13) 0.04 (0.06) 0.04 (0.08) 0.08 (0.11) 0.11 (0.15) 0.11 (0.12) 0.15 (0.20) 1.88 (0.55)
cBPs 0.12 (0.17) 0.11 (0.13) 0.04 (0.06) 0.04 (0.07) 0.07 (0.11) 0.09 (0.11) 0.08 (0.09) 0.15 (0.21) 1.92 (0.54)
sigE 0.12 (0.18) 0.11 (0.14) 0.04 (0.06) 0.04 (0.07) 0.08 (0.12) 0.28 (0.19) 0.15 (0.12) 0.16 (0.22) 1.94 (0.55)
beta 0.15 (0.20) 0.09 (0.12) 0.06 (0.08) 0.05 (0.07) 0.10 (0.13) 0.07 (0.09) 0.06 (0.08) 0.13 (0.18) 1.66 (0.54)
frisen 0.09 (0.15) 0.11 (0.16) 0.06 (0.11) 0.10 (0.16) 0.11 (0.16) 0.49 (0.20) 0.13 (0.12) 0.14 (0.19) 2.10 (0.57)

modAve 0.09 (0.13) 0.08 (0.11) 0.05 (0.08) 0.04 (0.07) 0.09 (0.13) 0.08 (0.10) 0.06 (0.09) 0.13 (0.18) 1.95 (0.54)
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Table H.8: Mean and standard deviation (in brackets) of the squared error in mode estimation, (mod(f̂ρ,ν) −mod(fρ))
2, for all

methods ν = 1, . . . , 24 and for all non-flat scenarios with 5 doses (% ∈ {3, . . . , 17}). Mean and standard deviation are calculated
over all κ = 1, . . . , 500 generated data sets. Thus the mean values are identical to the values of the third measure of loss, L3(ρ, ν),
defined in Appendix G.

Scen3 Scen5 Scen7 Scen9 Scen11 Scen13 Scen15 Scen17
un 0.42 (1.32) 1.73 (1.93) 7.29 (8.81) 0.73 (0.81) 0.28 (0.51) 0.34 (0.44) 0.08 (0.99) 9.16 (7.74)
cn 0.44 (1.42) 1.34 (1.57) 8.06 (6.36) 0.50 (0.79) 0.33 (0.50) 0.30 (0.38) 0.05 (0.74) 8.74 (8.19)
ud2 0.11 (0.61) 2.12 (1.82) 4.75 (6.91) 0.27 (0.81) 0.41 (0.55) 0.39 (1.17) 0.03 (0.60) 12.76 (8.03)
cd2 0.50 (1.68) 1.52 (1.88) 10.11 (8.89) 0.60 (1.16) 0.36 (0.61) 0.29 (0.42) 0.04 (0.68) 10.86 (8.37)
cda2 0.26 (0.99) 1.82 (1.89) 8.45 (8.99) 0.45 (1.13) 0.34 (0.65) 0.28 (0.51) 0.04 (0.73) 10.78 (8.31)
udb 0.12 (0.60) 2.08 (1.79) 4.35 (6.78) 0.26 (0.79) 0.39 (0.59) 0.35 (0.88) 0.16 (2.93) 10.68 (8.36)
cdb2 0.28 (0.59) 0.96 (0.90) 3.61 (4.19) 0.25 (0.41) 0.61 (0.60) 0.30 (0.61) 0.09 (0.42) 4.88 (5.26)
trafo 0.14 (0.61) 1.70 (1.66) 5.02 (6.97) 0.24 (0.67) 0.40 (0.54) 0.31 (0.71) 0.03 (0.62) 8.04 (7.75)
ud3 0.34 (1.03) 1.30 (1.52) 5.32 (7.10) 0.65 (2.96) 0.45 (0.63) 0.27 (0.55) 0.30 (4.09) 10.30 (8.35)
cd3 0.51 (2.45) 2.03 (2.59) 11.61 (11.69) 0.80 (1.33) 0.31 (0.59) 0.48 (0.88) 0.06 (0.72) 9.38 (8.19)
cda3 0.41 (1.52) 1.71 (1.91) 8.63 (9.86) 0.63 (0.91) 0.37 (0.60) 0.29 (0.57) 0.06 (0.72) 9.06 (8.16)
cdb3 0.32 (0.69) 0.93 (1.13) 4.90 (5.77) 0.41 (0.55) 0.33 (0.52) 0.31 (0.46) 0.05 (0.55) 6.63 (6.14)
us 0.28 (2.41) 3.51 (2.88) 10.28 (15.09) 0.21 (0.77) 0.40 (0.69) 1.18 (2.10) 0.04 (0.77) 9.59 (8.25)
cs 0.54 (2.76) 2.95 (3.07) 10.79 (14.29) 0.71 (1.27) 0.43 (0.65) 0.75 (1.33) 0.07 (0.84) 8.46 (8.02)
csu 0.54 (2.76) 3.29 (3.32) 11.69 (15.32) 0.69 (1.24) 0.40 (0.73) 1.12 (1.94) 0.07 (0.92) 8.60 (7.98)
csb 0.60 (1.52) 1.55 (1.59) 8.37 (8.85) 0.78 (1.04) 0.42 (0.67) 0.58 (0.60) 0.11 (0.81) 6.52 (7.29)
uBPr 0.54 (1.88) 2.12 (2.46) 8.00 (12.84) 1.08 (1.96) 0.77 (0.94) 1.01 (1.41) 0.13 (1.10) 10.61 (7.94)
cBPr 0.55 (1.61) 2.13 (3.19) 8.71 (12.80) 1.10 (1.87) 0.75 (1.21) 1.00 (1.36) 0.12 (0.84) 10.56 (7.68)
uBPs 0.32 (2.76) 4.13 (3.79) 13.37 (17.95) 0.12 (0.63) 0.43 (0.59) 1.57 (2.94) 0.04 (0.86) 10.03 (8.08)
cBPs 0.55 (3.19) 3.76 (4.01) 13.50 (16.60) 0.42 (0.98) 0.40 (0.59) 0.83 (1.75) 0.05 (0.95) 9.05 (8.01)
sigE 0.00 (0.00) 4.00 (0.02) 0.00 (0.00) 0.00 (0.00) 17.99 (13.49) 9.35 (3.13) 0.00 (0.00) 16.25 (5.77)
beta 0.42 (1.16) 1.27 (1.87) 5.96 (8.82) 0.86 (2.93) 1.08 (1.41) 0.27 (0.42) 1.09 (8.04) 9.79 (5.94)
frisen 0.19 (0.50) 1.55 (1.62) 1.72 (2.52) 0.38 (0.58) 7.12 (0.19) 1.18 (1.07) 0.04 (0.24) 11.76 (8.82)

modAve 0.11 (0.68) 1.73 (1.69) 3.98 (5.89) 0.23 (0.61) 1.05 (1.27) 0.37 (0.92) 0.01 (0.17) 12.33 (7.68)

48



Table H.9: Mean and standard deviation (in brackets) of the squared error in mode estimation, (mod(f̂ρ,ν) −mod(fρ))
2, for all

methods ν = 1, . . . , 24 and for non-flat all scenarios with 9 doses (% ∈ {4, . . . , 18}). Mean and standard deviation are calculated
over all κ = 1, . . . , 500 generated data sets. Thus the mean values are identical to the values of the third measure of loss, L3(ρ, ν),
defined in Appendix G.

Scen4 Scen6 Scen8 Scen10 Scen12 Scen14 Scen16 Scen18
un 1.91 (4.51) 2.79 (2.60) 10.25 (10.18) 2.28 (3.44) 1.23 (1.81) 0.89 (1.31) 0.71 (4.36) 2.69 (6.00)
cn 1.10 (2.76) 1.95 (2.08) 8.36 (11.43) 1.61 (2.39) 0.66 (0.91) 0.87 (1.35) 0.20 (0.64) 3.95 (6.42)
ud2 0.10 (0.55) 2.40 (1.75) 4.88 (7.23) 0.48 (1.50) 0.43 (1.54) 0.55 (1.64) 0.01 (0.18) 9.26 (8.48)
cd2 0.63 (2.01) 1.57 (1.74) 9.64 (8.67) 0.87 (1.50) 0.31 (0.56) 0.33 (0.67) 0.04 (0.34) 6.40 (7.65)
cda2 0.28 (1.30) 1.94 (1.86) 8.31 (9.35) 0.73 (1.72) 0.30 (0.49) 0.39 (0.97) 0.02 (0.22) 6.40 (7.72)
udb 0.16 (0.70) 2.21 (1.74) 4.68 (7.24) 0.51 (1.57) 0.38 (0.60) 0.58 (1.55) 0.01 (0.21) 7.17 (8.49)
cdb2 0.30 (0.49) 1.06 (0.89) 3.94 (4.29) 0.34 (0.67) 0.42 (0.44) 0.38 (0.84) 0.12 (0.16) 2.76 (4.00)
trafo 0.19 (0.88) 1.87 (1.67) 5.25 (6.94) 0.42 (1.25) 0.35 (0.50) 0.48 (1.28) 0.02 (0.20) 4.35 (6.80)
ud3 0.67 (4.35) 1.37 (1.54) 5.46 (7.20) 1.15 (5.17) 0.43 (2.07) 0.43 (1.85) 0.42 (4.95) 8.05 (8.84)
cd3 0.60 (2.81) 1.97 (2.38) 13.55 (12.91) 1.03 (1.55) 0.27 (0.37) 0.48 (0.91) 0.11 (1.29) 5.14 (7.29)
cda3 0.40 (1.15) 1.73 (1.79) 9.07 (10.08) 0.95 (1.58) 0.26 (0.34) 0.33 (0.89) 0.04 (0.24) 4.94 (7.23)
cdb3 0.36 (0.76) 1.01 (1.16) 5.34 (6.03) 0.54 (0.82) 0.21 (0.29) 0.33 (0.63) 0.06 (0.21) 3.64 (5.25)
us 0.23 (1.45) 3.02 (1.97) 7.15 (12.58) 0.25 (1.08) 0.54 (0.78) 1.36 (2.30) 0.00 (0.02) 5.07 (7.05)
cs 0.67 (2.56) 2.22 (2.31) 10.02 (13.42) 0.96 (1.74) 0.40 (0.58) 0.63 (1.24) 0.10 (0.67) 3.47 (6.15)
csu 0.67 (2.60) 2.41 (2.50) 10.06 (13.88) 0.98 (1.83) 0.55 (0.80) 0.91 (1.53) 0.09 (0.59) 3.52 (6.13)
csb 0.69 (1.55) 1.22 (1.34) 7.95 (8.50) 0.92 (1.43) 0.45 (0.58) 0.46 (0.68) 0.14 (0.50) 3.10 (5.61)
uBPr 1.06 (3.92) 3.01 (3.10) 9.80 (12.70) 1.65 (3.42) 1.51 (2.14) 1.18 (1.65) 0.17 (1.77) 5.13 (7.42)
cBPr 0.87 (3.00) 2.09 (2.38) 9.32 (13.07) 1.51 (2.43) 1.04 (1.25) 1.21 (1.72) 0.25 (2.44) 5.46 (7.09)
uBPs 0.26 (2.16) 3.49 (2.70) 11.47 (17.24) 0.14 (0.70) 0.66 (0.84) 1.74 (2.66) 0.00 (0.00) 5.15 (6.71)
cBPs 0.64 (3.50) 2.66 (3.02) 13.91 (16.86) 0.56 (1.44) 0.36 (0.57) 0.69 (1.46) 0.06 (0.53) 4.04 (6.46)
sigE 0.00 (0.00) 4.06 (1.35) 0.00 (0.00) 0.00 (0.00) 13.64 (12.53) 8.86 (1.53) 0.00 (0.00) 15.58 (5.77)
beta 2.04 (9.78) 1.16 (1.41) 5.12 (6.40) 2.97 (11.16) 0.51 (1.01) 0.33 (1.31) 2.77 (12.84) 6.38 (6.19)
frisen 0.26 (0.59) 1.65 (1.57) 1.50 (2.39) 0.44 (0.70) 5.48 (2.89) 1.36 (1.78) 0.08 (0.26) 10.71 (8.84)

modAve 0.09 (0.44) 1.94 (1.70) 3.33 (4.67) 0.33 (0.85) 0.53 (0.88) 0.49 (1.40) 0.01 (0.12) 8.40 (7.85)
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Table H.10: Values of the fourth measure of loss defined in Appendix G, L4(ρ, ν), for all methods ν = 1, . . . , 24 and for all scenarios
with 5 doses (% ∈ {1, 3, . . . , 17}), that is, the percentage of the 500 data sets, in which the MED was incorrectly estimated.

Scen1 Scen3 Scen5 Scen7 Scen9 Scen11 Scen13 Scen15 Scen17
un 0.00 0.45 0.35 0.39 0.00 0.81 0.84 0.47 0.68
cn 0.00 0.43 0.37 0.35 0.00 0.75 0.85 0.50 0.64
ud2 0.00 0.54 0.38 0.37 0.00 0.78 0.84 0.88 0.73
cd2 0.00 0.54 0.42 0.45 0.00 0.82 0.88 0.90 0.78
cda2 0.00 0.53 0.39 0.37 0.00 0.79 0.85 0.86 0.71
udb 0.00 0.54 0.41 0.40 0.00 0.77 0.84 0.88 0.71
cdb2 0.00 0.68 0.40 0.53 0.00 0.81 0.94 0.99 0.87
trafo 0.00 0.57 0.36 0.40 0.00 0.79 0.86 0.93 0.70
ud3 0.00 0.42 0.42 0.37 0.00 0.80 0.79 0.77 0.64
cd3 0.00 0.44 0.38 0.39 0.00 0.81 0.86 0.70 0.64
cda3 0.00 0.42 0.38 0.37 0.00 0.79 0.81 0.77 0.63
cdb3 0.00 0.47 0.36 0.39 0.00 0.79 0.80 0.92 0.70
us 0.00 0.42 0.38 0.46 0.00 0.84 0.90 0.75 0.62
cs 0.00 0.42 0.38 0.46 0.00 0.84 0.90 0.80 0.64
csu 0.00 0.42 0.38 0.46 0.00 0.84 0.90 0.75 0.64
csb 0.00 0.41 0.36 0.42 0.00 0.86 0.89 0.81 0.71
uBPr 0.00 0.60 0.51 0.42 0.00 0.90 0.90 0.38 0.57
cBPr 0.00 0.71 0.64 0.56 0.00 0.90 0.94 0.48 0.66
uBPs 0.00 0.58 0.41 0.61 0.00 0.83 0.93 0.57 0.51
cBPs 0.00 0.59 0.41 0.58 0.00 0.83 0.93 0.70 0.52
sigE 0.00 0.46 0.40 0.60 0.00 0.84 0.91 0.82 0.62
beta 0.00 0.47 0.29 0.31 0.00 0.83 0.86 0.43 0.63
frisen 0.00 0.54 0.41 0.60 0.00 0.78 0.86 0.77 0.65

modAve 0.00 0.54 0.36 0.35 0.00 0.80 0.88 0.56 0.64
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Table H.11: Values of the fourth measure of loss defined in Appendix G, L4(ρ, ν), for all methods ν = 1, . . . , 24 and for all scenarios
with 9 doses (% ∈ {2, 4, . . . , 18}), that is, the percentage of the 500 data sets, in which the MED was incorrectly estimated.

Scen2 Scen4 Scen6 Scen8 Scen10 Scen12 Scen14 Scen16 Scen18
un 0.62 0.64 0.22 0.30 0.07 0.83 0.76 0.72 0.14
cn 0.65 0.54 0.28 0.28 0.05 0.78 0.73 0.67 0.08
ud2 0.61 0.62 0.42 0.37 0.00 0.80 0.70 0.69 0.01
cd2 0.67 0.64 0.60 0.45 0.00 0.79 0.75 0.71 0.00
cda2 0.63 0.64 0.42 0.37 0.00 0.79 0.69 0.68 0.01
udb 0.62 0.60 0.45 0.34 0.00 0.77 0.69 0.69 0.01
cdb2 0.70 0.67 0.76 0.47 0.00 0.80 0.66 0.75 0.00
trafo 0.62 0.59 0.52 0.36 0.00 0.78 0.68 0.67 0.01
ud3 0.63 0.54 0.35 0.32 0.01 0.81 0.72 0.75 0.02
cd3 0.65 0.60 0.32 0.31 0.00 0.81 0.73 0.74 0.01
cda3 0.64 0.57 0.35 0.28 0.01 0.81 0.71 0.75 0.02
cdb3 0.69 0.59 0.55 0.35 0.00 0.78 0.72 0.74 0.00
us 0.71 0.61 0.51 0.34 0.00 0.86 0.72 0.81 0.00
cs 0.71 0.61 0.64 0.35 0.00 0.87 0.74 0.81 0.00
csu 0.71 0.62 0.51 0.35 0.00 0.87 0.74 0.82 0.00
csb 0.76 0.62 0.67 0.36 0.00 0.85 0.73 0.83 0.00
uBPr 0.61 0.78 0.25 0.39 0.01 0.86 0.81 0.77 0.03
cBPr 0.65 0.84 0.41 0.49 0.00 0.88 0.82 0.80 0.01
uBPs 0.66 0.76 0.40 0.30 0.00 0.90 0.74 0.89 0.01
cBPs 0.67 0.76 0.60 0.30 0.00 0.90 0.75 0.86 0.00
sigE 0.72 0.69 0.88 0.35 0.00 0.88 0.74 0.89 0.00
beta 0.71 0.68 0.13 0.33 0.00 0.81 0.66 0.63 0.02
frisen 0.62 0.74 0.88 0.28 0.01 0.81 0.73 0.79 0.01

modAve 0.64 0.68 0.30 0.34 0.00 0.84 0.71 0.71 0.00
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I Additional figures
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Figure I.1: Binomial probabilities with k = 3 (identical with cubic B-splines on the
interval [0, 1] without inner knots (g = 0) and with coincident outer knots on 0 and 1).
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Figure I.2: Cubic B-spline basis functions with g = 3 equidistant inner knots in the
interval [0, 1] and coincident outer knots on 0 and 1.
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