
Learning Relational Probabilistic Models from
Partially Observed Data -

Opening the Closed-World Assumption

Tushar Khot1, Sriraam Natarajan2, Kristian Kersting3, and Jude Shavlik1

1 University of Wisconsin-Madison, USA
2 Wake Forest University School of Medicine, USA

3 Fraunhofer IAIS, Germany

Abstract. Recent years have seen a surge of interest in learning the structure of
Statistical Relational Learning (SRL) models that combine logic with probabil-
ities. Most of these models apply the closed-world assumption i.e., whatever is
not observed is false in the world. In this work, we consider the problem of learn-
ing the structure of SRL models in the presence of hidden data i.e. we open the
closed-world assumption. We develop a functional-gradient boosting algorithm
based on EM to learn the structure and parameters of the models simultaneously
and apply it to learn different kinds of models – Relational Dependency Net-
works, Markov Logic Networks and relational policies. Our results in a variety of
domains demonstrate that the algorithms can effectively learn with missing data.

Introduction

Traditional machine learning assumes that the world can be described in terms of fea-
tures, but the world is made up of objects that interrelate. Data about these worlds is
inherently noisy and relational. In addition, the data in the real world can have missing
values due to several reasons. Statistical Relational Learning (SRL) [1] deals with un-
certainty and relations among objects. SRL models seek to avoid explicit state enumer-
ation through a symbolic representation of states. The advantage of these models is that
they can succinctly represent probabilistic dependencies among the attributes of differ-
ent related objects leading to a compact representation of learned models. The com-
pactness and even comprehensibility gained by SRL, however, comes at the expense of
a typically much more complex learning task. There have been some advances in this
problem, especially in the case of Markov Logic Networks (MLN) [2–5]. More recently,
algorithms based on functional-gradient boosting [6] have been developed for learning
SRL models such as Relational Dependency Networks (RDN) [7], and MLNs [4]. One
of the key advantages of the functional-gradient based algorithms is that the structure
and parameters of the models are learned simultaneously and empirical results show
that these methods outperform the respective state-of-the-art algorithms.

While these methods exhibit good empirical performance, they apply the closed-
world assumption, i.e., whatever is unobserved in the world is considered to be false.
Research with missing data in SRL has mainly focused on learning the parameters. In
such cases, algorithms based on classical EM [8] have been developed for several SRL

models [9–11]. There has been some work on learning structure of SRL models from
hidden data [12, 13]. These approaches, inspired by Friedman’s structural EM approach
for Bayesian networks [14], compute the sufficient statistics over the hidden states and
perform a greedy hill-climbing search over the clauses.

We significantly extend this approach – inspired by the success of structural EM
on propositional graphical models [14] and the success of boosting in learning SRL
models [4, 7], we propose an EM algorithm for functional-gradient boosting. We derive
and present the update equations of the E and M-steps of the algorithm. One of the key
features of our algorithm is that we consider the set of distributions in the models to be
a product of potentials and this allows us to learn different models such as MLNs [15],
RDNs [16] and even relational policies [17]. After deriving the EM algorithm, we then
also show how to adopt the standard approach of approximating the full likelihood
by the MAP states (i.e., hard EM). We empirically evaluate the proposed algorithm
in different datasets and demonstrate the superiority of the proposed approach against
different baseline algorithms.

To summarize, this paper makes several key contributions: First, we propose an
algorithm that can learn the structure and parameters of SRL models in the presence
of hidden data. The algorithm is based on two different successful methods – EM for
learning with hidden data and functional-gradient boosting for SRL models – and hence
is theoretically interesting. Second, following previous work, we show how to adapt the
algorithm for learning RDNs, MLNs, and relational policies. So, our algorithm extends
multiple earlier proposed methods to the problem of learning from missing data. Third,
as far as we are aware, this is the first work on the adaptation of the successful struc-
tural EM algorithm for relational functional-gradient boosting. Finally, we evaluate the
algorithm on a variety of different types of tasks to demonstrate the broad applicability
of our algorithm.

Background

Statistical Relational Learning Models: RDNs [16] are relational extensions of de-
pendency networks [18], which are directed graphical models that may contain cycles.
The joint distribution can be factored as a product of individual conditionals and can
be represented by Relational Probability Trees (RPT; [19]) or Relational Regression
Trees (RRT; [20]) with a sigmoid applied to the regression output. MLNs [15] are
relational undirected models where first-order logic formulas correspond to the cliques
of a Markov network and formula weights correspond to the clique potentials. An MLN
can be instantiated as a Markov network with a node for each ground predicate (atom)
and a clique for each ground formula, where all groundings of the same formula are
assigned the same weight.

Functional Gradient Boosting: A standard method of supervised learning is based
on gradient-descent where the learning algorithm starts with initial parameters θ0 and
computes the gradient of the likelihood function. Dietterich et al. [21] used a more
general approach to train the potential functions based on Friedman’s [6] gradient-tree
boosting algorithm, where the potential functions are represented by sums of regression
trees that are grown stage-wise.

Functional gradient method starts with an initial potential ψ0 and iteratively adds
gradients ∆i. Hence after m iterations, the potential is given by ψm = ψ0 +∆1 + ...+
∆m. Here, ∆m is the functional gradient at episode m. Instead of computing the func-
tional gradients over the potential function, they are instead computed for each training
example i, given as 〈xi, yi〉. This set of local gradients forms a set of training exam-
ples for learning the gradient at stage m. Friedman [6] suggested fitting a regression
tree to these derived examples i.e., fit a regression tree hm on the training examples
{(xi, yi), ∆m(yi;xi)}. We replace the propositional regression trees with RRTs.

Functional Gradient Boosting in SRL: Functional gradient boosting has been ap-
plied to SRL models such as RDNs [7] and MLNs [4]. Since computing the true like-
lihood function for MLNs is prohibitive, the pseudo-likelihood (PL) function is popu-
larly used for learning in MLNs. PL in MLNs is defined as the product of the conditional
probabilities of the ground variables given their Markov blankets (MB). Note that in the
case of RDNs, the joint distribution is approximated by the product of the conditional
distributions. Hence the learning problem for both RDN and MLN optimizes the prod-
uct of conditional distributions. Earlier work [7, 4] represented these conditional distri-
butions as a sigmoid over a function ψ, i.e. P (x|Pa(x)) in RDNs and P (x|MB(x)) in
MLNs were represented as eψ(x)

[1+eψ(x)]
. For both these problems, the functional gradient

of the likelihood for each example 〈yi,xi〉 with respect to ψ(yi = 1;xi) was shown to
be: ∂ logP (yi;xi)

∂ψ(yi=1;xi)
= I(yi = 1;xi)−P (yi = 1;xi), where I is the indicator function that

is 1, if yi = 1 and 0 otherwise. Since the learning procedure and the gradients for both
these models are identical, we show that one can use our Structural EM approach for
both RDNs and MLNs by just changing the scoring criterion and probability calcula-
tions. In the case of imitation learning, the policy P (action|state) can be represented
using a sigmoid function and prior work [17] showed that these policies can be repre-
sented as sets of RRTs. The gradients were similar to the one presented above. Hence,
as we show, our algorithms can also be employed for imitation learning.

Structural EM

We first define some notations that will be used throughout the paper. Please note that
since the algorithm is employed across different formalisms, we use the same notations
for the different models. We use capital letters such as X, Y, Z to represent variables
(predicates in our formalisms) and small letters such as x, y, z to represent values taken
by the variables. We use bold-faced letters to represents sets. Letters such as X, Y, Z
represent sets of variables and x, y, z represent sets of values. We shall use z−z to denote
z \ z and x−i to represent x \ xi.

The high-level overview of our RFGB-EM (Relational Functional Gradient Boost-
ing - EM) approach is shown in Figure 1. Similar to other EM approaches, we sample
the states for the hidden groundings based on our current model in the E-step and use
the sampled states to update our model in the M-step. ψt represents the model in the
tth iteration. The initial model, ψ0 can be as simple as a uniform probability for all
examples or could be a model specified by an expert. We sample certain number of
assignments of the hidden groundings (denoted as |W |) using the current model ψt.
Based on these samples, we create regression examples which are then used to learn T

Fig. 1: RFGB-EM in action. Shaded nodes indi-
cate variables with unknown assignments, while
the white (or black) nodes are assigned true
(or false) values. The input data has observed
(indicated by X) and hidden (indicated by Y)
groundings. We sample |W | assignments of the
hidden groundings using the current model ψt.
We create regression examples based on these
samples, which are used to learn T relational re-
gression trees. The learned trees are added to the
current model and the process is repeated.

relational regression trees. The learned regression trees are added to the current model
and the process is repeated. To perform the M-step, we update the current model using
functional gradients. We now derive the M-step.

Derivation for M-step For ease of explanation, let X be all the observed predicates
and Y be all the hidden predicates (their corresponding groundings are x and y). Since
Y is unobserved, it can have multiple possible assignments denoted by Y and y ∈ Y
represents one such hidden state assignment.

Traditionally, EM approaches for parameter learning find θ that maximize theQ(θ|θt)
function. TheQ(θ|θt) function is defined as the expected log-likelihood of missing and
observed data (based on θ) where the expectation is measured based on the current
distribution (θt) for the missing data i.e.

Q(θ|θt) =
∑
y∈Y

P (y|x; θt) logP (x,y|θ)

In our work, we are not just interested in estimating the parameters. We are also
learning the structure of the models (RDNs or MLNs as appropriate). Moreover, our
functional-gradient boosting approach for learning the structure is non-parametric i.e.,
we do not have fixed set of parameters θ but instead use a regression function ψ. This
is a subtle yet important distinction to the EM learning methods for SRL [9, 10, 22] that
estimate the parameters given a fixed structure. The regression function in our models
are captured using relational regression trees. The trees define the structure of the po-
tential function and the leaves of the trees represent the parameters of these potentials.
Hence we rewrite the Q function as Q(ψ | ψt).

Following prior work [17, 7, 4], we seek to maximize the pseudo-loglikelihood be-
cause computing the log-likelihood for relational data is prohibitively expensive. Hence
the Q function now becomes

Q(ψ | ψt) =
∑
y∈Y

P (y|x;ψt)
∑
z∈x,y

logP (z|z−z;ψ)

Commonly EM methods find parameters that maximize the Q function and set them
as the parameters for the next iteration, i.e. θt+1 = argmaxθQ(θ|θt). In our case, Q

does not have a closed form solution for ψ. Following the procedures used in gener-
alized EM algorithms [8] rather than finding the maximum at every step, we perform
gradient descent (via functional gradient boosting) over the Q function, i.e., ψt+1 =
ψt + ∆ψQ(ψ|ψt). Due to the computational cost of performing gradient descent till
convergence, we perform S gradient steps in the M-step. In our experiments, S was set
to 2. This allowed us to amortize the cost of sampling the world states and run enough
EM iterations in reasonable time without making the model too large. It can be shown
that our approach guarantees a monotonic increase in the pseudo-loglikelihood of the
observed data, if the new ψt+1 improves over Q(ψt|ψt).

We present our proposed approach for updating the model in Algorithm 1. We iter-
ate through all the query and hidden predicates and learn one tree for each predicate. We
compute the gradients for the groundings of predicate p given by Ep, using the world
states W and current model ψ. We then learn a relational regression tree using this
dataset and add it to our current model. The learnTree function uses different scoring
functions depending on the model (MLNs vs RDNs) as we show later. The set Ep may
not contain all the groundings of the predicate p, since we downsample the negative
examples during every iteration by randomly selecting the negatives so that there are
twice as many negative as positive examples. Relational datasets generally have many
more negative examples than positives and it has been shown that ensemble methods
perform better if the majority class is downsampled [23].

Algorithm 1 updateModel(W, ψ)

1: S := 2 {Number of trees learned in M-step}
2: for i ≤ S do
3: {Iterate over target and hidden predicates, P}
4: for p ∈ P do
5: {Ep := Downsampled groundings of p}
6: Dp := buildDataset(Ep,W, ψ)
7: Tp := learnTree(Dp)
8: ψ = ψ + Tp

9: end for
10: end for
11: return ψ

To apply functional-gradient boosting, we need to compute the gradients for each
example (i.e. hidden and observed groundings of the target and hidden predicates)
which will be used to learn the next regression tree (Tp). In previous work, the gradients
were computed w.r.t. ψ(x), where x is a ground query literal. The value returned by the
ψ function also depends on the other ground literals, since their values will influence
the path taken in the regression tree. One can include them as arguments to the function
definition i.e. ψ(x;x). But x is observed and constant across all examples and so the
function is simplified to ψ(x). In our definition, the assignment to the hidden variables
y is not observed and each assignment may return a different value for a given exam-

ple. Hence, we include the assignment to the hidden variables in our function definition
(ψ(x;y)) and compute the gradients for an example and hidden state assignment.

Gradients for hidden groundings We now focus on obtaining the gradients ofQ w.r.t
the hidden groundings by taking partial derivatives of Q w.r.t ψ(yi;y−i) where yi is a
hidden grounding. The value of ψ(yi;y−i) is only used to calculate P (yi|x,y−i;ψ) for
two world states: where yi is true and where yi is false. So the gradient w.r.t. ψ(yi;y−i)
can be calculated as
P (yi = 1,y−i|x;ψt)∂ logP (yi=1|x,y−i;ψ)

∂ψ(yi;y−i)
+ P (yi = 0,y−i|x;ψt)∂ logP (yi=0|x,y−i;ψ)

∂ψ(yi;y−i)

As shown in previous work [21], the gradients would correspond to the difference
between the true value of yi and the current predicted probability of yi (i.e. I(yi =
y) − P (yi = y)). Since we have two terms involving P (yi), one for each value of yi,
we get two different gradients.

P (yi = 1,y−i|x;ψt)(1− P (yi = 1|x,y−i;ψ))
+ P (yi = 0,y−i|x;ψt)(0− P (yi = 1|x,y−i;ψ))

= P (yi = 1,y−i|x;ψt)− P (y−i|x;ψt)P (yi = 1|x,y−i;ψ)) (1)

With the PLL assumption, the gradients can be written as
∏
j 6=i P (yj |x,y−j ;ψt)[P (yi =

1|x,y−i;ψt) − P (yi = 1|x,y−i;ψ)]. Intuitively, the gradients correspond to the dif-
ference between the probability predictions weighted by the probability of the hidden
state assignment.

Gradients for observed groundings To compute the gradients for the observed ground-
ings, we take partial derivatives of Q with respect to ψ(xi;y) where xi is observed in
the data. Similar to the gradients for hidden groundings, we use y as an argument in
the ψ function and only consider the world states that matches with the given argument.
The gradient is

P (y|x;ψt)
∂ logP (xi|x−i,y;ψ)

∂ψ(xi;y)
= P (y|x;ψt)[I(xi)− P (xi = 1|z−xi ;ψ)] (2)

Similar to the hidden groundings, the gradients correspond to the difference between
the predictions weighted by the probability of the hidden state assignment.

Regression tree learning The input examples to our regression tree learner are of the
form < (z;y), ∆ >. For every ground literal z ∈ x ∪ y, we calculate the gradients for
an assignment to the hidden variables. Algorithm 2 describes the buildDataset func-
tion used to generate these examples. For every ground literal e and every world state w
(i.e., y), we compute the gradient of the example (gradient(e, w)). For examples that
are observed, we use equation 2 to compute gradient(e, w) and for examples that are
hidden, we use equation 1. Similar to previous work [4], we use only a subset of the ex-
amples for learning the regression function. Apart from subsampling the ground literals,
we also pick |W | hidden state assignments from Y . Since our gradients are weighted

Algorithm 2 buildDataset(Ep,W, ψ)

1: Dp := ∅
2: for e ∈ Ep do
3: for w ∈W do
4: ∆e := gradient(e, w)
5: Dp := Dp∪ < (e;w),∆e >
6: end for
7: end for
8: return Dp

by the probability of the hidden state assignment y, an unlikely assignment will result
in small gradients and thereby have little influence on the learned tree. Hence, we use
Gibbs sampling to sample the most likely hidden state assignments. Also we approxi-
mate the joint probability of an hidden state assignment with the pseudo-likelihood i.e.,
P (y|x;ψt) =

∏
i P (yi|x,y−i;ψt).

Adapting RFGB-EM for different models

Natarajan et al. [7] describe learning RDN structure using functional-gradient boosting
where all the trees are learned for a target predicate before the next predicate. Since
the gradients for each predicate are independent of the model for other predicates, one
can learn all the trees independently. We, on the other hand, update the hidden world
states after every two iterations (note S = 2) and hence for every predicate we learn
two trees at a time. We then resample the hidden states and use the sampled states for
the next two iterations. We use RRTs with the weighted variance scoring function for
fitting the gradients for each example. The learnTree function in Algorithm 1 can use
any off-the-shelf RRT learner.

For MLNs, we learned RRTs for the gradients presented earlier with the modified
scoring function as described by Khot et al. [4]. MLNs are approximated by a product
of conditional distributions in their approach where the set of trees for each predicate
correspond to the conditional distributions. To compute the marginal probability of any
example, trees for all the predicates would be used. Hence while learning, a single tree is
learned for each predicate and the gradients are computed based on the trees learned till
the current iteration. In our EM approach, we resample the hidden states after two such
iterations over the target and hidden predicates. Khot et al. also present an approach to
learn MLN clauses to fit the gradients. While we only present the results for learning
trees, it is trivial to extend this work to learn clauses.

For imitation learning, we are learning the distribution over the actions for every
state using the training trajectories provided by an expert. The set of predicates, P
contains all the action predicates and the hidden predicates. We can then learn RRTs to
predict each action while updating the hidden values. Natarajan et al. [17] learned all
the trees for each action independently whereas we learn two trees for every predicate
before resampling the hidden ones.

Experiments

We now present the results of our approaches on four different problems. We use SEM
to represent the structural EM approach which uses Gibbs sampling for generating the
samples. We present results for SEM with a suffix to indicate the number of hidden
state samples used i.e., |W | mentioned in the previous section (e.g. S-10 uses ten sam-
ples while S-1 uses the single MAP estimate). S-10 corresponds to the soft-EM ap-
proach whereas S-1 corresponds to the hard-EM approach. We also present the results
of using RFGB without using EM while setting all hidden groundings to false i.e. using
the closed world assumption (CWA). This is essentially the prior work on RDNs [7],
MLNs [4] and imitation learning [17]. Each of these methods were run for 10 gradi-
ent iterations. We observed that this number was enough for convergence in all our
domains. In the case where we used MLNs, we used the default settings in Alchemy
(http://alchemy.cs.washington.edu). We compare the methods using two different mea-
sures: conditional log likelihood (CLL) and area under the PR curve (AUC-PR). We use
bold-face to indicate results that are statistically significantly better (at p-value=0.05)
than all the other methods. In these experiments we attempt to empirically investigate
the following questions:
Q1: Can opening CWA for relational structure learning improve the performance?
Q2: Can soft-EM outperform hard-EM in relational domains?

Disjunctive dataset

We generated a simple synthetic dataset to compare SEM against CWA using RDNs
as the base model. We used three predicates q(X,Y), r(X,Y) and s(X). The range of X
was 1, ..., 100, and varied Y to have two different values |Y | = 3 and |Y | = 10 as
shown in Table 1. We treated the predicate r as hidden and the goal was to predict s.
To generate the training data, we used a distribution P (r|q). We then combine r(X,Y)
for different values of Y using an OR condition to generate s(X). Hence s(X) given
r(X,Y) is a deterministic rule where s(X) is true if for some Y, r(X,Y) is true. We
generated 10 synthetic datasets with randomly sampled hidden data, trained one model
on each dataset and evaluated each model on the other nine datasets. We average the
results from all these runs.

We used this synthetic dataset as it allows us to evaluate approaches against varying
importance of accurately predicting the missing data. For |Y | = 10, it is very likely that
at least one of the observed values of r(x,Y) is true. Hence even if the missing data
values are not accurately predicted, the model will learn the OR rule for s(x). On the
other hand for |Y | = 3, this scenario is less likely, thereby requiring a more accurate
representation of the missing data to learn the OR rule.

The results on this domain are presented in Table 1. We only present the CLL values
since the AUC-PR values are nearly equal for all the approaches. The EM approaches
outperform CWA in all scenarios thereby affirmatively answering Q1 for this domain.
SEM-10 outperforms both SEM-1 and CWA methods on this dataset for |Y | = 3,
whereas SEM-1 outperforms the others for |Y | = 10. As expected, SEM-10 provides a
more accurate representation of the missing data which is needed when |Y | = 3. For

|Y | = 10, the simpler SEM-1 approach is sufficient to capture the underlying distribu-
tion. This experiment clearly demonstrates the difference between soft (SEM-10) and
hard (SEM-1) versions of EM.

Hidden % 20% 40%
Algorithm |Y | = 3 |Y | = 10 |Y | = 3 |Y | = 10
SEM-10 -0.049 -0.107 -0.109 -0.181
SEM-1 -0.071 -0.087 -0.114 -0.128
CWA -0.093 -0.163 -0.170 -0.223

Table 1: CLL values on the Disjunctive dataset.

Hidden % 20% 40%
Algorithm CLL AUC-PR CLL AUC-PR
SEM-10 -0.168 0.334 -0.170 0.376
SEM-1 -0.150 0.346 -0.151 0.367
CWA -0.187 0.329 -0.192 0.344

Table 2: Results on the UW data set.

UW-CSE: RDN Structure Learning

The UW dataset [24] is one of the most popular datasets for learning SRL models.
The goal here is to predict the advisedBy relationship between a student and a pro-
fessor. The data set consists of details of professors, students and courses from five
different sub-areas of computer science. Predicates include professor, student,
publication, advisedBy, hasPosition, tempAdvisedby, inPhase,
courseLevel, taughtBy etc. We randomly hid groundings of the tempAdvisedby,
inPhase and hasPosition predicates during training. We performed five-fold cross-
validation and present the results in Table 2. We also varied the amount of hidden data
in our experiments (“Hidden %” in the table indicates the percentage of the groundings
being hidden).

In general, the EM methods perform statistically significantly (with p-value< 0.05)
better than the closed world assumption. Hence, we can answer Q1 affirmatively in this
real world domain too. The difference between the two EM methods is not statistically
significant for the different levels of hidden data for AUC-PR (although there is a dif-
ference in CLL). It appears that in this domain, using a single sample for the hidden
state has the same performance as that of using 10 samples. This is in line with most
EM algorithms where using a single state (MAP) approximation generally suffices.

IMDB: RDN Structure learning

The IMDB dataset [25] contains five predicates: actor, director, genre, gender
and workedUnder (Following [2], we omitted the four equality predicates). We pre-
dicted the gender predicate given all the other predicates. We randomly hid the ground-
ings of actor and workedUnder predicates during learning and inference. We per-
formed five-fold cross-validation and averaged the results across all the folds.

We present the CLL values for hiding 10% and 20% of the groundings of the two
hidden predicates in Table 3. Similar to the disjunctive dataset, there is no statistically
significant difference between the three methods in the AUC-PR values and hence are
not reported here. In general, the EM methods perform statistically significantly (with
p-value < 0.05) better than the closed world assumption. Hence we can again affir-
matively answer Q1 in this domain. Between the two EM methods, using one sample
is sufficient to capture the underlying distribution and hence the simpler SEM-1 has a
higher CLL value than SEM-10.

Hidden % 10% 20%
SEM-10 -0.501 -0.551
SEM-1 -0.423 -0.467
CWA -0.586 -0.80

Table 3: CLL values for IMDB.

Hidden % 20% 40%
Algorithm CLL AUC-PR CLL AUC-PR
SEM-10 -1.445 0.482 -1.315 0.510
SEM-1 -1.648 0.483 -1.586 0.500
CWA -1.629 0.478 -1.693 0.488

Table 4: Results on Cancer dataset.

Cancer dataset: MLN Structure Learning

The cancer MLN is a popular synthetic data set [26, 15] used in SRL. We created a
friend network which is represented using a symmetric predicate, friends(X,Y).
Each person has three attributes: stress(X), cancer(X) and smokes(X). A
person is more likely to smoke if he has stress or has a lot of friends who smoke.
Similarly, a person is likely to have cancer if he smokes or he has a lot of friends who
smoke. The more smoker friends a person has, the more likely he is to get cancer. Such
rules can be captured by MLNs since the probabilities are proportional to the number
of groundings of a clause (e.g. smokes(y) ∧friend(x, y) → smokes(x)). The target
predicate is cancer while smokes has some missing groundings.

We trained the model on 10 generated datasets with randomly sampled hidden data
and evaluated each model on the other nine datasets. We average the results from all
these runs. We present the results for different amounts of hidden data (20% and 40%).
As seen in Table 4, SEM-10 mostly outperforms the other approaches both in terms of
CLL and AUC-PR. For 20% missing data, there is no statistically significant difference
between the two EM approaches but both methods outperform CWA. Unlike the previ-
ous domains, SEM-10 is at least as good as or better than SEM-1 in this domain. Hence
for this domain, we can affirmatively answer both Q1 and Q2. Since Alchemy does not
have a mechanism to handle missing data for structure learning, we ran weight learning
(generative with 10000 iterations and 1e-5 threshold) on hand-written rules and simply
learned the weights for this MLN using the Alchemy package. The AUC PR values were
around 0.6. This shows that simply learning the parameters is reasonably comparable
to our models that learn both the structure and parameters with hidden data.

Wumpus world: Learning relational policies

As a third application of RFGB-EM, we performed imitation learning in a relational
domain for a partially observed MDP (POMDP). We created a simple version of the
Wumpus task where the location of wumpus is partially observed. We used a 5× 5 grid
with the wumpus placed at a random location in every training trajectory. The wumpus
is always surrounded by stench on all four sides. Figure 2 shows one instantiation of
the initial grid locations. The agent can perform 8 possible actions: 4 move actions in
each direction and 4 shoot actions in each direction. The agent’s task is to move to a
cell such that he can fire an arrow to kill the wumpus. The dataset contains predicates
for each cell such as cellAt, cellRight and cellAbove and obstacle locations
such as wumpus and stench. The wumpus is not observed in all the trajectories al-
though the stench is always observed. Trajectories were created by human users whose

policy generally is to move towards the wumpus’ row or column and shoot accordingly.

Fig. 2: Wumpus world. W indicates the wumpus
location, S indicates the stench location and A is
the agent.

Hidden % 20% 40%
Algorithm CLL AUC-PR CLL AUC-PR
SEM-10 -0.245 0.857 -0.261 0.853
SEM-1 -0.278 0.845 -0.283 0.839
CWA -0.282 0.826 -0.270 0.826

Table 5: Results for Wumpus dataset.

The EM approaches (using the trajectories where wumpus is observed) learn that
wumpus is surrounded by stench and fill the missing values in other trajectories. The
CWA approach [17] on the other hand assumes that the wumpus is not present and
relies on the stench to guess the action to be performed. The results are presented in
Table 5. From the results, it can be easily observed that the EM methods are superior
to that of the prior work on imitation learning. Moreover, SEM-10 which uses multiple
samples outperforms the single-sample SEM-1 approach. This domain clearly shows
that the previous method of boosting in imitation learning is not sufficient in problems
with partial observability and it is imperative to employ methods that do not assume
closed-world. Similar to the Cancer domain, we can affirmatively answer Q1 and Q2 in
this domain too.

In conclusion, our experiments have shown that the opening the closed-world as-
sumption definitely results in an improvement in the performance. Between the two
EM approaches, we have shown empirically that for certain domains (e.g. UW, IMDB)
a single sample (hard-EM) might be sufficient, whereas in certain domains (e.g. Cancer,
Wumpus) multiple samples (soft-EM) are needed to capture the true distribution. Thus,
both questions Q1 and Q2 can generally be answered affirmatively.

Conclusions

We addressed the challenging problem of learning SRL models in the presence of hid-
den data. We developed an EM-based algorithm for functional-gradient boosting. We
derived the gradients for the M-step by maximizing the lower bound of the gradient and
showed how to approximate the E-step. We evaluated the algorithm on three different
types of relational learning problems - RDNs, MLNs and imitation learning. Our results
indicate that the proposed algorithms outperform the respective algorithms that make
closed-world assumptions.

Our current approach computes the probability of an example for each world state
of the hidden groundings. But based on the relational tree structure, we can avoid re-
computing the probabilities for examples, if a different world state will have no impact
on the probability of the example. Adapting the different EM heuristics such as random
restarts is another interesting direction. We could also calculate the marginal probabili-
ties of each hidden grounding and use them as probabilistic facts to learn the trees. Our
approach can handle bidirected and undirected models but extending it to an acyclic
directed model is an interesting avenue for future research.

References

1. Getoor, L., Taskar, B., eds.: Introduction to Statistical Relational Learning. MIT Press (2007)
2. Kok, S., Domingos, P.: Learning Markov logic network structure via hypergraph lifting. In:

ICML. (2009)
3. Kok, S., Domingos, P.: Learning Markov logic networks using structural motifs. In: ICML.

(2010)
4. Khot, T., Natarajan, S., Kersting, K., Shavlik, J.: Learning Markov logic networks via func-

tional gradient boosting. In: ICDM. (2011)
5. Khosravi, H., Schulte, O., Hu, J., Gao, T.: Learning compact Markov logic networks with

decision trees. Machine Learning 89(3) (2012) 257–277
6. Friedman, J.H.: Greedy function approximation: A gradient boosting machine. Annals of

Statistics (2001) 1189–1232
7. Natarajan, S., Khot, T., Kersting, K., Guttmann, B., Shavlik, J.: Gradient-based boosting for

statistical relational learning: The relational dependency network case. Machine Learning
(2012)

8. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society B.39 (1977) pp. 1–38

9. Natarajan, S., Tadepalli, P., Dietterich, T.G., Fern, A.: Learning first-order probabilistic mod-
els with combining rules. Annals of Mathematics and AI (2009)

10. Jaeger, M.: Parameter learning for Relational Bayesian networks. In: ICML. (2007)
11. Kameya, Y., Sato, T.: Efficient EM learning with tabulation for parameterized logic pro-

grams. In: Computational Logic. (2000)
12. Li, X., Zhou, Z.: Structure learning of probabilistic relational models from incomplete rela-

tional data. In: ECML. (2007)
13. Kersting, K., Raiko, T.: ’say em for selecting probabilistic models for logical sequences. In:

UAI. (2005)
14. Friedman, N.: The Bayesian structural EM algorithm. In: UAI. (1998)
15. Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for AI. Morgan & Claypool,

San Rafael, CA (2009)
16. Neville, J., Jensen, D.: Relational dependency networks. In Getoor, L., Taskar, B., eds.:

Introduction to Statistical Relational Learning. (2007) 653–692
17. Natarajan, S., Joshi, S., Tadepalli, P., Kristian, K., Shavlik, J.: Imitation learning in relational

domains: A functional-gradient boosting approach. In: IJCAI. (2011)
18. Heckerman, D., Chickering, D., Meek, C., Rounthwaite, R., Kadie, C.: Dependency net-

works for inference, collaborative filtering, and data visualization. Journal of Machine Learn-
ing Research 1 (2001) 49–75

19. Neville, J., Jensen, D., Friedland, L., Hay, M.: Learning Relational Probability trees. In:
KDD. (2003)

20. Blockeel, H., Raedt, L.D.: Top-down induction of first-order logical decision trees. Artificial
Intelligence 101 (1998) 285–297

21. Dietterich, T., Ashenfelter, A., Bulatov, Y.: Training conditional random fields via gradient
tree boosting. In: ICML. (2004)

22. Xiang, R., Neville, J.: Pseudolikelihood EM for within-network relational learning. In:
ICDM. (2008)

23. Chan, P., Stolfo, S.J.: Toward scalable learning with non-uniform class and cost distributions:
A case study in credit card fraud detection. In: KDD. (1998)

24. Singla, P., Domingos, P.: Entity resolution with Markov logic. In: ICDM. (2006) 572–582
25. Mihalkova, L., Mooney, R.: Bottom-up learning of Markov logic network structure. In:

ICML. (2007) 625–632
26. Kersting, K., Ahmadi, B., Natarajan, S.: Counting Belief Propagation. In: UAI. (2009)

