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Abstract. Machine learningcan be a most valuable tool for improving the 
exibilityand e�ciency
of robot applications. Many approaches to applyingmachine learning to robotics are known. Some
approaches enhance the robot's high-level processing, the planning capabilities. Other approaches
enhance the low-level processing, the control of basic actions. In contrast, the approach presented
in this paper uses machine learning for enhancing the link between the low-level representations
of sensing and action and the high-level representation of planning. The aim is to facilitate the
communication between the robot and the human user. A hierarchy of concepts is learned from
route records of a mobile robot. Perception and action are combined at every level, i.e., the
concepts are perceptually anchored. The relational learning algorithm grdt has been developed
which completely searches in a hypothesis space, that is restricted by rule schemata, which the
user de�nes in terms of grammars.
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1. Introduction

Robotics o�ers a variety of learning objectives. We mention some of the well-known
applications of machine learning to robotics and contrast them to our approach,
before we present our scenario for learning. In order to enhance a robot's high-level
processing, planning can be tailored to particular robot tasks (Segre, 1988). Lessons
learned from failures of robot actions can be used to enhance the planning capabil-
ities of a robot (Bennett, 1989), (Zercher, 1992). Learning is used to link the envi-
ronmentmodel with the perception when executing a plan (DeJong & Bennett, 1993),
(Gil, 1994). The plan or the environment model is re�ned to accommodate practical
experience with the plan. These approaches require an almost complete description
of the robot's actions and its environment. It is a time consuming task to build up
such a description. Moreover, if the robot's task or environment is changing, the
description has to be changed accordingly. This makes the application of robots
in
exible. In our approach, machine learning helps to construct the description of
a robot's actions and its environment.
At lower levels of a robot's processing, machine learning can be applied in order to

improve its performance (Kaelbling & Rosenschein, 1990), (Mill�an & Torras, 1992),
(Mitchell & Thrun, 1993), (Baroglio et al., 1994). These approaches assume a fully
automated mode of robot operation and learning where no human interaction
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with the robot or the learning component is intended. Therefore, the represen-
tation for learning resembles the robot's low-level representation and is not eas-

ily understandable to human users. It has been argued, however, that human-
machine interaction is necessary in order to fully exploit the opportunities of a
robot (Nilsson, 1984), (Badler et al., 1991). In order to facilitate access to a robot
for human users, the low-level representation has to be translated into an under-
standable form. We address robot applications in which the robot is not completely
autonomous but is interacting with human users. In our approach, machine learning
is applied to bridge the gap between low-level and high-level representations.

Biologically inspired work in robotics has developed arti�cial beings that adapt
to their environment (Brooks, 1991), (Steels, 1993). This type of learning is re-
stricted to re
ex-like behavior. Higher levels of cognition such as reasoning and
concept formation are excluded. In contrast, we are interested in the link between
perception and concepts. This is the problem of symbol grounding (Harnad, 1990),
(Wrobel, 1991). In our approach, machine learning characterizes concepts on the
basis of perceptual and action features, i.e., the learned concepts are perceptually
anchored.

Up to now, if a robot has to navigate in o�ce rooms, the coordinates of the walls
and doors, desks and cupboards are entered into the robot as a map { for each new
set of rooms anew. However, on an abstract level, o�ces are looking more or less
the same wherever they are. Moving in an o�ce environment can be described by
concepts such as:

move through the doorway, turn left, move until the cupboard, and stop.

These concepts combine sensing and action. They do not describe a door inde-
pendent of the robot's movement, but a move through a doorway. Similarly, not
the cupboard is the concept here, but approaching a cupboard. The turn implies
walls to be detected. However, not the walls are the relevant concepts, but the turn
with respect to the walls. We have called such concepts operational concepts.

Whereas the speci�c measurements di�er in di�erent o�ces (e.g., doors have dif-
ferent width and depth), the relations between measurements acquired by sensors
during the performance of a movement (e.g., moving through a doorway) remain
the same. Moving through a doorway means to �rst perceive the doorposts with
the front sensors, then by the sensors at both sides, and then with the rear sensors.
Roughly spoken, there is �rst a time interval in which the front sensors measure de-
creasing distances, then a time interval in which the sensors at both sides measure
a sudden decrease of distances, and �nally a time interval, during which the rear
sensors measure increasing distances. The relations between sequential sensor mea-
surements, that characterize approaching or passing a doorpost (e.g., a continuous
or sudden decrease of distances) remain the same, independent of the particular
distance measurements. The particular time intervals depend on the size of the
door, the speed of the robot, and the frequency with which sensor measurements
are delivered. However, the relations between the time intervals (�rst decreasing
distance ahead, then : : : , then increasing distance at the back) are independent of
the particular size of the door. Also the relations between the sensor groups (in
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front is opposite to in the rear, left is opposite to right) are the same for all moves
through a doorway, although the particular side, which is in front when approach-
ing the door, may di�er from one move through a doorway to another. Hence, the
concepts can be characterized by relations between time intervals, relations between
sensor measurements, and relations between sensor groups.
It is our overall learning task to characterize a concept (e.g., moving through a

doorway) and distinguish it from other ones (e.g., moving along a wall) on the basis
of sensor measurements and robot movements. As our learning goals are concepts
that are described in terms of relations, we need a learning method that is capable
of handling relational hypotheses. All learning techniques within the framework of
inductive logic programming (Muggleton, 1992) learn relational concepts. Whereas
inductive logic programming has been successfully applied to relatively small train-
ing sets, sets of sensor measurements and robot actions become very large, even if
only one concept is to be learned. The application of inductive logic programming
to sensor data of a mobile robot demands a method of how to cope with such huge
data sets. We developed three answers to this demand. First, we did not solve
the learning problem in one step, but have split the overall learning task into sev-
eral learning steps where each learning step uses the results of the previous one.
This decreases the size of the training set for each learning step. The lay-out of
learning steps is described in Section 2. Second, we designed the representation
language (i.e., the particular predicates that are used to describe a concept and
those that denote a concept) such that the points in time or time intervals become
deterministic terms for the rules to be learned. This reduces the complexity of
the learning task, as determinate rules are easier to learn than non-determinate
ones (D�zeroski et al., 1992). The maximal arity of predicates, as well as the max-
imal depth of terms, is restricted. In addition, an upper bound on the length of
rules helps to make the learning task tractable. The representation language is
described in Section 3. Third, we applied a learning algorithm which exploits a
declarative bias: the hypothesis space can be restricted explicitly. The learning al-
gorithm grdt is described in Section 4. The concept of moving through a doorway
and all concepts that are necessary to characterize this concept were learned from
sensor data acquired during movements of a mobile robot (the training set). The
learning results were evaluated by applying the learned concepts to sensor data
acquired during other paths of the mobile robot (the test set). The experiments
are described in Section 5.

2. Learning Scenario

The overall learning task of acquiring concepts from sensor data and robot actions
can be modeled as learning from examples. Sensor measurements accumulated
during robot routes in known environments and classi�ed by a simulation com-
ponent are the input to learning. We used the data gathered by a mobile robot
which moved in a variety of simple rooms. The rooms were completely known and
their description was entered into a simulation component. Also the path of the
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Figure 1. Learning steps

robot was entered. The sensor measurements were then classi�ed by the simulation
component, indicating the edge of an object that has most likely been sensed. Of
course, in addition to the errors of the sensors misclassi�cations occur, too. Hence,
the training sets always include noisy data.

Concepts, that describe a movement as well as a pattern of sensor data to be
sensed during the execution of that movement are the output of learning. The
learning results are applied to other route records, the test set. Then we compare
the classi�cation of the simulation component with the classi�cation derived by
learned rules. This evaluation shows the applicability of machine learning to de�n-
ing higher-level descriptions of actions, perceptions, and the environment. More-
over, as both, training set and test set, are made of real-world data, it shows how
well the learning algorithm can cope with noise and missing measurements. The
next step is a real-world test of the learning results. This, however, requires a lot
of work that does not concern machine learning (see Section 6 for our ongoing and
future work).

Learning high-level concepts directly from sensor data and robot movements is
not likely to produce good results. Therefore, we have designed a representation
language with intermediate concepts. Five levels of abstraction bridge the gap
between the raw data of the robot and the high-level concepts (see Figure 1). Each
concept is de�ned in terms of concepts of the abstraction level below. The learning
task is to �nd these concept de�nitions.

Now, we can describe the learning tasks. There are several learning steps, each
corresponding to a particular level of abstraction. The �rst step, the learning of
basic features from sensor data, is di�erent from all consecutive steps. This learning
task corresponds to the problem of signal-to-symbol conversion. At the lowest
level, the input is numerical: the robot's movements and sensor measurements are
represented by real numbers. The �rst learning task is then to adjust the calculation
of qualitative basic features from the numerical data.
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Figure 2. The setting for concept learning.

Learning basic features

Given: a sequence of sensor measurements, a set of parameters, and a set of
functions for calculating basic features;

Output: the appropriate parameters for calculating basic features and the result-
ing sequence of basic features.

All following learning steps correspond to the same learning task. The output of
one learning step forms the basis for the next one.

Learning concepts

Given: classi�ed instances of a concept and background knowledge;

Output: rules that de�ne a concept in terms of concepts of the next lower level.

A simulation component denotes for every sensor at every time point the edge,
that was sensed. This information gives the classi�cation for sensor and sensor
group features. Perceptual features are classi�ed by hand. The user of the learning
system is supported by a human-computer interface which graphically shows the
path of the robot so that the time interval in which sensors should sense, e.g.,
in front of door, can easily be seen.
The general setting for solving the learning tasks is illustrated in Figure 2. For

each learning step, training sets have to be set up. Given the representation, used
at each level of the abstraction hierarchy in Figure 1, the respective descriptions
have to be derived from the real-world data. Di�erent information sources, such as
data �les and programs, are used to retrieve and generate predicates, representing
classi�ed instances of a concept and background knowledge. This time-consuming
example and background knowledge generation process is supported and partially
automated by a data preparation tool (Rieger, 1995a).
Given a set of positive and negative examples, the user has to decide, which

examples are to be included in a training/test set. This decision concerns, e.g., the
percentage of positive and negative examples, the construction of several training
sets to be used for cross validation, and the speci�cation of distributions, according
to which examples for a training set are to be drawn. Besides these statistical
criteria, the user also makes decisions concerning features of the data, e.g., the
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data of certain traces may be used for training, data of other traces for testing.
Our tool allows the user to specify these decisions for sample composition in a
uniform framework. With this speci�cation and the given source set of examples,
the tool performs the composition automatically.

A training set contains a set of target predicates, describing the examples of the
concepts to be learned, and a set of de�ning predicates, describing the background
knowledge. Target predicates may appear in the conclusion of a learned rule, de�n-
ing predicates in its premise. Real-word domains, such as robotics, are characterized
by an enormous amount of data. In order to apply learning successfully, it is crucial
to provide the learning algorithms only with relevant background knowledge. This
prevents the algorithm from being overloaded with irrelevant information, which
slows down the learning process, and which may even cause the algorithm to �nd
results of poor quality. We provide a method, case selection, which allows the user
to specify, which de�ning predicates with which features should be included in the
background knowledge for a given set of target predicates. The selection of the rel-
evant de�ning predicates is then done automatically, yielding cases, which associate
each target predicate instance with its relevant de�ning predicate instances.

Thus, the use of our tool makes the data preparation phase more transparent,
revealing more clearly its e�ect on the learning results, and making it amenable to
analysis.

3. Representation Hierarchy

High-level concepts integrate perceptual features and action features where the
features can be regarded as lower-level concepts. They are anchored in basic features
that are learned from sensing and action.

For our scenario, we have chosen the high-level concepts:

move closer to wall, rotate in front of wall, move parallel in corner, move along door,

move through door, move in front of door, and rotate in front of door.

Rules are learned, whose conclusions represent these concepts. The premise of
each rule describes the pre-condition for executing a concept, the sensing-acting
loop for verifying the concept, and the resulting state (Figure 3).

standing(Trace, T1, T2, in front of door, PDirect, small side, PrevP) &
parallel moving(Trace, T2, T3, MSpeed, PDirect, through door, right and left) &
standing(Trace, T3, T4, in front of door, rear, small side, through door)
! move through door(Trace, T1, T4).

Figure 3. A high-level concept.1

The rule describes the high-level concept of moving through a doorway. It com-
bines the recognition of the doorway with the action of moving through it on a
parallel track. Moving diagonally through a doorway is a di�erent concept. Action
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and perception are linked by the perceptual features (written in italics) occurring
as arguments in the action predicates.
The �rst premise of the rule states, that the robot is standing in a time interval

from T1 to T2 of a particular action sequence (Trace) and senses the perceptual
feature in front of door with the sensors of a small side after having perceived the
perceptual feature PrevP prior to T1. This premise denotes the precondition for
moving parallelly through a doorway.
The second premise states, that in the following time interval the action parallel-
moving is executed, which is associated with the robot measuring the perceptual
feature through door with the sensors at its right left side. Note, that the particular
values for the time intervals do not matter for the concept but are instantiated by
the speci�cs of a particular path. Only the time relation is important. This makes
the concept independent of the particular depth of a doorway and the robot's
particular rate of advance.
The third premise describes the end of the movement through the doorway: the

robot is standing in front of the door, now sensing with its rear sensors mounted
at its small side the feature in front of door after having perceived the feature
through door. PDirect, the orientation of perception (e.g., left, right, front, rear)
is not �xed by the rule. It is only relevant that the orientation should not change
during the parallel move and that, with respect to this orientation, the doorway is
sensed in the rear after the movement. That means, whatever the orientation was
at the beginning of the action, it is de�ned as being front, so that after completing
the action the doorway is sensed by the rear sensors.
The predicates used in the concept are perception-integrating action features. This

is the level below high-level concepts in Figure 1. The predicates are standing, mov-
ing, parallel moving, diagonal moving, rotating, straight towards, and straight away.
The parallel moving-predicate (Figure 4), e.g., states that the robot moved in direc-
tion MDirec starting at time T1 and it perceived Perc throughout the duration of
that move and kept moving until the perception changes at time T2.

move(Tr, T1, T2, Speed, MDirec) &
period of time perception(Tr, T1, T2, Perc, PDirect, PSide, parallel)
! parallel moving(Tr, T1, T2, Speed, MDirec, Perc, PDirect).

Figure 4. A perception-integrating action feature.

Some arguments of a high-level concept refer to perceptual features. These are
de�ned by a hierarchy of rules. We may trace the feature through door from its use
as an argument in the concept move through door to its basic perceptual features.
A set of learned rules determines the meaning of the perceptual feature through door

(see Figure 5).2 Other predicates are: along door, in front of door, along wall, in front -
of wall, and parallel in corner. The second rule accounts for the situation that the
door post is perceived by the left hand side sensors a little later than by the right
hand side ones. This is expressed by the successor relation between T1 and T3, the
starting times of the sensor group feature sg jump.
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sg jump(Tr, right side, T1, T2, parallel) &
sg jump(Tr, left side, T1, T2, parallel) &
Start � T1 & T2 � End
! through door (Tr, Start, End, parallel).

sg jump(Tr, right side, T1, T2, diagonal) &
sg jump(Tr, left side, T3, T4, diagonal) &
succ(T1, T3) & Start � T1 & T2 � End
! through door (Tr, Start, End, Move).

Figure 5. A perceptual feature.

Sensor group features and sensor features describe con�gurations of edges as they
are perceived by (a group of) sensors during a certain movement. Where, at higher
levels of the representation hierarchy, concepts are denoted (e.g., wall, door, corner),
here we refer to edges. Con�gurations of edges are jump, line, concave, convex.

1

2

3

4

5

6

Figure 6. Edge con�gurations.

In Figure 6, the edges 1 and 3 as well as edges 4 and 6 are in the relation jump;
edges 1 and 2 as well as 4 and 5 are in the relation convex.

If several sensors at the same side or corner of the robot perceive the same edge
con�guration, the feature predicate has the pre�x sg , denoting a sensor group
feature. In Figure 7, in order for the sg jump feature to hold, three of �ve sensors
at the right side of the robot must perceive the jump con�guration when moving
parallelly along the edges.

s jump(Tr, S1, T1, T2, parallel) & sclass(Tr, S1, T0, T7, right side) &
s jump(Tr, S2, T3, T4, parallel) & sclass(Tr, S2, T0, T7, right side) &
s jump(Tr, S3, T5, T6, parallel) & sclass(Tr, S3, T0, T7, right side) &
succ(T1, T3) & succ(T3, T5) & T0 � T1 & T6 � T7
! sg jump(Tr, right side, T1, T6, parallel).

Figure 7. A sensor group feature.

The sensor feature s jump for a single sensor is de�ned in terms of basic perceptual
features. From sensor measurements we conclude edge groupings.
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stable(Tr, Orien, S, T1, T2, Grad1) &
incr peak(Tr, Orien, S, T2, T3, Grad2) &
stable(Tr, Orien, S, T3, T4, Grad3)
! s jump(Tr, S, T1, T4, parallel).

Figure 8. A single sensor feature.

The rule in Figure 8 states that a sensor S with a particular orientation Orien
measures a sequence of distance values, that have during the time interval from
T1 to T2 the gradient Grad1, from T2 to T3 the gradient Grad2, and from T3 to
T4 the gradient Grad3. The end point of one time interval is the beginning of the
next. An interval with a gradient approximately equal to zero is labeled stable.
Grad2 is a rapid increase of measured values denoted by the basic feature incr peak.
stable and incr peak are basic features that are incrementally calculated from the
incoming sensor data (see Section 4).

measurement (Trace, Time, Sensor, Distance, Sx, Sy, SAngle, Object, Edge).
measurement (t35, 45, s2, 4.96, 4.84, 3.43, 353.54, 0, 5).
measurement (t35, 46, s2, 4.88, 4.92, 3.37, 353.54, 0, 5).
decreasing (t35, 353, s2, 45, 78, -38).

Figure 9. Measurements and a corresponding basic feature

Note, that the perceptual features are action-oriented. The type of movement
with respect to the sensed object (e.g., parallel) is carried along the various levels of
perceptual features. In this way, action and perception are integrated not only at
the highest level, but also at all lower levels. Except for the basic actions, no feature
refers to action or perception alone. Basic actions describe motions of the robot
during a speci�c time interval. Possible predicates for actions are move, rotate, and
stand, further speci�ed by speed and direction.
The representation formalism is a restricted Horn logic. This formalism allows

an elegant handling of time, time intervals, and relations between time intervals.
The relational representation of time intervals makes concept de�nitions applicable
to a variety of actual measurements. The de�nition of move through door applies
to doorways of varying breadth and depth. No precise distances need to be �xed
by the de�nition. Similarly, relations between sensors of a sensor group can easily
be modeled. The fact that one sensor after the other at one side perceives a corner
while the robot is moving along that corner is represented by relations between
time instants independent of the particular time distance (see Figure 7).
In addition, the representation formalism allows us to exploit uni�cation. The

orientation of perception need not be �xed by the various rules but becomes in-
stantiated when applying a rule (e.g., argument PDirect in Figure 3). The rules
explicitly state, that the direction may not change or that another direction must
be opposite with respect to the �rst direction. These abstract relations enable a
compact and general representation.
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4. Learning Methods

4.1. Learning Basic Features

The calculation of basic features (Wessel, 1995) constitutes the basis for learning.
We approach the signal-to-symbol problem by converting numerical sonar sensor
measurements to qualitative assertions over time intervals. Basic features are to
represent the general tendency of change of the measurements of a sensor during a
time interval.

t1 t4 t5 t7 t10 t13
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3m

Time
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increasing(trace1, 270, sensor1,  t1,  t4, 0.7).
incr_peak (trace1, 270, sensor1,  t4,  t5, 3.2).
decreasing(trace1, 270, sensor1,  t5,  t7,−0.3).
no_measurement(trace1, 270, sensor1, t7, t10, _).
stable    (trace1, 270, sensor1, t10, t13, 0.01).

Basic perceptional features:

Figure 10. Sensor measurements and corresponding basic features.

In Figure 10, we see an example sequence of sensor measurements. The mea-
surements of the time intervals from t1 to t4, from t5 to t7, and from t10 to t13
are grouped together, and labeled in accordance with the tendency of change as
increasing, decreasing, and (more or less) stable, respectively. During the time in-
terval from t7 to t10 the sensor does not get any echo. This situation is labeled
as no measurement. Between the consecutive time instants t4 and t5, the sensor
measurements di�er extremely. This situation is labeled as incr peak. It can be
characterized more precisely by considering the gradient of the measurements at
two consecutive instants of time. It is de�ned as the quotient, whose numerator is
the di�erence between the measurements at times t+1 and t, and whose denomina-
tor is the distance covered by the robot between t and t+1. In the case of incr peak
and decr peak the gradient is greater than 1 and smaller than -1, respectively. Then,
we also know, that two di�erent edges have been perceived at the two instants of
time. Therefore, it makes sense to split the time intervals at t4, instead of trying
to include t5 in the increasing interval. If the robot does not move during a time
interval, we associate the label no movement with it. If the gradient is approxi-
mately equal to -1 or 1, we label the time interval as straight to and straight away,
respectively.
The calculation of basic features is based on the incremental approximation of

sensor measurements by (linear) functions. We have not used standard statistical
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approximation methods, because they don't satisfy our requirement of being ap-
plicable in an incremental way during the performance phase 3. We provide the
method with the linear functions, which are used for approximation. As the noisy
real-world data cannot be �t exactly to them, we established several parameters,
P1; : : : ; Pn, which control the approximation. Each parameter Pi; 1 � i � n has
an associated set of values, Dom(P1); : : : ; Dom(Pn). We de�ne a parameter setting

PS as a tuple (p1; : : : ; pn), where each pi; 1 � i � n represents the value for pa-
rameter Pi, i.e., pi 2 Dom(Pi). The parameters, which we consider at the moment,
are:

1. Interval size, which speci�es the maximalnumber of time instants to be included
in a time interval;

2. Representative gradient of a time interval. It is either the �rst or the average
gradient of the time interval. It is included as 6th argument in the predicates
for basic features (see the examples in Figure 10).

3. Tolerance �, which is used to compare gradients. A given gradient gri is con-
sidered approximately equal to the representative gradient gr of a time interval,
if jgr � grij � �.

4. Alternating sequences, which are either taken into account or not. If they are
not taken into account, an interval is closed, as soon as the current gradient has
a di�erent sign than the representative gradient and the tolerance is exceeded.

5. The set of labels for time intervals, which constitute the names of the basic
feature predicates.

As not all possible parameter value combinations make sense, the set of parameter
settings is a subset of the Cartesian product Dom(P1) � : : : � Dom(Pn). Given
the functions (calculating the gradient, calculating the average) and the set of
parameter settings, the task is to �nd the setting, that calculate those basic features,
leading to successful learning of concepts.
In the following we present the algorithm for calculating basic features, using a

given parameter setting and incrementally reading in one sensor measurement after
the other:

1. Initialization: Take the �rst two measurements, and calculate the gradient.

2. If, according to the parameter setting, the new gradient is approximately the
same as the previous one
then include the new time point in the current time interval and adapt the
representative gradient as determined by the parameters;
else close the previous interval at the previous time point and start a new one
at the new time point with the new representative gradient being set to the new
gradient. Label a closed interval with a symbol, depending on the representative
gradient attached to the interval.

3. If there are further measurements then go to step 2.
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We can de�ne a partial order on the parameter settings with respect to the level of
detail of the basic perceptional features resulting from the calculation with these
parameter settings: A setting PS1 is smaller or equal than a parameter setting PS2,
PS1 � PS2, if using PS1 produces more and smaller time intervals than using PS2.
The goal of learning is to �nd the parameter setting, whose application results in
basic features with the appropriate level of detail. In this context \appropriate"
means, a sequence of time intervals of basic features corresponds to the time interval
of a concept. The learning algorithm can be described by the following steps:

1. Initialization: Choose a member of the set of parameter settings.

2. Calculate the basic features based on this parameter setting.

3. Evaluate the parameter set by comparing the time intervals for basic features
and those used by the classi�cation of training instances.

4. If the evaluation yields that the parameters produce too few or too many time
intervals, then choose a parameter setting which is smaller or greater according
to the order de�ned above and go to step 2.

Ultimately, the quality of basic features is determinated by success or failure of
concept learning. It is impossible to learn good concept descriptions, if the time
intervals determined by the basic features do not match the time intervals used in
the classi�cation of examples (see Section 5.1).

4.2. Learning Concepts

The theoretical background for the task of learning concepts is inductive logic pro-

gramming (ILP), whose aim is the induction of Horn clauses from examples of
the concepts and background knowledge. Given background knowledge B (here:
ground facts), positive and negative examples E = E+ [E� (again ground facts),
and a hypothesis space H (Horn clauses), the examples have to be consistent with
the background knowledge (i.e., B;E 6j= 2) and must not be a consequence of
the background knowledge (i.e., B 6j= E). In ILP, two di�erent goals for learning
are considered. The �rst one is to �nd a small set of characteristic rules covering
exactly the positive examples and avoiding redundancies (Plotkin, 1971). These
algorithms often throw away already covered examples to focus on remaining ones.
This setting is called the de�nite semantics of ILP4. In contrast, the goal of the
nonmonotonic semantics is to �nd all rules covering some positive and no nega-
tive examples (Helft, 1989)5. Since the rules may cover examples multiply, the
set of rules is redundant with respect to the given examples. However, the rules
are not logically redundant. Whereas the latter learner usually learns more gen-
eral descriptions, learning in the de�nite setting is easier and hence faster, because
covered examples must not be further taken into account. Our learning task is to
learn many logically non-redundant rules.
The goal of learning as many rules as possible is an important issue in our applica-

tion. Even on an abstract level there are several ways to move through a doorway or
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to turn left. Therefore, the concept cannot be captured by a single rule. The variety
of of concept de�nitions corresponds to the variety moves through a doorway.

For each of the learning steps, we have to prepare examplesE and the background
knowledge B. If, for example, we want to learn discriminative rules for deriving the
sensor feature s jump from basic features, E+ consists of the set of ground facts for
the target predicate s jump and E� consists of all other time intervals for which
s jump is not true. For this learning step, B consists of the de�ning predicates,
describing relevant basic features, i.e., those features, which refer to the same Trace,
Sensor, and time interval. Given the example s jump(tr10,90,s1,10,18,parallel), the
data preparation tool will generate the case with this target predicate instance and
the relevant de�ning predicate instances stable(tr10,90,s1,10,14, ), incr peak(tr10,-
90,s1,14,16, ), and stable(tr10,90,s1,16,18, ). In an analogous way cases can be
constructed for the other learning steps, yielding the trainings sets for the ILP-
algorithms.

4.3. Grdt

In principal, most of the ILP-algorithms can deal with our learning tasks. Since the
hypothesis space for learning in Horn logic is huge | even if we abstain from proper
functions | the di�erent algorithms have di�erent ways to restrict the search.

Semantically pruning the search restricts the hypothesis space dependent on the
given data, leading the search into areas of special interest and pruning parts that
seem to be unnecessary to characterize the goal concept. The information gain

heuristic, used by foil (Quinlan, 1990), is an example for a semantic restriction.

Syntactic bias, particularly language bias, is used by many di�erent systems
to restrict the search space (e.g., (Silverstein & Pazzani, 1991), (De Raedt, 1992),
(Bergadano & Gunetti, 1993), (Tausend, 1993)). For all of them, the user must
be able to provide the structure of the expected rules to generate the search
space description. This step depends heavily on the chosen representation lan-
guage, the signature. Here, we consider two algorithms using language bias, gren-
del (Cohen, 1994) and rdt

6 (Kietz & Wrobel, 1992). grendel uses antecedent

description grammars, a variant of context free grammars, to describe the hypoth-
esis space. Instead of usual terminal and nonterminal symbols, terminal and non-
terminal literals are used. The terminals of the grammar are the predicates of the
domain. During learning, grendel specializes the actual hypothesis by extending
one of its nonterminals. Then it tests the new hypothesis in a similar, but more
foresighted way than foil.

rdt uses another way to describe the hypothesis space, namely rule schemata.
These schemata are second order rules, describing sets of learnable rules of the same
structure. Their predicate variables are successively instantiated during learning.
After each instantiation, rdt evaluates the possibly partially instantiated hypoth-
esis. Whereas both, foil and grendel, learn concepts according to the de�nite
ILP semantic, rdt �nds all regularities concerning the goal concept. Only if no
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further specialization of a hypothesis can lead to an acceptable rule, this part of
the hypothesis space is pruned in a completeness preserving way.
In this section, we present a grammar based rule discovery tool, grdt, combining

ideas of grendel and rdt in order to handle syntactic bias more 
exible and more
easily. Like grendel, grdt uses grammars to describe the hypothesis space. But
instead of describing the learnable rules themselves, the grammar de�nes a set of
rule schemata whose predicate variables are instantiated during learning. Like rdt,
grdt is a nonmonotonic learner.

4.3.1. Grammars de�ning sets of rule schemata { the hypothesis space

We will now introduce the use of grammars for de�ning sets of rule schemata which
establish the hypothesis space. In a �rst example, rules are to be learned where an
object must have two speci�c properties to derive the goal concept. For this task
the following rule schema can be used7:

P (X) & Q (X) ! Concl (X).

rdt tries to �nd predicate names for the predicate variables Q and P such that
the resulting rule satis�es the acceptance criterion, e.g., the simple rule parent(X)
& female(X) ! mother(X). This rule schema can be described with a single grdt
grammar rule:

Concl (X) ; P (X), Q (X).

Whereas both, rdt and grdt, determine the predicate symbols to be used during
runtime, grendel needs the predicate names occurring in the grammar:

body (mother (X)) ,! predicate (X), predicate (X).
predicate (X) ,! parent (X).
predicate (X) ,! female (X).
predicate (X) ,! male (X).
...

This is a disadvantage for the user, who, dependent on the domain, may have to
specify numerous predicates.
If the number of necessary properties of an object X should not be �xed, rule

schemata of di�erent length are necessary:

P1 (X) ! Concl (X).

P1 (X) & P2 (X) ! Concl (X).

P1 (X) & P2 (X) & P3 (X) ! Concl (X).
...

The maximal necessary length of the rule schemata must be known a priori to
learn all expected rules. rdt orders the di�erent rule schemata according to an
extended �-subsumption ((Kietz & Wrobel, 1992), (Plotkin, 1970)). If a speci�c
instantiation of a general rule schema (e.g., grandparent (X) ! mother (X)) covers
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too few positive examples, i.e., this hypothesis is too special, every more special rule
schema (e.g. grandparent (X) & P2 (X) ! mother (X)) will be pruned, because it
cannot cover more positive examples than the more general hypotheses do. While
the ordering of sets of hypotheses and its use for pruning is considered an advantage,
the speci�cation of premises for all lengths is a disadvantage for the user of the
learning tool. In contrast to rdt, grdt grammars allow to de�ne all possible
schemata with three simple grammar rules:8

Concl (X) ; it (X).

it (X) ; P (X).

it (X) ; P (X), it (X).

grendel's grammar is similar to grdt's, but, again, the predicate names have to
occur in the grammar:

body (goal (X)) ,! it (X).
it (X) ,! predicate (X).

it (X) ,! predicate (X), it (X).

predicate (X) ,! : : :

Let us now consider rules to be learned where a predicate occurs multiple times
as a premise of a rule with di�erent arguments:

P (X1, X2) ! Concl (X1, X2).

P (X1, X2) & P (X2, X3) ! Concl (X1, X3).

P (X1, X2) & P (X2, X3) & P (X3, X4)! Concl (X1, X4).
...

With these schemata, for instance, we are capable to learn a rule characterizing
ancestor-lines of length three: ancestor(V1,V2) & ancestor(V2,V3) & ancestor(V3,V4)
! ancestor line 3(V1,V4). Unfortunately, the di�erent rule schemata cannot be or-
dered along �-subsumption, because of the binding of the head-variables. So, instan-
tiation and testing starts from scratch with each new schema. grdt uses another
way for pruning. Usually, each expansion of a nonterminal specializes the current
hypothesis, because the hypothesis cannot become shorter by this step. Then, all
further expansions of a hypothesis can be dropped, if the current hypothesis is
already too special.
In grendel, for each transitive predicate, a subgrammar must be created. If, for

instance, we have the two transitive predicates male ancestor and female ancestor,
two subgrammars must be given.

body (goal (Xs, Xe)) ,! it (Xs, Xe).

it (Xp, Xe) ,! it male ancestor (Xp, Xe).

it (Xp, Xe) ,! it female ancestor (Xp, Xe).

it male ancestor (Xp, Xe) ,! male ancestor (Xp, Xe).

it male ancestor (Xp, Xe) ,! male ancestor (Xp, Xi), it male ancestor (Xi, Xe).

it female ancestor (Xp, Xe) ,! female ancestor (Xp, Xe).

it female ancestor (Xp, Xe) ,! female ancestor (Xp, Xi), it female ancestor (Xi, Xe).
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In contrast, grdt's grammar allows the user to write predicate variables as argu-
ments of nonterminal literals. Then the predicate variables of the di�erent grammar
derivations become identical by uni�cation. The following example shows a gram-
mar de�ning the previously displayed rule schemata, plus rule schemata of length
greater than three premises:

Concl (Xs, Xe) ; it (P, Xs, Xe).

it (P, Xp, Xe) ; P (Xp, Xe).

it (P, Xp, Xe) ; P (Xp, Xi), it (P, Xi, Xe).

P can become instantiated by both predicates, male ancestor and female ancestor.
Let us summarize the weaknesses of grendel and rdt, that are overcome by

grdt. In grendel, the predicate names themselves occur in the grammar. This
results in large grammars, which must be changed whenever the set of predicates
of the knowledge base changes. The second problem concerns rules where the
same predicate multiply occurs in the premises. For a single predicate it is easy
to formulate a grammar de�ning multiple occurrences. If, however, more than one
predicate exists, for which these sequences must be built, the grammar becomes
complex: for each sequence a subgrammar has to be speci�ed. Using a grammar for
the speci�cation of rule schemata, it is possible to maintain the language bias when
the set of predicates changes. The weakness of rdt's rule schemata is their �xed
length. Rules of increasing length can easily be speci�ed, even if the transitivity of
a predicate is to be expressed.
Furthermore, grdt uses the generalization order given implicitly by the grammar

instead of �-subsumption. In this way multiple testing of the same hypotheses is
avoided.

4.3.2. Search in the hypothesis space

The grdt-algorithm starts with the goal predicate as conclusion and generates
the �rst, the most general hypothesis, depending on the grammar, by choosing the
grammar's starting rule and instantiating its left-hand side with the goal predicate.
Then, it searches the hypothesis space in depth-�rst order from general to special
hypotheses. Each iteration consists of two steps, the specialization of the hypothesis

and the test of the hypothesis.

Specialization

For specializing a hypothesis four alternatives exist:

� if the hypothesis contains an uninstantiated predicate variable, try to �nd an
admissible instantiation of this variable.
Admissible instantiations are all predicates of the knowledge base with the right
arity, right argument sorts, and corresponding to the task structure, de�ned by
mobal's predicate structuring tool.
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� else if the hypothesis contains a nonterminal symbol, try to expand the non-
terminal.
To expand the nonterminal, the next grammar rule, which has this nonterminal
as left-hand side is used to replace the nonterminal with the grammar rule's
right-hand side.

� else if the hypothesis contains a constant to be learned, try to �nd an admissible
value for this constant.
grdt learns constants in exactly the same way as rdt. To learn nominal
constants, grdt tests all remaining instantiations of that variable. For ordered
values, the smallest (or largest) term of the instances of this variable is chosen
�rst. If the hypothesis is accepted or rejected, all greater (or smaller) terms,
respectively, are pruned.

� else no further specialization is possible; start backtracking.

Hypothesis test

After each specialization step, the resulting hypothesis must be tested. The cardi-
nalities of the following sets are counted, again exactly like rdt does:

positive examples covered by the hypothesis; negative examples covered
erroneously; uncovered positive examples; yet unknown facts, that can be
derived by the hypothesis (predicted); total number of examples.

Testing a hypothesis means to �nd all solutions for the goal concept with the hy-
pothesis | which is just a Horn clause | as concept de�nition and the background
knowledge as theory. This test is tractable because the facts are ground (Wrobel, 1987),
(Morik et al., 1993). Since the knowledge is managed by mobal's inference engine
im-2, the test itself is slightly di�erent to a simple prolog-call.
The user constructs an acceptance criterion using the cardinalities above. For

instance, the user may want a hypothesis to cover more positive examples than it
does not cover and a ratio of covered positive examples divided by covered negative
examples greater than 2.
The result of counting the items is compared with the acceptance criterion. The

evaluation is used for pruning the search safely:

� if the hypothesis is too special (i.e., the pruning criterion is satis�ed)
stop specializing and start backtracking;

� else if the hypothesis is partial (i.e., not all the predicate variables, constants
to learn, and nonterminal symbols of the hypothesis are instantiated),
continue specialization;

� else if the hypothesis is accepted (i.e., the con�rmation criterion is satis�ed)
store the rule and start backtracking. Further specialization is not sensible
because all more special rules are subsumed by the learned one;

� else the hypothesis is too general, but cannot be expanded; start backtracking.
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4.3.3. Open Problems

Open problems of grdt should not be hidden. The specialization step does not
guarantee, that the new hypothesis is really more special than the one tested previ-
ously, although this is assumed for pruning. Having a grammar de�ning derivations
without any specialization of the derived rules, the termination of the algorithm is
not assured. However, if it terminates, the algorithm has carried out a complete
search through the hypothesis space. The completeness of grdt is inherited from
the completeness of rdt.
Another problem concerns the way how to exclude multiple search of the same

part of the hypothesis space, if di�erent derivations of the grammar yield the same
hypotheses.

5. Experiments

Our investigations are conducted in cooperation with the university of Karlsruhe.
Their mobile robot priamos (Dillmann et al., 1993) is used for executing the move-
ments and gathering the sensor data. priamos is equipped with 24 sonar sensors
measuring the distance to the nearest object in the range of the emission cone.
We had data from paths in a variety of simple rooms. The rooms di�er in two

respects. First, the doors of the rooms di�er. They are wider or smaller, have
thicker or thinner doorframes and the door is centered or it is near to a wall.
Second, we have some obstacles in the rooms, which could easily be muddled with
a doorway. 17 of the totally 72 paths are movements through a doorway, and
10 paths are along a door. Each trace is documented by 36 to 118 data sets. In
total, we had 82139 measurements, each one consisting of the following entries:

trace number and point of time; robot position; sensor number, its position
and orientation; measured distance; object and edge number of what is
sensed.

As mentioned in Section 4, the input to learning consists of sensor data in a known
environment. Hence, the sensed point and the object to which it belongs is given.
The learning task presented here is to acquire the perceptual feature of moving
through a doorway, through door.
For learning, we used three di�erent training sets, each consisting of 26 of the 72

traces and about 2500 measurements. In two of the training sets, the robot moved
11 times, in a third training set, it moved 13 times through the doorway. For
verifying the learned rules, we used the remaining 46 traces as test set, containing
those examples of movements through a doorway, which were not in the respective
training set (6 and 4 examples, respectively). In addition, the test sets contained
11 situations looking similar to movements through a doorway.
We now describe the results of learning three types of rules:

� Rules for patterns for single sensors (see Section 5.1)
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� Rules for patterns for groups of sensors (see Section 5.2)

� Rules for moving through a doorway in terms of patterns for sensor groups (see
Section 5.3)

For each type of rule, background knowledge, examples, and a grammar de�ning a
set of rule schemata is prepared. We illustrate the learning step by step in the next
sections.

5.1. Learning rules for single sensors

In this section, we describe how to learn rules for single sensor features. To test the
in
uence of the choice of basic features (Section 4.1), we used three di�erent ways
of calculating basic features of di�erent granularity.
The �rst variant has the least re�ned granularity. Basic features are intervals of

a �xed length, the symbol that is attached to each interval depends on the gradient
between the �rst two measured distances. Totally, a set of 7693 basic features was
constructed.
The second variant, with a medium granularity, calculates the length of the se-

quence dependent on the average gradients between each pair of consecutive mea-
surements. With this variant, we got a set of 9842 basic features.
For the variant with the �nest granularity, we additionally regard the divergence

of the measurements and add the new measurement to the interval only if the
divergence is below a threshold. Now, we calculated a set of 14261 features.
The �rst learning step was to �nd sequences of basic features characterizing sen-

sor features, i.e., a speci�c constellation of edges sensed by a single sensor. For
describing the hypothesis space, the following grammar is used:

Concl (Tr, Se, T1, T2, Movement) ; seq (Tr, Se, T1, T2, Movement).

seq (Tr, Se, Ti, T2, Movement) ; BF (Tr, , Se, Ti, T2, ).

seq (Tr, Se, Ti, T2, Movement) ; BF (Tr, , Se, Ti, Tj , ),

seq (Tr, Se, Tj , T2, Movement).

grdt requires the de�nition of an acceptance criterion. We have chosen a cri-
terion accepting all hypotheses covering more positive examples than they derive
additionally (pos � pred). For four di�erent goal concepts (namely s line, s jump,
s convex, s concave) we used the di�erent training sets for learning resulting in dif-
ferent sets of rules. In Table 1, we have summarized the results of learning rules
for single sensors. It shows for each basic feature set the average number of learned
rules, counted for the di�erent goal concepts separately. The next column shows
the total number of positive test instances for the four concepts. The third value
is the total number of instances, derived by the learned rules. From all derived
instances some are derived correctly (next column), i.e., they are instances of the
concept. The last two columns present the coverage and the correctness.
The results clearly indicate the choice of the basic features to be crucial. Tracing

learning explains, why the �rst set of basic features produces poor results. The time
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Table 1. Learning results for sensor features.

#rules #given #derived #correctly der. correct/given correct/derived

Basic Feature Set 1

grdt 1.9 5113 541 279 5.5% 51.6%

Basic Feature Set 2

grdt 12.8 6238 3278 1750 28.1% 53.4%
grendel 3.5 3252 1527 329 10.1% 21.6%

Basic Feature Set 3

grdt 7.6 6238 5543 589 9.4% 10.6%

intervals of the basic features do not often �t the time points of the examples, i.e.,
the sensor features. So only few of the given examples could be used for learning,
resulting in a very low number of correctly derived instances. The second basic
feature set seems to have the best granularity among the chosen sets.
In addition to the tests described previously, we tested rdt, foil, and grendel.

rdt learned exactly the same rules as grdt did, because the hypothesis spaces are
equal. However, because of the di�erent pruning techniques, grdt is up to �ve
times faster than rdt.
To run foil, we prepared negative examples explicitly, because otherwise, foil

runs out of memory, even if we restrict the automatic generation of negative exam-
ples to 1%. We provided all sensor features, that are not currently goal features as
negative example. For instance, if s jump is the goal predicate and s concave (trace3,
sensor1, 4, 19, parallel) is an instance of s concave, we added not (s jump (trace3,
sensor1, 4, 19, parallel)). From this data, foil learned a single, very unintuitive
rule:
no movement (Tr, Or, Se, T1, T2, G) ! s jump (Tr2, Se, T3, T4, parallel).
This rule is useless, because sensor features describe perceptions while the robot

is moving.
The third, and most interesting, comparison is the one with grendel. For this

test, we have taken the best basic feature set, Set 2, and a grammar corresponding
to grdt's one. Table 1 summarizes the results, which clearly indicate that for our
domain, a learner that just covers the goal concept learns too few rules, that are
unlikely to be applicable in future scenes.9

5.2. Learning rules for groups of sensors

In the next step, we learned rules de�ning features for groups of sensors. Here,
we used grammars focusing the search to hypotheses which constrain the number
of sensors of a speci�c sensor class perceiving the same single sensor feature. We



LEARNING CONCEPTS FROM SENSOR DATA 21

Table 2. Learning results for sensor group features.

#rules #given #derived #correctly der. correct/given correct/derived

CC1 193 23000 20642 19553 85.0% 94.7%

CC2 152 30948 31137 26436 85.4% 84.9%

considered classes with one, three, and �ve sensors. Via the grammars, we also
constrained the time intervals during which the pattern must be perceived by the
sensors. The largest di�erence between instants of time is de�ned by the background
knowledge predicates disucc, i = i; : : : ; 5. Some rules of the grammar used for
learning rules for groups of two sensors, belonging to a sensor class with three
sensors, are

Concl (Tr, SCl, T1, T2, M) ; sf comb (Tr, T1, T2, M).

sf comb (Tr, T1, T2, M) ; SF (Tr, Se1, T1, T2, M),

SF (Tr, Se2, T1, T2, M),

sclass (Tr, Se1, First, Last, SCl),

sclass (Tr, Se2, First, Last, SCl),

First � T1, T2 � Last,

Se1 < Se2.

sf comb (Tr, T1, T4, M) ; SF (Tr, Se1, T1, T2, M),

SF (Tr, Se2, T3, T4, M),

sclass (Tr, Se1, First, Last, SCl),

sclass (Tr, Se2, First, Last, SCl),

First � T1, T4 � Last,

Succ(T1, T3).

For learning rules describing sensor group features (i.e., sg line, sg jump, sg convex,
and sg concave) in terms of sensor features, we built learn and test sets from the
same traces as in the �rst learning step. We have tested two di�erent acceptance
criteria, the �rst (CC1) accepts all rules covering at least one positive example. The
second (CC2) is the same as for learning sensor features, accepting rules if they cover
more examples than they predict. Table 2 shows the result of learning evaluated
with the test set. The columns represent the same �gures as in the previous table.
The correctness of the learned rules surpasses that of the �rst task. The number of
learned rules is very high, resulting from the high number of chosen sensor classes.
Because of current experiments, we are optimistic to learn the necessary sensor
classes using conceptual clustering.
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Table 3. Results of applying all learned rules

#rules #given #derived #correctly der. correct/given correct/derived

Tr. Set 1 12 17 17 12 70.6% 70.6%
Tr. Set 2 11 17 14 11 64.7% 78.6%
Tr. Set 3 10 17 16 12 70.6% 75.0%

5.3. Learning perceptual features of moving through a doorway

The last learning step is to combine features sensed by di�erent sensor groups of the
robot to describe a perceptual feature like moving through a doorway. The quality
of the rules learned in this step is the most relevant one, because it determines
whether the whole set of rules can be applied successfully in di�erent environments
or not.

For learning, we prepared three training sets, each with 21 traces. In 13 of these
traces, the robot moved through the doorway of the room, 6 times parallelly to the
doorframes and 7 times diagonally. The hypothesis space is de�ned by a grammar
specifying only a single rule schema:

Concl (Tr, Tstart, Tend, Movement) ; SGF (Tr, SClass1, T1, T2, Movement),

SGF (Tr, SClass2, T1, T2, Movement),

SClass1 6= SClass2,

Tstart < T1, T2 > Tend.

The acceptance criterion accepts hypotheses covering more than 3 positive examples
and no negative one.

We used all 72 traces to verify the learned rules. As the test set only contains
sensor measurements, learned rules from all levels of abstraction were applied to
derive the perceptual features. Table 3 shows the results. In every test set, three
situations are classi�ed incorrectly, in which the robot moved through the doorway
very close to one of the doorposts. Because of the short distance, the sensors did
not got any echo and hence, it could not derive the feature through door.

Overall, the result justi�es our approach. The quality of the learned rules im-
proves as the representation hierarchy is climbed. The rules are capable to classify
many of the given examples correctly. This way to get more and more abstract
concepts is robust against the noise, produced by the weak ultrasonic sensors.

As this test evaluates all rules up to perceptual features, it is the most important
one. It shows the advantage of designing a sequence of learning tasks for concepts
at more and more abstract levels.
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6. Related and future work

We have presented an approach to making a complex overall learning task tractable.
The learning of high-level concepts from sensor data gathered during several paths
in known environments (particular o�ce rooms) has been split into a sequence of
learning steps. The results of all learning steps together form a knowledge base
that derives high-level concepts from low-level data. The training phase is o�-line.
The results of the training phase show that inductive logic programming is capable
of constructing high-level descriptions of actions, perceptions, and the environment
from sensor data. Although several learning steps { particularly those at lower levels
{ deliver concepts that misclassify some data, the overall knowledge base achieves
a high accuracy for high-level concepts. This robustness encourages us to put the
learned concepts to use: concepts are to be executed in unknown environments of a
certain type, e.g., o�ce rooms. During the execution phase, the rules characterizing
concepts are applied to the actual sensor measurements while performing certain
moves. In the next section, we describe how we plan to apply the learned concepts
to real-world missions of a mobile robot.

6.1. Future Work

The learned knowledge base is to be used for task speci�cation, execution monitor-

ing, explanation of error recovery, and for the update of the environment representa-

tion. When using the knowledge base for task speci�cation, a planning component
is needed that converts high-level concepts to actual perceptions and actions of the
robot. The robot user may state a goal concept. The planner10 then proves the
premises of the rule that characterizes the concept and calls the execution of basic
actions in the following way:

Given: State (given by an action-oriented perceptual feature), goal concept

Planning:

If the veri�cation of the sensor pattern of the high-level concept has been
achieved,

then stop with the message \success" and output the recordings of actions
and perceptions in abstract terms.

If no planning for the current state is possible using the given rules

then stop with the message \fail" and output the recordings of actions and
perceptions in abstract terms.

Else derive a plan for transferring the current state into a precondition of the
goal concept (high-level planning), and

derive an action with its corresponding perceptual feature (deriving lower-
level actions)
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Acting: execute the action and acquire sensor data until

� either you are in danger to collide with an object { then change direction

� or you have veri�ed a perceptual feature for an action { then proceed with
planning.

Action and perception are closely related in this incremental planning strategy.
The learned rules are used by backward and forward chaining. Backward chaining
creates a plan for transferring the current state into the precondition of the high-
level concept. Backward chaining also derives the low-level commands of the robot
from the high-level concepts. Forward chaining derives the perceptual features from
the corresponding sensor data acquired during a certain move of the robot.
When, for instance, the planner is called with the state

standing(t88, 45, 48, before wall, right, small side, along door)

(standing(Trace,Time,Time,Perception,SensorClass,RobotSide,PreviousPerception))
and the goal concept

move in front of door(t88, 45, T4, T3),
backward chaining veri�es the preconditions of the learned rule for move in front of -

door. The �rst condition is already given by the current state. The second condition
(opposite(right, X)) is veri�ed by matching the fact opposite(right, left), which is part
of the knowledge base. The premise

parallel moving(t88, 48, T3, slow, backwards, in front of door, left)

requires further backward chaining in order to achieve basic robot actions. Here, the
basic action is move(t88, 48, T3, slow, backwards)11. This basic action is performed
until the sensor pattern in front of door is veri�ed. This is the acting step of the
planner. Within this step, forward chaining is used to derive sensor patterns from
incoming sensor data. It is for this use of basic features, that their calculation
is already performed incrementally. As soon as the sensor group of the robot's
left side perceive measurements that indicate the concept in front of door, the action
stops and T3 becomes instantiated with the point in time of the last sensor data
necessary to conclude in front of door. The result of the acting step is

parallel moving(t88, 48, 72, slow, backwards, in front of door, left).
Planning proceeds with proving the veri�cation condition of move in front of door,

standing(t88, 72, T4, in front of door, left, small side, in front of door).
This evokes again the acting step. For three more points in time the sensors at the
robot's left side (which is its small side) measure distances, that are classi�ed as
in front of door by forward chaining. The result of the acting step is

standing(t88, 72, 75, in front of door, left, small side,in front of door).
The goal concept is now veri�ed with the fully instantiated fact

move in front of door(t88, 45, 75, 72).
Until now, the coupling between the knowledge-base and the robot is \manual",

i.e., the data exchange is realized by an engineer who loads the basic actions derived
by the knowledge-based system into the robot system and loads the sensor data of
the robot into the knowledge-based system. We are currently working on conducting
real-world experiments in collaboration with the University of Karlsruhe and their
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robot priamos. We are aware of problems with the time constraint of real-time
processing that can hardly be met by our planner. This may well force us to
distinguish in the future between planning in advance and planning at runtime as
do (Gervasio & DeJong, 1994).
We explore the compilation of a rule set and facts into a structure that can more

e�ciently be executed in real-time. A �rst approach is to map rule sets to tree
automata, whose �nal states represent concepts, which have to be recognized, in
order to verify, that a goal has been achieved. In (Rieger, 1995b), we have shown,
how a deterministic �nite state automaton for the recognition of sensor features
can be inferred. It takes as input a sequence of temporally ordered observations,
i.e., basic features. Each of its �nal states is associated with one or possibly many
sensor feature concepts. During the performance phase, we apply a marker passing
method to the automaton: When the robot moves through the environment, its
sensors constantly perceive observations, each of which might be the beginning of
a string, which is accepted by the automaton. For each observation a marker is
generated. Each marker is passed, if possible, from its current state to a successor
state according to the transition function. If a marker has reached a �nal state,
a message is produced, that an object has been recognized, which is possibly an
instance of several concepts.
If a �nal state is associated with di�erent concepts, we have the situation, that

the sequence of observations leading to it, cannot be interpreted unambiguously by
the robot. It cannot be sure, in which state it is and has di�culties in choosing
the next action. In order to account for these uncertainties arising from ambiguous
observations, we infer from the deterministic state automaton a hidden Markov
model. This is done by splitting up the ambiguous �nal states into several unam-
biguous ones, by introducing non-deterministic transitions to the newly generated
states, and by associating probabilities with the non-deterministic transitions. Dur-
ing learning, the training data is evaluated in order to derive relative frequencies,
which are taken as estimates for the transition probabilities. During the perfor-
mance phase, we use a modi�ed version of the Viterbi algorithm (Jelinek, 1976),
with which we determine the concept, which most probably has been perceived. In
this way, the acting phase of our performance step is enhanced.

6.2. Related Work

There are similarities between our work and Shen's approach (Shen, 1993) to learn-
ing from the environment. In both cases the objective is to fuse application of rules
with their construction, i.e., to couple learning with its evaluation. Shen also ap-
plies rule induction from examples in the context of problem-solving. With respect
to the bidirectional use, our concepts are similar to the prediction rules used by
Shen. The main di�erence concerns the domain of application, which in our case is
much more demanding, as we are dealing with real-world data.
In the jpl Telerobot (Doyle et al., 1986) a strips-like planner is used, in which

the precondition lists are amended to contain sensory requests to verify beliefs, and
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the postcondition lists are amended to include sensory requests that validate the
e�ects of each action. The authors present a representation language in which these
sensory requests are to be programmed. The idea being the same, our approach
di�ers in that we represent and learn plans within the ILP-framework.

Our approach to the application of learning to robotics is closely related to ap-
proaches to learning plans for robots (Mitchell, 1990), (DeJong & Bennett, 1993),
(Gervasio & DeJong, 1994), and (Gil, 1994). Some distinctions need to be men-
tioned. First, we do not use an a priori model of the environment. Therefore, we
do not learn from mismatches between the predicted and the observed e�ects of ac-
tions as (DeJong & Bennett, 1993) and (Gil, 1994) do. Our learning does not re�ne
a given plan, instead it actually constructs the rules to be used for planning. Sec-
ond, our representation of planning operators is not that of classical planning with
add and delete lists which makes inference non-monotonic. Instead, we attach time
instants to sensor measurements and, on higher levels, we attach time intervals, so
that reasoning remains monotonic. Our rules can be interpreted as operators with
preconditions and postconditions, but technically they are just clauses. Third, our
representation of states is di�erent from the work cited above. A state corresponds
to a time interval in which a particular sensor pattern is valid. The validation of
the sensor pattern is left until actual execution. This way, we avoid committing
ourselves prematurely to a �rm sensor value. Our plan just states that a move has
to be executed until a pattern of distance measurements is registered. This is sim-
ilar to the contingent variables of (Gervasio & DeJong, 1994). Note, however, that
in our case the sensor pattern is more complex than just a variable for a particular
distance. A perceptual feature in our approach already abstracts beyond particu-
lar distance values and gives relations between sensor measurements instead. This
abstraction allows a perceptual feature to cover many di�erent situations. The par-
ticular time interval is instantiated in the rule by the value determined at runtime
and propagated to other rules by uni�cation. Fourth, in contrast to the mentioned
planning approaches, our representation combines sensing and action at every level
of detail. That is, we do not have separate sensory operators for acting in order
to recognize an object, but these actions are treated in the same way as other ac-
tions. In our example, it is the along door feature which recognizes the door so that
move through door becomes applicable.

7. Conclusions

We have applied machine learning to a challenging task, namely learning a hier-
archy of concepts from sensor data and robot actions. We tackled this complex
overall learning task by dividing it into several learning steps that link several
levels of abstraction. In order to perform learning from examples, we applied a
simulation component that classi�es measurements with respect to the edges of the
known environment that have been sensed. An example generation tool for putting
together training sets for one learning step has been developed. A comfortable
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human-computer interface supports the management of the various training and
test sets and shows the training paths graphically.

We have designed a representation language that expresses concepts which fuse
perception and action for robot navigation. Even without learning capabilities, the
high-level description is useful as has been argued by (Stopp et al., 1994). Their
project aims at natural language access to a robot. On one hand, the user can
specify the robot's task in a way appropriate for human users. On the other hand,
the user can more easily understand the robot's actions. In error situations, user
and robot can communicate in order to recover from the failure. We do not go
as far in the high-level description as natural language does but consent to Prolog
clauses which are already easily understandable for a knowledgeable user. More-
over, natural language processing requires high-level concepts that are perceptually
anchored. We learn such concepts.

The application of ILP to sensor and action data goes beyond standard ILP ap-
plications. First, the application of symbolic learning to robot data requires the
conversion of numerical data to qualitative terms. An algorithm for the calculation
of basic features has been developed. Second, the rather large size of the train-
ing sets asks for appropriate means to restrict the hypothesis space. grdt is an
ILP-algorithm, which uses grammars in order to de�ne rule schemata that restrict
the hypothesis space. Trying to generate negative examples by the closed-world
assumption (as foil does) leads to tremendously large data sets that cannot be
handled. grdt does not explicitly create a set of negative examples but applies
the closed-world assumption implicitly, if the user de�nes the acceptance criterion
such that no new instances of the target concept are to be predicted. Third, as
there are several ways for a concept such as, e.g., move through a doorway, to be
applied, as many non-redundant rules as possible should be learned. Instead of
ending the search for rules as soon as the target concept is covered, grdt stops the
search only, when further hypotheses would be redundant or cannot be accepted
(i.e., some of the rule premises already cover too few positive examples).

The learning results have been tested in two ways. First, a test set for the par-
ticular learning step has been formed. Here, the learned rules of this step are used
independent of other learned rules. Second, the rule base that has been acquired
by several learning steps was tested on sequences of basic features. It became clear,
that misclassi�cations at lower levels of abstraction do not result in the misclassi�-
cation of concepts at higher levels of abstraction. If, for instance, the measurements
of one sensor are not right, the sensor group may nevertheless deliver the correct
pattern. This is due to (learned) rules that demand three sensors of a group to
derive the same pattern before this pattern is said to hold for the sensor group. In
this way, the hierarchy of learned concepts contributes to the robustness of learning
results. Experiments have shown that grdt learns concepts from data supplied by
a robot e�ectively and e�ciently.
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Notes

1. We follow the Prolog convention and write constant terms in small letters, variables start with
a capital letter.

2. For technical reasons we had to introduce conversion rules that convert the predicate of a rule's
conclusion into an argument of another predicate. An example is the rule through door (Tr, T1,
T2, PDir, Side, Orien) ! period of time perception(Tr, T1, T2, through door, PDir, Side, Orien).

3. Learning an incremental function approximator de�nitely goes beyond the purpose of our
research.

4. This and the following de�nition are taken from (Muggleton & De Raedt, 1993).

5. Helft's approach actually does not use positive and negative examples but completes the given
observationsby the generalizationstep, which implies a closed-world assumption. As we assume
our features to be disjoint, all instances of another feature are considered negative examples
for the feature currently to be learned. This approach leads to almost the same results as
Helft's approach. The di�erence is, �rst, the 
exible user-given acceptance criterion, applied
by GRDT, and, second, the focus on one goal concept for learning in one learning run.

6. rdt is one of the learning tools of the knowledge acquisition system mobal (Morik et al., 1993)

7. A short note about our typographical conventions: rule schemata of rdt are written with ordi-
nary arrows (! ), grendel's grammars with ,! , and grdt's grammars with; . Nonterminal
literals are written slanted, terminals are written sans serif. Variables (both, predicate variables
and argument variables) that should be learned by rdt or grdt are written in bold face.

8. Variables occurring in di�erent grammar rules are regarded to be di�erent.

9. Because grendel sometimes runs out of memory, too, we did not performed all tests, and
hence, the number of given examples is smaller than with grdt.
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10.A small planning component has been implemented by Stefan Sklorz.

11.The sides of the robot are named with respect to the robot's movement such that the direction
of the movement always corresponds to the front side. For execution, the relative orientation
with respect to the movement is converted to the absolute orientation of the robot, where
sensor s0 de�nes the front side of the robot. In the example here, relative and absolute
orientation happen to be the same. When the robot moves backwards with respect to the
previous movement, the sides change their names so that they are now named with respect to
this movement. In this way, right becomes left when the robot moves backwards. Hence, the
door has to be perceived by the sensors at the left side, which before were the sensors at the
right side.
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