MOBAL’s Predicate Structuring
Tool

Volker Klingspor

24. Sept. 1991

Gesellschaft f"ur Mathematik und Datenverarbeitung
Schlo”s Birlinghoven
Sankt Augustin

Contents

1 Introduction
1.1 Theproblem e
1.2 The tasks of the PST e

2 The PST: Representation and Operations

2.1 The textual interface of the PST
2.1.1 The presentation of a topology
2.1.2 Entering of topology nodes L.
2.1.3 Deletingof nodes L
2.1.4 Entering of links o o
2.1.5 Deleting links
2.1.6 Attaching predicates toanode oL oL
2.1.7 Removing predicates from anode L.
2.1.8 Creating new topologies L.
2.1.9 Generating an abstraction of the inference structure

2.2 The graphic interfaceo L o
2.2.1 General operations on the window
2.2.2 Operations on the canvas
2.2.3 Operations on thenodes oL
2.2.4 Operations on the edges L.

2.3 The program interface L L L oL

2.4 The Agenda L e

3 The automatic generation of a topology

3.1 Building the rule graph L oo oL

3.2 Shrinking of strong components L oL

3.3 Merging nodes depending on neighborhoods

3.4 Merging of outsiders L e

3.5 Merging of successor freenodes Lo Lo

3.6 Other methods

3.7 The application of the algorithms by the user

4 Topology-influenced learning

4.1 Learning in MOBAL
4.2 The restriction of learningo Lo oo
4.3 The focussing of learning L o oL

5 Conclusion

5.1 Results. o 0 e e e
5.2 Discussion e e e e
5.3 Acknowledgements L L

1 Introduction

1.1 The problem

For acquisition of knowledge it is necessary to understand the whole knowledge base, not
only single items of it. Littman writes 1987 [Kar88]

“ . .1t would be very useful to study the organization of our knowledge engineer
knowledge.”

Thus, we have to understand the structure of the knowledge. There are two types
of data that can be structured. The first are the objects of the knowledge base. These
are structured by a taxonomy of sorts like the STT of MOBAL [Kie88]. The second are
the predicates of a knowledge base. The issue of this paper is to describe a tool called
PST (predicate structuring tool), which structures these predicates. This is similar to the
inference layer of KADS [BW89].

The dependencies between the predicates are given by the rules which can be repre-
sented by a rule graph. But we have a lot of troubles to present a rule graph of a large
knowledge base on the screen, so normally the user has to focus on a little section of the
graph. And it is impossible to understand the structure of a knowledge base by seeing only
a small part of the dependencies. Thus, focussing alone is not sufficient for the inspection
of the rules.

A second approach to reduce the graph is the abstraction of it. We can merge several
predicates with the same intention to one node of the rule graph. By this merge, the
number of nodes are reduced just as the number of edges between nodes. The abstraction
destroys local dependencies, but the structure of the graph will be conserved.

The abstract representation of a knowledge base has several advantages:

e The user gets an overall view over the knowledge.
e The analysis and the integration of data is more simple.
e The user gets a guidance for the further knowledge acquisition.

In MOBAL, this abstract dependency graph is call topology. This paper describe the
operations on topologies and a tool which builds a topology by abstracting the rule graph.

1.2 The tasks of the PST

In this section, we present some tasks which will be performed by the PST, because the
PST is not only useful for inspection.

Inspectability: The user must be able to understand the knowledge base, supported by
the PST.

Modularisation: The user can define modules of the knowledge base, the interfaces of
two modules are described by edges between nodes of the modules.

Task-oriented representation: The user can give a task structure by the PST. This
structure can be different from the given rule base.

Reduction of the hypothesis space: MOBAL’s rule discovery tool (RDT) uses the
PST to restrict the learnable rules to those rules which are compatible with the
topology.

Focussing the learning: The difference between the user-given task oriented topology
and a system-generated topology can be used for focussing the learning on some very
interesting rules.

Automatic generation of a topology: The predicate structuring tool generates the
inference structure of the knowledge base by abstracting the rule graph.

2 The PST: Representation and Operations

In MOBAL it is possible to create as many topologies as you like'. Every topology is
a directed acyclic graph, a dag. All predicates of the knowledge base are attached to
the nodes of the graph. The edges of a topology define possible or desired inferences,
depending on the purpose of this topology. Every topology contains an isolated node,
that means this node is adjacent to none of the others. It is called basic node. All not
classified predicates are attached to this node.

The nodes of the topologies are described by the six-ary Prolog- predicate

tnode (ID, Nodename, Comment, Predicates, Links, Topologyname)2

ID: The ID is an unique internal number for access by the system. The exception is the
basic node of a topology, it has the ID Topologyname:basic node.

Nodename: The name serves for the access by the user and must be given by him.
Comment: Additional information given by the user.
Predicates: A list of predicates of the knowledge base attached to this node.

Links: A list of the predecessors of this node. The predecessors are represented by their

ID.

Topologyname: This argument determines the topology the node belongs to.

2.1 The textual interface of the PST

This interface contains the following operations for the user:
e the presentation of a topology
¢ commands for adding and deleting nodes
¢ commands for adding and deleting links

¢ commands for attaching and reattaching predicates to or from nodes

! At least one topology must exist, that is normally called system
?Like usual in PROLOG, variables are written with an upper first character, constants are written with
a lower one.

Topology:sysiem-1

‘Octe’ -Preds: [bus_lane, second_row, sidewalk, level crossing, fire_hydrant] <
‘Verurteilung’ -Preds: [pays_fine, court_citation, appeals, twr_points_p] -Links: [Beurteilung]
‘Umstaende’ -Preds: [time, dark, fog]

‘Beurteilung” -Preds: [unsafe_wehicle_wiolation, parking wiclation, illegal parking, responsible]

-Links: [Verbote/Gehote, Umstaende, WVerkehrsverhalten, Fahrzeung, Orte]

‘Verhote /Gebote’ -Preds: [fine, no_parking, no_parking sign, parking allowed, lights_necessary]
-Links: [Umstaende]

‘Werkehrsverhalten' -Preds: [car_towed, car_parked, headlights_on, involwed_wehicle, buckled_up,

parks]

‘Fahrzeug’ -Preds: [worn_tires, owner, faulty brakes, major_corrosion, sedan]

‘Nicht Klassifizierte Praedikate’ -Preds: [conceptd, drunk_driwing, stolen, speeding, motorcycle,
red_light ignored. driwer, taxicab, location. coloer]

Figure 1: textuell presentation of the topology

¢ a command for creating new topologies.

e a command for generating a topology as an abstract rule graph

2.1.1 The presentation of a topology

The MOBAL-menu contains an item New Topology Window to open such a window.
MOBAL asks the user for the topology he wants to open if more than one exists. Then
MOBAL opens a HyperNeWS-window like the one shown in figure 1.

The nodes in this window have the following form:

Topologie Name : NodeName —Preds : [Pred;, ..., Pred,] —Links : [Link;,..., Link,]

The links will not be printed if the set is empty. They will be printed by their node-
names instead of their IDs.

The user can do the normal operations like scrolling the window, resizing the window,
moving or closing it. He can focus on a subset of the nodes by clicking on the button
settings and entering a string that must be a substring of the focused nodes. He can sort
the nodes by an arbitrary order, by giving a relation in the field sort (see figure 2).

If the user double-clicks on a presented node, a stack called node command stack opens
to enter more commands, described in the following sections.

2.1.2 Entering of topology nodes

There are two possibilities to enter nodes. The first, Prompted Input in the MOBAL-
menu, is interactive, the single items are requested by the system. The second is the input
via the MOBAL- scratchpad. The scratchpad format is the same as the format of the
presentation of nodes, only the keyword tnode must precede the entry 3. A comment can
precede the input.

; Comment

*Between the dash and the word Preds resp. Links must not be a space.

Figure 2: Focusing and sorting of nodes

tnode : Topologie Name : NodeName —Preds : [Pred;, ..., Pred,] —Links : [Link,,..., Link,]

The user must conserve the following restrictions:

¢ The names of nodes must be unique relative to all topologies. If a node with the
same name exists, the system adds the first number n to the name of the new node,
so that the nodename is unique.

e The input of comment is optional, if it isn’t given, the comment of the node stays
uninstantiated.

e The input of Preds and Links are also optional.

o If the set of predicates isn’t empty, the system attaches these predicates to the new
node and removes them from all other nodes of this topology. Unknown predicates
are ignored.

o If the set of links isn’t empty, all links that imply no cycles are added. If a link
implies a cycle, the system asks the user whether it should shrink this cycle to one
node or ignore this link. Unknown predecessors produce entries in the agenda of

MOBAL (described later).

2.1.3 Deleting of nodes

Deleting of nodes can be forced by clicking the button Delete of the command-stack of
this node. The predicates of this node will be classified to the basic node of this topology
by the system.

2.1.4 Entering of links

The user can add new inks to a node by clicking Add Link. He can enter a single prede-
cessor or a list of predecessors that will be add to the topology. The predecessors must be
given by the nodename. If the new link creates cycles the same procedure as for entering
new nodes will proceed.

2.1.5 Deleting links

By clicking Remove Link the user can delete a single link or a set of links.

2.1.6 Attaching predicates to a node

This is analogous to adding links, if the user clicks Add Preds. The specified predicates
are removed from the other nodes and will be attached to the given node.

2.1.7 Removing predicates from a node

Clicking Remove Pred and entering a single predicate or a list of predicates will force an
attaching of this predicates to the basic node of the topology.

2.1.8 Creating new topologies

The user can create an additionally topology by choosing the item Create New Topology
of the MOBAL-menu. He must enter a new name for this topology.The created topology
consists of a single node, the basic node. All predicates of the knowledge base are attached
to this node.

2.1.9 Generating an abstraction of the inference structure

If the user clicks the menu item Generate Topology, the system applies several algorithms
to the rule of the knowledge base. These algorithms can be chosen by the user. A detailed
description of the existing algorithms follows in section 3.

2.2 The graphic interface

For the graphical presentation of the several types of data, Christian Haider has pro-
grammed a graphic interface [Hai90]. The user is not able to change the shown topology,
but he can change the presentation of it. It is possible to create as many graphics as the
user like, each in its own window.

The graphic will be displayed when the user clicks the button Graphic on the command
stack of a node. He has to distinguish two cases:

e The chosen node is the basic node. Then the whole topology will be displayed.
Isolated nodes like the basic node will not be displayed. Figure 3 shows such an
output.

e The chosen node is not the basic node. This node and all adjacent nodes with the
connecting edges will be displayed. This is a focused presentation of the topology,
which can be expanded. The way to this is explained later. Figure 4 shows this
operation on the node Obligations/Prohibitions.

Since the operations have no influence to the knowledge base, there exist no operations
for deleting or adding nodes or links and so on. The operations change only the way of
presenting the graph. There are four types of operations:

1. general operations on the window

(Verurteilung)

|

Beurteil ung

(Ver bot e/ Gebot e >
A

Fahr zeug > (Ote > Qerkehrsverhalter)

Unst aende

Figure 3: The user given topology of the domain Traffic Law

< Beurteilung >

A

< Ver bot e/ Gebot e >

< Unst aende >

Figure 4: Focused presentation of the topology of Traffic Law

2. operations on the canvas
3. operations on the nodes

4. operations on the links

2.2.1 General operations on the window

The window can be closed finally by clicking on the square in the top of the window and
iconized by clicking the other button. It can be resized by moving the lower right corner
of it and moved by moving the top bar during pressing the middle mouse button. The
width of the graph can be scaled by choosing a factor from one of {1/5, 1/4, 1/3,1/2, 2,
3, 4, 5} which is multiplied with the current scale factor.

2.2.2 Operations on the canvas

Left mousebotton: The user can select a set of nodes with a rubberbox.
Middle mousebotton: The user can move the graph on the canvas.

Ctrl 4+ left mousebotton: The graph will be redrawn for displaying changes of the
topology.

Shift + left mousebotton: The graph will be displayed centered.

Meta + left mousebotton: The size of the window will be toggled between the original
size and the maximal size.

Meta + right mousebotton: The layout algorithms will be called.

Right mousebotton: The system shows a help stack.

2.2.3 Operations on the nodes

Left mousebotton: The node will be marked as selected or deselected deselected, de-
pending on its previous state.

Ctrl 4+ left mousebotton: The clicked node will be expanded or reduced. Expanding
forces a drawing of all adjacent nodes of the chosen node. If the node is already
expanded, the expansion will be made back, so that all adjacent nodes are removed.

Middle mousebotton: The chosen node can be moved. Is the node selected, all selected
nodes will be moved.

Shift + middle mousebotton: The graph will be moved so, that the chosen node is in
the center of the window.

Right mousebotton: The system shows the help stack for the node operations.

Ctrl + right mousebotton: The system displays the predicates, which are attached to
this node.

2.2.4 Operations on the edges
Right mousebotton: The system shows the help stack.

Ctrl 4+ right mousebotton: Source and target of the edge will be displayed.

2.3 The program interface

The program interface of MOBAL is developed by Jorg-Uwe Kietz [Kie90]. The interface
makes five Prolog predicates available for external systems.

mobal_get_tnode (!NodeStruc)

The call can be made by an arbitratily instantiated atom of the form tnode(_, _,_,_,_,).
MOBAL tries to unify the given NodeStruc with a node of a topology. So long as this is
possible, backtracking returns alternatives.

mobal _delete_tnode (!NodeStruc)

With this call, the external system can force the removing of a topology node. If more
than one unification of NodeStruc with a node of a topology is possible, the result of this
call is unpredictable. NodeStruc will not be instantiated by the call.

mobal new_tnode (!'NodeStruc)

The node will be asserted into the topology. If the topology name of the node is uninstan-
tiated, MOBAL adds the node to the topology system. If the ID is not given, MOBAL
generates a new ID and instantiates the first parameter of NodeStruc with this ID. The
other parameters of NodeStruc are handled like in section 2.1.2.

mobal_tnode_stored (!NodeStruc)

MOBAL calls this predicate every time a topology node has been added. If the external
system defines mobal_tnode_stored/1, it has control over the entering of nodes.

mobal_tnode_deleted (!NodeStruc)

When a node has been deleted, MOBAL calls this predicate. It has the same sense like
the previous predicate.

2.4 The Agenda

Tasks of the user which are still to be handled are managed by MOBAL’s agenda. If the
user adds nodes with unknown predecessors, the system can’t insert such an edge. Instead
of this, it adds the item tnode undefined into the agenda. This item shows the user
that he must define the specified node. Is this done, the system automatically inserts the
missing edge and removes the agenda entry.

® @ e ® @

a: P1 &P2 &P3 ->C b: PL & C&P3 ->C

Figure 5: Rules and their resulting graphs

3 The automatic generation of a topology

This section is about the automatic generation of a topology by abstracting the inference
structure of the knowledge base. We will introduce several techniques to build such an
abstraction. All of the techniques use the rule graph of the knowledge base. Thus, first
we have to define and build this rule graph.

3.1 Building the rule graph

In our context, the rule graph is a directed, possible cyclic graph with exactly one node
for every predicate that occurs in a rule. Every rule, here in HORN clause logic, defines
multiple edges between the several premisses and the conclusion. A recursive occurrence
of a predicate, i.e. both as a premise and as a conclusion of a rule, will not make an edge.
Figure 5 shows the graphs of two rules.

In MOBAL, there is the possibility to use special predicates. These are autoepistemic
operators?, build-in-operators® and the operator not. For all these operators, not the
operator itself is used in the rule graph. Instead of this, the arguments of the operator are
checked, whether they are predicates of the knowledge base and if this is the case, these
arguments are used to build the rule graph.

Thus, the algorithm for each rule is:

1. Collect all premises of this rule.
2. Generate for every premise, if not yet existant, a topology node.
3. Generate also for the conclusion, if not existant, a node.

4. Enter for every premise of the rule an edge from this premise node to the conclusion
node.

4
max_of, count, sum_of, unknown

°Basic computations (add, sub, prod, div), comparisons (eq, neq, gt, 1t, ge, le)

10

W
A oA

Figure 6: Merging of nodes

3.2 Shrinking of strong components

Here, we will describe the first algorithm for abstracting the rule graph. Subgraphs of a
directed graph are said to be strong components, if, for all pairs of nodes ¢ and j, there ex-
ists a directed path from ¢ to j and back. Strong components consists of at least one cycle,
shrinking of all strong components leads to an acyclic graph. This is a handy abstraction,
since normally the computations in such cycles are local, and local computations are not
sufficient for understanding the structure of a knowledge base. Thus the first algorithm is
the O(n) algorithm of R. E. Tarjan [Sed88] to find the strong components and shrink each
to one node. The algorithm bases on depth first search (like Nilsson [Nil82]). If a cycle is
found, it will be shrinked during backtracing to the first visited node of the cycle. Thus
every node is only visited once.

3.3 Merging nodes depending on neighborhoods

Shrinking of strong components alone is not a sufficient abstraction. The reduction of
a graph is too small. Thus we need additional operations. We present in this section
operations based on similarities of the predecessors and successors. The PST contains two
algorithms with these operations.

e Merging nodes with the same predecessors.
¢ Merging nodes with the same successors.

The first algorithm leads to more tree-like graphs, the second leads to a graph that is
smaller in the base. Both results make the graph easier to survey.

Figure 6 shows examples for these two cases and also (part a: of the figure) the cased
that both, predecessors and successors must be equal.

11

0 0

Figure 7: Problems with the control structure

First we have some troubles with the sequence of the merging, because the merge of
two nodes can imply new possibilities for merging other nodes. So we need an order, which
guarantees all possible merges. Normal breath first search order can’t do this, because we
can have multiple paths to a node. Figure 7:b shows a situation where the nodes 1 and
3 both have paths from the node 0 of length one. So it is arbitrary whether breath first
search visit first the node 1 or first node 3. But if node 1 is visited first, and nodes with
same predecessors are merged, the nodes 1 and 2 are first merged and than the nodes
3 and 4, because now, they have the same predecessor. Thus, we need an order, which
guarantees to visit first nodes 1 and 2 and than 3 and 4. This is done by the topological
order, that means, direct and indirect successors of a node in the graph are also direct or
indirect successors relative to the order.

A topological order can be found by a modified depth first search. Normally, in depth
first search, the visited node is handled first and than the successors of this node are visited.
If we handle the node after visiting succeeding nodes, we have a reverse topological order.
Thus we can control the merge like following:

same predecessors: We use the modified depth first search to visit the graph contrary
to the directions of the edges. So the order is topological, the search handles the
predecessor-free nodes first.

same successors: The modified depth first search visit the graph normally, the resulting
order is the reverse topological order. The search handles first the successor-free
nodes.

Both algorithms lead to a merging of all mergeable pairs of nodes. They run in time
O(n?) for n nodes, O(n) to visit every node and O(n) to search all mergeable partners for
each node.

12

3.4 Merging of outsiders

Sometimes, there exists some nodes attached by only one predicate and linked to only one
other node. These nodes we called outsiders. There is no lost of structure if we drag these
nodes into the graph by merging them with the linked node. The necessary time to find
and merge all outsiders is O(n).

3.5 Merging of successor free nodes

Sometimes it is useful to merge all top level nodes of the graph. That leads to a topology
with only one target node. In our domains, the result of this operation was a loss of
structure, so we don’t use this operation for the examples.

3.6 Other methods

Although the results of the algorithms above are good, we searched for other methods
based on graph theory, to find incremental algorithms. We tried to use cut sets (like in
the flow theory) but there are too many distinct cut sets and it is not possible to choose
one of them. We also tried to use partitions but we saw no sense in this. We think the
user is able to build good topologies with the given algorithms, because he can understand
the actions.

3.7 The application of the algorithms by the user

The PST of MOBAL contains the parameter pst_generating_algorithms. This parameter
is a list of algorithms, which will be applied to the rule base, if the user choose the
MOBAL-menu entry Generate Topology. The possible items of the list are:

generate: The PST will build the rule graph of the knowledge base and shrink the strong
components to nodes with the name cycle_n.

top_down: The graph will be visited by reverse topological order to merge all nodes with
the same successors.

bottom _up: The graph will be visited in topological order to merge all nodes with the
same predicates.

merge_top_level nodes: The successor free nodes will be merged.
merge outsiders: The outsiders of the graph will be dragged into him.

The algorithms are applied to the topology that is determined by the parameter
pst_topology for_generating. This topology must exist. The user can create it by
the MOBAL-menu item Create Topology as described in section 2.1.8.

4 Topology-influenced learning

4.1 Learning in MOBAL

MOBAL’s learning tool, the RDT, is a model based algorithm [KW92]. The hypothesis
space is restricted by

13

¢ rule models and an order on this models.
o the number of arguments of the predicates in the rule models.

e the argument sorts, given by the user or built by the STT [Kie88].

There are two main reasons to restrict the hypothesis space also by the PST. First, if
the user enters a topology, he gives the system a task structure. Thus, it is wise to use
this structure to prevent the generation of senseless hypotheses. Learning by induction
contains always the possibility of learning senseless rules, if there is an evidence for this
rule in the knowledge base. Thus, the learned rule must be compatible with the task
structure.

The second reason is that the restriction of the hypothesis space reduces the necessary
time to test this space, so that learning becomes faster.

4.2 The restriction of learning
The PST enables a definition for rules that are admissible:

A rule is admissible relative to a topology, if the premises are only attached to
nodes which are either predecessors of the conclusion node or this node itself.

Carried over to pairs of predicates, the compatibility of predicates is defined as following:

A pair of predicates, a premise and a conclusion, is topology compatible, if the
premise is attached to a predecessor of the conclusion node, or to this node

itself.

The relation of predecessors is not used transitively. The basic node of the used topology is
an extraordinary node. The predicates of this node are compatible to all other predicates
of the knowledge base.

4.3 The focussing of learning

The PST defines a special technique to focus on interesting hypothesis. If we have two
topologies in a knowledge base, maybe the first entered by the user, the second build by
the PST, then there are principal three types of predicate pairs.

1. The pair is not compatible relative to the user given topology. That means, the user
don’t want a rule with this combination.

2. The pair is compatible to both of the topologies. Then the combination of predicates
is desired by the user, and the generated topology shows that such a combination
really exists in the knowledge base.

3. The pair of predicates is compatible to the user given topology, but it is not com-
patible to that one, generated by the PST. The user want to have a rule with this
combination, but no one exists. These pairs are very interesting to learn rules about.

Corresponding to these three possible combinations, there are three possible usages of
the PST, to restrict the learning. The way, the PST restricts, the user can choose by a
parameter of RDT, called rdt_topology restriction. This parameter can become one
of three values:

14

no: The PST is not used to restrict the hypothesis space.

yes: The hypothesis space consists of rules, which are compatible to the topology given
by the PST-parameter pst_topology_for_ learning.

focus: The hypothesis space of the previous case is additionally restricted to hypotheses,
which are not compatible with the topology defined by the parameter pst_topology for _focussing.

By using the parameters pst_topology for_learning and pst_topology for_focussing
the user has to pay attention to the following aspects:

o If the user applies focussed learning, the two topologies have to be different. Other-
wise, the system only restricts the hypothesis space normally, not focussed.

o The selection of the topologies is unrestricted. The topologies have not to be chosen
like in the argumentation above, the first user given, the second system generated.

e The topologies must exist. The user can’t choose other topologies by the human
computer interface.

5 Conclusion

5.1 Results

We have used the PST to generate the topologies of two domains. The first is a small
domain to test the several learning algorithms and making understandable demonstrations
of these algorithms. The domain handles the German traffic law. It consists of 22 rule
and 42 predicates. The rule graph of the domain is shown in figure 8. We apply the
algorithms generate, top_down and bottom_up to this knowledge base, the result is stated
in figure 9°.

The topology contains five larger groups of predicates:

sidewalk: the places of the domain.

no_parking: places and vehicles are related to the events.
parking violation: the several violations of the knowledge base.
lights_necessary: some states of vehicles.

time: external conditions, influencing the classification of events.

The we have tested the generation of hypothesis with this topology. We have made
five test, all test are made without pruning the hypothesis space and restricting the space
by the taxonomy of sorts, since these restrictions can influence the results:

¢ no topology is used for learning.
o the topology given by the user is applied.

o the topology generated by the PST is used.

5The nodes are named by an arbitrary representative of the attached set of predicates

15

fallity_h rakes
JARRRKRAG

] Mmajor_corxrosion

no_parking sign |:

Figure 8: The rule graph of Traffic Law

16

| responsible

[c:ﬁurt_c:ltatlun

parking violation

Figure 9: The generated topology of Traffic Law

17

number of hypothesis | time to test hypothesis

no topology ca. 700 000 | ca. 7-8 days
User topology 2 331 37 minutes
system topology ca. 400 000 ca. 4 days
reduced system topology 2 042 31 minutes
focused learning 263 4 minutes

Figure 10: Results of the restrictions of learning

‘ ‘ #nodes ‘ #Hedges ‘ degree of reduction

#merged nodes ‘

rule graph 125

strong components 117 234 6 % 8
top-down 74 172 37 % 43
bottom-up 56 129 24 % 18
merge-outsiders 49 122 14 % 7
total 49 122 61 % 76

Figure 11: Results of the generation of a topology

e same as the previous, but without the unclassified predicates attached to the basic
node.

e both topologies are used for focused learning.

We conducted the fourth experiment, because the existence of unclassified predicates
blow up the hypothesis space enormously. Figure 10 shows the result of our experiment.

The second domain we have used to test the algorithms of PST is a large medical
domain, called ICTERUS, containing 267 rules for 127 predicates. We have applied all
of our algorithms to build a topology. The number of nodes which could be merged and
the degree of reduction of nodes is presented in figure 11. Although the graph is not very
small, the user can identify the several tasks of the inference process.

5.2 Discussion
First we give several advantages of building the topology as described:

e The algorithms are not based on heuristics, so the user can keep track of the merging
of nodes very easyly.

e The algorithms are very quick, they all run in time O(n?).

e The set of compatible predicate pairs grows strictly monotonous during the process
of building the topology.

o A single merge doesn’t create new paths between the direct predecessors and suc-
cessors of the merged nodes.

18

e The choice of the merged nodes guaranties that no new cycles spring up.

e The flexibility in choosing the algorithms that will be applied enables good abstrac-
tions for a lot of knowledge bases.

But the PST also contains some problems:

e The only algorithm which can be applied incrementally is the shrinking of strong
components. Thus we can’t use the PST incrementally.

e The PST doesn’t influence the inference engine, so a modularisation as described by
Clancey [Cla86] is not possible.

These are directions of future work. e

5.3 Acknowledgements

This work was partially supported by the European Community ESPRIT program under
contract number P2554 “Machine Learning Toolbox”. MOBAL is developed as a team
effort of Christian Haider, Jérg-Uwe Kietz, Volker Klingspor, Katharina Morik (head),
Edgar Sommer and Stefan Wrobel. The author especially wishes to thank Katharina
Morik for important contributions during the design phase of the PST and for reading
and commenting earlier drafts of this paper. An extended paper was published in German
language as a master thesis at the University of Bonn, Germany [KIi91].

References

[BW89] Joost Breuker and Bob Wielinga. Models of expertise in knowledge acquisi-
tion. In G. Gueda and C. Tasso, editors, Topics in Experts System Desing,
Methodologies and Tools, pages 265 — 295. North-Holland, Holland, 1989.

[Cla86)] William J. Clancey. From GUIDON to NEOMYCIN and HERACLES in
twenty short lessons: ONR final report 1979-1985. The Al Magazine, 7(3):40
— 60, August 1986.

[Hai90] Christian Haider. The MOBAL knowledge displayer (MLT internal memo).
GMD (German Natl. Research Center for Computer Science), P.O.Box 1240,
W-5205 St. Augustin 1, Germany, 1990.

[Kar88] Werner Karbach. Methoden und Techniken des Knowledge Engineering. Ar-
beitspapiere der GMD Nr. 338, German Natl. Research Center for Computer
Science, P.O.Box 1240, W-5205 St. Augustin, 1988.

[Kie88] Jorg-Uwe Kietz. Incremental and reversible acquisition of taxonomies. Pro-
ceedings of EKAW-88, pages 24.1 — 24.11, 1988. Also as KIT-Report 66,
Technical University Berlin.

[Kie90] Joerg-Uwe Kietz. MOBAL’s Program Interface. Technical report, Machine
Learning Toolbox ESPRIT Project P2154, October 1990. German Natl. Re-
search Center for Computer Science, P.O.Box 1240, W-5205 St. Augustin.

19

[K1i91]

[KW92]

[Law76]

[LMTS87]

[Morg9]

[MWKE93]

[Nil82]
[Sed88]
[WBS6]

[Wro88]

Volker Klingspor. Abstraktion von Inferenzstrukturen in MOBAL. Master’s
thesis, Univ. Bonn, 1991.

Jorg-Uwe Kietz and Stefan Wrobel. Controlling the complexity of learning
in logic through syntactic and task-oriented models. In Stephen Muggleton,
editor, Inductive Logic Programming, chapter 16, pages 335 — 360. Academic
Press, London, 1992. Also available as Arbeitspapiere der GMD No. 503,
1991.

Eugene L. Lawler. Combinatorial Optimization: Networks and Matroids.
Holt, Rinehard and Winston, 1976.

A. Ludwig, W. Mellis, and L. Thomas. IKEE - an integrated knowledge
engineering environment for rule-base development. In Proceedings of the

seventh International Conference on Fxpert Systems and their Applications,
Avignon, 1987.

Katharina Morik. Sloppy modeling. In Katharina Morik, editor, Knowl-
edge Representation and Organization in Machine Learning, pages 107-134.
Springer Verlag, Berlin, New York, Jan. 1989.

K. Morik, S. Wrobel, J.-U. Kietz, and W. Emde. Knowledge Acquisition and
Machine Learning — Theory, Methods, and Applications. Academic Press,
London, 1993.

Nils J. Nilsson. Principles of artificial intelligence. Springer, Berlin, 1982.
Sedgewick. Algorithms. Addison-Wesley, 2 edition, 1988.

Bob Wielinga and Joost Breuker. Models of expertise. In Proc. FCAI-86,
pages 306 — 318, 1986.

Stefan Wrobel. Design goals for sloppy modeling systems. Intern. Journal of
Man-Machine Studies, 29:461 — 477, 1988. Also appeared in The Foundations
of Knowledge Acquisition, vol. 4, J. Boose and B. Gaines, eds., Academic
Press, 1990.

20

