
Logical Hidden Markov Models

Logical Hidden Markov Models

Kristian Kersting kersting@informatik.uni-freiburg.de

Luc De Raedt deraedt@informatik.uni-freiburg.de

Machine Learning Lab, Computer Science Department, University of Freiburg
Georges-Koehler-Allee, Building 079, 79110 Freiburg, Germany

Tapani Raiko tapani.raiko@hut.fi

Laboratory of Computer and Information Science, Helsinki University of Technology

P.O. Box 5400 Helsinki, FIN-02015 HUT, Finland

Abstract

Logical hidden Markov models (LOHMMs) upgrade traditional hidden Markov models
(HMMs) to deal with sequences of structured symbols in the form of logical atoms, rather
than flat characters.

This note formally introduces LOHMMs and presents solutions to the three central in-
ference problems for LOHMMs: evaluation, most likely hidden state sequence and param-
eter estimation. The resulting representation and algorithms are experimentally evaluated
on problems from the domain of bioinformatics.

1. Introduction

Hidden Markov models (Rabiner & Juang, 1986) (HMMs) are extremely popular for an-
alyzing sequential data. Application areas include computational biology, user modelling,
speech recognition, empirical natural language processing, and robotics. Despite their suc-
cesses, HMMs have a major weakness: they handle only sequences of flat, i.e., unstruc-
tured symbols. Yet, in many applications the symbols occurring in sequences are struc-
tured. Consider, e.g., sequences of UNIX commands, which may have parameters such
as emacs lohmms.tex, ls, latex lohmms.tex, . . .Thus, commands are essentially structured.
Tasks that have been considered for UNIX command sequences include the prediction of
the next command in the sequence (Davison & Hirsh, 1998), the classification of a command
sequence in a user category (Korvemaker & Greiner, 2000; Jacobs & Blockeel, 2001), and
anomaly detection (Lane, 1999). Traditional HMMs cannot easily deal with this type of
structured sequences. Indeed, applying HMMs requires either 1) ignoring the structure of
the commands (i.e., the parameters), or 2) taking all possible parameters explicitly into
account. The former approach results in a serious information loss; the latter leads to a
combinatorial explosion in the number of symbols and parameters of the HMM and as a
consequence inhibits generalization.

The above sketched problem with HMMs is akin to the problem of dealing with struc-
tured examples in traditional machine learning algorithms as studied in the fields of in-
ductive logic programming (Muggleton & De Raedt, 1994) and multi-relational learn-
ing (Džeroski & Lavrač, 2001). In this paper, we propose an (inductive) logic programming
framework, Logical HMMs (LOHMMs), that upgrades HMMs to deal with structure. The
key idea underlying LOHMMs is to employ logical atoms as structured (output and state)
symbols. Using logical atoms, the above UNIX command sequence can be represented

1

Kersting, De Raedt, & Raiko

as emacs(lohmms.tex), ls, latex(lohmms.tex), . . . There are two important motivations for
using logical atoms at the symbol level. First, variables in the atoms allow one to make
abstraction of specific symbols. E.g., the logical atom emacs(X, tex) represents all files X

that a LATEXuser tex could edit using emacs. Second, unification allows one to share in-
formation among states. E.g., the sequence emacs(X, tex), latex(X, tex) denotes that the
same file is used as an argument for both Emacs and LATEX.

The paper is organized as follows. After reviewing the logical preliminaries in Section 2,
we introduce LOHMMs and define their semantics in Section 3; in Section 4, we upgrade
the basic inference algorithms for HMMs for use in LOHMMs; we investigate the benefits of
LOHMMs in Section 5: we show that LOHMMs are strictly more expressive than HMMs,
that they can be — by design — at least an order of magnitude smaller than their corre-
sponding propositional instantiations, and that unification can yield models which better
fit the data. In Section 6, we empirically investigate the benefits of LOHMMs on real world
data. Before concluding, we discuss related work in Section 7. Proofs of all theorems can
be found in the Appendix.

2. Logical Preliminaries

A first-order alphabet Σ is a set of relation symbols r with arity m ≥ 0, written r/m, and a
set of functor symbols f with arity n ≥ 0, written f/n. If n = 0 then f is called a constant,
if m = 0 then p is called a propositional variable. (We assume that at least one constant
is given.) An atom r(t1, . . . , tn) is a relation symbol r followed by a bracketed n-tuple of
terms ti. A term T is a variable V or a functor symbol f(t1, . . . , tk) immediately followed by
a bracketed k-tuple of terms ti. Variables will be written in upper-case, and constant, func-
tor and predicate symbols lower-case. The symbol will denote anonymous variables which
are read and treated as distinct, new variables each time they are encountered. An iterative
clause is a formula of the form H← B where H (called head) and B (called body) are logical
atoms. A substitution θ = {V1/t1, . . . , Vn/tn}, e.g. {X/tex}, is an assignment of terms ti

to variables Vi. Applying a substitution σ to a term, atom or clause e yields the instanti-
ated term, atom, or clause eσ where all occurrences of the variables Vi are simultaneously
replaced by the term ti, e.g. ls(X)← emacs(F, X){X/tex} yields ls(tex)← emacs(F, tex).
A substitution σ is called a unifier for a finite set S of atoms if Sσ is singleton. A unifier θ
for S is called a most general unifier (MGU) for S if, for each unifier σ of S, there exists a
substitution γ such that σ = θγ. A term, atom or clause E is called ground when it contains
no variables, i.e., vars(E) = ∅. The Herbrand base of Σ, denoted as hbΣ, is the set of all
ground atoms constructed with the predicate and functor symbols in Σ. The set GΣ(A) of
an atom A consists of all ground atoms Aθ that belong to hbΣ.

3. Logical Hidden Markov Models

The logical component of a traditional HMM corresponds to a Mealy machine (Hopcroft
& Ullman, 1979), i.e., a finite state machine where the output symbols are associated with
transitions. This is essentially a propositional representation because the symbols used to
represent states and output symbols are flat, i.e. not structured. The key idea underlying
LOHMMs is to replace these flat symbols by abstract symbols. An abstract symbol A is —

2

Logical Hidden Markov Models

by definition — a logical atom. It is abstract in that it represents the set of all ground, i.e.,
variable-free atoms of A over the alphabet Σ, denoted by GΣ(A). Ground atoms then play
the role of the traditional symbols used in a HMMs.

Example 1 Consider the alphabet Σ1 which has as constant symbols tex, dvi, hmm1,
and lohmm1, and as relation symbols emacs/2, ls/1, xdvi/1, latex/2. Then the atom
emacs(File, tex) represents the set {emacs(hmm1, tex), emacs(lohmm1, tex)}. We assume
that the alphabet is typed to avoid useless instantiations such as emacs(tex, tex)).

The use of atoms instead of flat symbols allows us to analyze logical and structured sequences
such as emacs(hmm1, tex), latex(hmm1, tex), xdvi(hmm1, dvi).

Definition 1 Abstract transition are expressions of the form p : H
O
←− B where p ∈ [0, 1],

and H, B and O are atoms. All variables are implicitly assumed to be universally quantified,
i.e., the scope of variables is a single abstract transition.

The atoms H and B represent abstract states and O represents an abstract output symbol.

The semantics of an abstract transition p : H
O
←− B is that if one is in one of the states in

GΣ(B), say BθB, one will go with probability p to one of the states in GΣ(HθB), say HθBθH,
while emitting a symbol in GΣ(OθBθH), say OθBθHθO.

Example 2 Consider c ≡ 0.8 : xdvi(File, dvi)
latex(File)
←−−−−−−− latex(File, tex). In general

H, B and O do not have to share the same predicate. This is only due to the na-
ture of our running example. Assume now that we are in state latex(hmm1, tex), i.e.
θB = {File/hmm1}. Then c specifies that there is a probability of 0.8 that the next state
will be in GΣ1(xdvi(hmm1, dvi)) = {xdvi(hmm1, dvi)} (i.e., the probability is 0.8 that the
next state will be xdvi(hmm1, dvi)), and that one of the symbols in GΣ1(latex(hmm1)) =
{latex(hmm1)} (i.e., latex(hmm1)) will be emitted. Abstract states might also be more
complex such as latex(file(FileStem, FileExtension), User)

The above example was simple because θH and θO were both empty. The situation be-
comes more complicated when these substitutions are not empty. Then, the resulting
state and output symbol sets are not necessarily singletons. Indeed, for the transi-

tion 0.8 : emacs(File′, dvi)
latex(File)
←−−−−−−− latex(File, tex) the resulting state set would be

GΣ1(emacs(File
′, dvi)) = {emacs(hmm1, tex), emacs(lohmm1, tex)}. Thus the transition

is non-deterministic because there are two possible resulting states. We therefore need a
mechanism to assign probabilities to these possible alternatives.

Definition 2 The selection distribution µ specifies for each abstract state and observation
symbol A over the alphabet Σ a distribution µ(· | A) over GΣ(A).

To continue our example, let µ(emacs(hmm1, tex) | emacs(File′, tex)) = 0.4 and
µ(emacs(lohmm1, tex) | emacs(File′, tex)) = 0.6. Then there would be a probabil-
ity of 0.4 × 0.8 = 0.32 that the next state is emacs(hmm1, tex) and of 0.48 that it is
emacs(lohmm1, tex).

Taking µ into account, the meaning of an abstract transition p : H
O
←− B can be sum-

marized as follows. Let BθB ∈ GΣ(B), HθBθH ∈ GΣ(HθB) and OθBθHθO ∈ GΣ(OθBθH). Then the

3

Kersting, De Raedt, & Raiko

model makes a transition from state BθB to HθBθH and emits symbol OθBθHθO with probability

p · µ(HθBθH | HθB) · µ(OθBθHθO | OθBθH). (1)

To represent µ, any probabilistic representation can - in principle - be used, e.g. a Bayesian
network or a Markov chain. Throughout the remainder of the present paper, however,
we will use a näıve Bayes approach. More precisely, we associate to each argument of a

relation r/m a finite domain D
r/m
i of constants and a probability distribution P

r/m
i over

D
r/m
i . Let vars(A) = {V1, . . . , Vl} be the variables occurring in an atom A over r/m, and

let σ = {V1/s1, . . . Vl/sl} be a substitution grounding A. Each Vj is then considered a

random variable over the domain D
r/m
arg(Vj)

of the argument arg(Vj) it appears first in. Then,

µ(Aσ | A) =
∏l

j=1 P
r/m
arg(Vj)

(sj). E.g. µ(emacs(hmm1, tex) | emacs(F, E)), is computed as the

product of P
emacs/2
1 (hmm1) and P

emacs/2
2 (tex).

Thus far the semantics of a single abstract transition has been defined. A LOHMM
usually consists of multiple abstract transitions and this creates a further complication.

Example 3 Consider 0.8 : latex(File, tex)
emacs(File)
←−−−−−−− emacs(File, tex) and

0.4 : dvi(File)
emacs(File)
←−−−−−−− emacs(File, User). These two abstract transitions make

conflicting statements about the state resulting from emacs(hmm1, tex). Indeed, according
to the first transition, the probability is 0.8 that the resulting state is latex(hmm1, tex) and
according to the second one it assigns 0.4 to xdvi(hmm1).

There are essentially two ways to deal with this situation. On the one hand, one might want
to combine and normalize the two transitions and assign a probability of 2

3 respectively 1
3 .

On the other hand, one might want to have only one rule firing. In this paper, we chose the
latter option because it allows us to consider transitions more independently, it simplifies
learning, and it yields locally interpretable models. We employ the subsumption (or gen-
erality) relation among the B-parts of the two abstract transitions. Indeed, the B-part of
the first transition B1 = emacs(File, tex) is more specific than that of the second transi-
tion B2 = emacs(File, User) because there exists a substitution θ = {User/tex} such that
B2θ = B1, i.e., B2 subsumes B1. Therefore GΣ1(B1) ⊆ GΣ1(B2) and the first transition can
be regarded as more informative than the second one. It should therefore be preferred over
the second one when starting from emacs(hmm1, tex). We will also say that the first tran-
sition is more specific than the second one. Remark that this generality relation imposes a
partial order on the set of all transitions. These considerations lead to the strategy of only
considering the maximally specific transitions that apply to a state in order to determine
the successor states. This implements a kind of exception handling or default reasoning
and is akin to Katz (1987)’s back-off n-gram models. In back-off n-gram models, the most
detailed model that is deemed to provide sufficiently reliable information about the current
context is used. That is, if one encounters an n-gram that is not sufficiently reliable, then
back-off to use an (n−1)-gram; if that is not reliable either then back-off to level n−2, etc.

The conflict resolution strategy will work properly provided that the bodies of all max-
imally specific transitions (matching a given state) represent the same abstract state. This
can be enforced by requiring the generality relation over the B-parts to be closed under the
greatest lower bound (glb) for each predicate, i.e., for each pair B1, B2 of bodies, such that

4

Logical Hidden Markov Models

PSfrag replacements

start

emacs(F, U)

emacs(F′ , U)

emacs(F, tex)latex(F, tex)

ls(U′)

emacs(F) : 0.7

emacs(F) : 0.3

emacs(F) : 0.3

emacs(F) : 0.1

emacs(F) : 0.6

latex(F) : 0.6

latex(F) : 0.2

latex(F) : 0.2

ls : 0.6

ls : 0.4

0.55 0.45

Figure 1: A logical hidden Markov model.

θ = mgu(B1, B2) exists, there is another body B (called lower bound) which subsumes B1θ
(therefore also B2θ) and is subsumed by B1, B2, and if there is any other lower bound then
it is subsumed by B. E.g., if the body of the second abstract transition in our example is
emacs(hmm1, User) then the set of abstract transitions would not be closed under glb.

Finally, in order to specify a prior distribution over states, we assume a finite set Υ of
clauses of the form p : H ← start using a distinguished start symbol such that p is the
probability of the LOHMM to start in a state of GΣ(H).

By now we are able to formally define logical hidden Markov models.

Definition 3 A logical hidden Markov model (LOHMM) is a tuple (Σ, µ,∆,Υ) where Σ is
a logical alphabet, µ a selection probability over Σ, ∆ is a set of abstract transitions, and Υ
is a set of abstract transitions encoding a prior distribution. Let B be the set of all atoms
that occur as body parts of transitions in ∆. We assume B to be closed under glb and require

∀B ∈ B :
∑

p:H
O
←−B∈∆

p = 1.0 (2)

and that the probabilities p of clauses in Υ sum up to 1.0 .

HMMs are a special cases of LOHMMs in which Σ contains only relation symbols of arity
zero and the selection probability is irrelevant. Thus, LOHMMs directly generalize HMMs.

LOHMMs can also be represented graphically. Figure 1 contains an example. The under-
lying language Σ2 consists of Σ1 together with the constant symbol other which denotes a
user that does not employ LATEX. In this graphical notation, nodes represent abstract states
and black tipped arrows denote abstract transitions. White tipped arrows are used to repre-
sent meta knowledge. More precisely, white tipped, dashed arrows represent the generality or
subsumption ordering between abstract states. If we follow a transition to an abstract state
with an outgoing white tipped, dotted arrow then this dotted arrow will always be followed.
Dotted arrows are needed because the same abstract state can occur under different cir-

cumstances. Consider the transition p : latex(File′, User′)
latex(File)
←−−−−−−− latex(File, User).

Even though the atoms in the head and body of the transition are syntactically different they

5

Kersting, De Raedt, & Raiko

0.6
1.00.45

0.4 0.7

0.6

PSfrag replacements

em(F, U)

em(F, U)

em(f1 , t) em(F, t)
em(f1)

la(F, t) la(f1 , t)

la(f1)

em(F′ , U)em(f2 , o)
em(f2)

ls(U′)ls(t)
ls

µ

µµ

start

abstract state

abstract state abstract state

abstract state

abstract state

abstract state

state

state

state

state

Figure 2: Generating the observation sequence emacs(hmm1), latex(hmm1),
emacs(lohmm1), ls by the LOHMM in Figure 1. The command emacs is
abbreviated by em, f1 denotes the filename hmm1, f2 represents lohmm1, t denotes
a tex user, and o some other user. White tipped solid arrows indicate selections.

represent the same abstract state. To accurately represent the meaning of this transition we
cannot use a black tipped arrow from latex(File, User) to itself, because this would actu-

ally represent the abstract transition p : latex(File, User)
latex(File)
←−−−−−−− latex(File, User).

Furthermore, the graphical representation clarifies that LOHMMs are generative mod-
els. Let us explain how the model in Figure 1 would generate the observation sequence
emacs(hmm1), latex(hmm1), emacs(lohmm1), ls (cf. Figure 2). It chooses an initial ab-
stract state, say emacs(F, U). Since both variables F and U are uninstantiated, the model
samples the state emacs(hmm1, tex) from GΣ2 using µ. As indicated by the dashed ar-
row, emacs(F, tex) is more specific than emacs(F, U). Moreover, emacs(hmm1, tex) matches
emacs(F, tex). Thus, the model enters emacs(F, tex). Since the value of F was already
instantiated in the previous abstract state, emacs(hmm1, tex) is sampled with probability
1.0. Now, the model goes over to latex(F, tex), emitting emacs(hmm1) because the abstract
observation emacs(F) is already fully instantiated. Again, since F was already instantiated,
latex(hmm1, tex) is sampled with probability 1.0. Next, we move on to emacs(F ′, U), emit-
ting latex(hmm1). Variables F′ and U in emacs(F′, U) were not yet bound; so, values, say
lohmm1 and others, are sampled from µ. The dotted arrow brings us back to emacs(F, U).
Because variables are implicitly universally quantified in abstract transitions, the scope of
variables is restricted to single abstract transitions. In turn, F is treated as a distinct,
new variable, and is automatically unified with F′, which is bound to lohmm1. In contrast,
variable U is already instantiated. Emitting emacs(lohmm1), the model makes a transition
to ls(U′). Assume that it samples tex for U′. Then, it remains in ls(U′) with probability
0.4 . Considering all possible samples, allows one to prove the following theorem.

Theorem 1 (Semantics) A logical hidden Markov model over a language Σ defines a
discrete time stochastic process, i.e., a sequence of random variables 〈Xt〉t=1,2,..., where the
domain of Xt is hb(Σ)×hb(Σ). The induced probability measure over the Cartesian product
⊗

t hb(Σ)× hb(Σ) exists and is unique for each t > 0 and in the limit t→∞.

Before concluding this section, let us address some design choices underlying LOHMMs.
First, LOHMMs have been introduced as Mealy machines, i.e., output symbols are

associated with transitions. Mealy machines fit our logical setting quite intuitively as they
directly encode the conditional probability P (O, S′|S) of making a transition from S to S′

6

Logical Hidden Markov Models

emitting an observation O. Logical hidden Markov models define this distribution as

P (O, S′|S) =
∑

p:H
O′←−B

p · µ(S′ | HσB) · µ(O | O′σBσH)

where the sum runs over all abstract transitions H
O′

←− B such that B is most specific for S.
Observations correspond to (partially) observed proof steps and, hence, provide information
shared among heads and bodies of abstract transitions. In contrast, HMMs are usually
introduced as Moore machines. Here, output symbols are associated with states implicitly
assuming O and S′ to be independent. Thus, P (O, S′ | S) factorizes into P (O | S) · P (S′ | S).
This makes it more difficult to observe information shared among heads and bodies. In
turn, Moore-LOHMMs are less intuitive and harder to understand. For a more detailed
discussion of the issue, we refer to Appendix B where we essentially show that – as in the
propositional case – Mealy- and Moore-LOHMMs are equivalent.

Second, the näıve Bayes approach for the selection distribution reduces the model com-
plexity at the expense of a lower expressivity: functors are neglected and variables are
treated independently. Adapting more expressive approaches is an interesting future line of
research. For instance, Bayesian networks allow one to represent factorial HMMs (Ghahra-
mani & Jordan, 1997). Factorial HMMs can be viewed as a special type of LOHMMs, where
the hidden states are summarized by a 2 ·k-ary abstract state. The first k arguments encode
the k state variables, and the last k arguments serve as a memory of the previous joint state.
µ of the i-th argument is conditioned on the i + k-th argument. Markov chains allow one
to sample compound terms of variable, finite depth such as s(s(s(0))) and to model e.g.
misspelled filenames. This is akin to the idea of generalized HMMs (Kulp et al., 1996) in
which each node may output a finite sequence of symbols rather than a single symbol.

Finally, LOHMMs – as introduced in the present paper – specify a probability distri-
bution over all sequences of a given length. Reconsider the LOHMM in Figure 1. Al-
ready the probabilities of all observation sequences of length 1, i.e., ls, emacs(hmm1), and
emacs(lohmm1)) sum up to 1. More precisely, for each t > 0 it holds that

∑

x1,...,xt
P (X1 =

x1, . . . , Xt = xt) = 1.0 . In order to model a distribution over sequences of variable length,
i.e.,

∑

t>0

∑

x1,...,xt
P (X1 = x1, . . . , Xt = xt) = 1.0 we may add a distinguished end state.

The end state is absorbing in that whenever the model makes a transition into this state,
it terminates the observation sequence generated.

4. Three Inference Problems for LOHMMs

As for HMMs, three inference problems are of interest. Let M be a LOHMM and let
O = O1, O2, . . . , OT , T > 0, be a finite sequence of ground observations:

(1) Evaluation: Determine the probability P (O | M) that sequence O was generated by
the model M .

(2) Most likely state sequence: Determine the hidden state sequence S∗ that has most
likely produced the observation sequence O, i.e. S∗ = arg maxS P (S | O,M) .

(3) Parameter estimation: Given a set OOO = {O1, . . . ,Ok} of observation sequences, de-
termine the most likely parameters λ∗ for the abstract transitions and the selection
distribution of M , i.e. λ∗ = arg maxλ P (OOO | λ) .

7

Kersting, De Raedt, & Raiko

ls(t)

ls(U’)

ls(o)

em(F’,U)

em(F’,o)

latex(f1,t)

em(F,U)

ls(U’)

ls(o)

ls(t)

em(f1,o)

em(f1,t)

latex(f1,t)

ls(o)

ls(t)

ls(o)

ls(t)

ls(U’)

em(F’,U)
em(f2,o)

latex(f2,t)

em(F’,o)em(f2,t)

...

abstract selection abstract selection abstract
transition

selection
transitiontransition

PSfrag replacements

S0 S1 S2

start

sc(1)

sc(2)

sc(Y)

hc(1)

hc(2)

hc(X)

sc(Z)

O1

O2

O2

abstract state

states

Figure 3: Trellis induced by the LOHMM in Figure 1. The sets of reachable states at time
0, 1, . . . are denoted by S0, S1, . . . In contrast with HMMs, there is an additional
layer where the states are sampled from abstract states.

We will now address each of these problems in turn by upgrading the existing solutions for
HMMs. This will be realized by computing a grounded trellis as in Figure 3. The possible
ground successor states of any given state are computed by first selecting the applicable
abstract transitions and then applying the selection probabilities (while taking into account
the substitutions) to ground the resulting states. This two-step factorization is coalesced
into one step for HMMs.

To evaluate O, consider the probability of the partial observation sequence O1, O2, . . . , Ot

and (ground) state S at time t, 0 < t ≤ T , given the model M = (Σ, µ,∆,Υ)

αt(S) := P (O1, O2, . . . , Ot, qt = S |M)

where qt = S denotes that the system is in state S at time t. As for HMMs, αt(S) can be com-
puted using a dynamic programming approach. For t = 0, we set α0(S) = P (q0 = S |M) ,
i.e., α0(S) is the probability of starting in state S and, for t > 0, we compute αt(S) based
on αt−1(S

′):

1: S0 := {start} /* initialize the set of reachable states*/
2: for t = 1, 2, . . . , T do
3: St = ∅ /* initialize the set of reachable states at clock t*/
4: foreach S ∈ St−1 do

5: foreach maximally specific p : H
O
←− B ∈ ∆ ∪Υ s.t. σB = mgu(S, B) exists do

6: foreach S′ = HσBσH ∈ GΣ(HσB) s.t. Ot−1 unifies with OσBσH do

7: if S′ 6∈ St then
8: St := St ∪ {S

′}
9: αt(S

′) := 0.0

10: αt(S
′) := αt(S

′) + αt−1(S) · p · µ(S′ | HσB) · µ(Ot−1 | OσBσH)

11: return P (O |M) =
∑

S∈ST
αT (S)

8

Logical Hidden Markov Models

where we assume for the sake of simplicity O ≡ start for each abstract transition p : H ←
start ∈ Υ. Furthermore, the boxed parts specify all the differences to the HMM formula:
unification and µ are taken into account.

Clearly, as for HMMs P (O | M) =
∑

S∈ST
αT (S) holds. The computational complexity

of this forward procedure is O(T · s · (|B|+ o · g)) = O(T · s2) where s = maxt=1,2,...,T |St| ,
o is the maximal number of outgoing abstract transitions with regard to an abstract state,
and g is the maximal number of ground instances of an abstract state. In a completely
analogous manner, one can devise a backward procedure to compute

βt(S) = P (Ot+1, Ot+2, . . . , OT | qt = S,M) .

This will be useful for solving Problem (3).
Having a forward procedure, it is straightforward to adapt the Viterbi algorithm as a

solution to Problem (2), i.e., for computing the most likely state sequence. Let δt(S)
denote the highest probability along a single path at time t which accounts for the first t
observations and ends in state S, i.e.,

δt(S) = max
S0,S1,...,St−1

P (S0, S1, . . . , St−1, St = S, O1, . . . , Ot−1|M) .

The procedure for finding the most likely state sequence basically follows the forward pro-
cedure. Instead of summing over all ground transition probabilities in line 10, we maximize
over them. More precisely, we proceed as follows:

1:S0 := {start} /* initialize the set of reachable states*/
2: for t = 1, 2, . . . , T do
3: St = ∅ /* initialize the set of reachable states at clock t*/
4: foreach S ∈ St−1 do

5: foreach maximally specific p : H
O
←− B ∈ ∆ ∪Υ s.t. σB = mgu(S, B) exists do

6: foreach S′ = HσBσH ∈ GΣ(HσB) s.t. Ot−1 unifies with OσBσH do
7: if S′ 6∈ St then
8: St := St ∪ {S

′}
9: δt(S, S

′) := 0.0
10: δt(S, S

′) := δt(S, S
′) + δt−1(S) · p · µ(S′ | HσB) · µ(Ot−1 | OσBσH)

11: foreach S′ ∈ St do
12: δt(S

′) = maxS∈St−1 δt(S, S
′)

13: ψt(S
′) = arg maxS∈St−1 ψt(S, S

′)

Here, δt(S, S
′) stores the probability of making a transition from S to S′ and ψt(S

′) (with
ψ1(S) = start for all states S) keeps track of the state maximizing the probability along
a single path at time t which accounts for the first t observations and ends in state S ′. The
most likely hidden state sequence S∗ can now be computed as

S∗T+1 = arg max
S∈ST+1

δT+1(S)

and S∗t = ψt(S
∗
t+1) for t = T, T − 1, . . . , 1 .

One can also consider problem (2) on a more abstract level. Instead of considering all
contributions of different abstract transitions T to a single ground transition from state S

9

Kersting, De Raedt, & Raiko

to state S′ in line 10, one might also consider the most likely abstract transition only. This
is realized by replacing line 10 in the forward procedure with

αt(S
′) := max(αt(S

′), αt−1(S) · p · µ(S′ | HσB) · µ(Ot−1 | OσBσH)) .

This solves the problem of finding the (2′) most likely state and abstract transition
sequence:

Determine the sequence of states and abstract transitions GT
∗ =

S0, T0, S1, T1, S2, . . . , ST, TT , ST+1 where there exists substitutions θi with Si+1 ←
Si ≡ Ti θi that has most likely produced the observation sequence O, i.e.
GT

∗ = arg maxGT P (GT | O,M) .

Thus, logical hidden Markov models also pose new types of inference problems.

For parameter estimation, we have to estimate the maximum likelihood transition
probabilities and selection distributions. To estimate the former, we upgrade the well-known
Baum-Welch algorithm (Baum, 1972) for estimating the maximum likelihood parameters
of HMMs and probabilistic context-free grammars.

For HMMs, the Baum-Welch algorithm computes the improved estimate p of the tran-

sition probability of some (ground) transition T ≡ p : H
O
←− B by taking the ratio

p =
ξ(T)

∑

H′
O′

←−B∈∆∪Υ
ξ(T′)

(3)

between the expected number ξ(T) of times of making the transitions T at any time given
the model M and an observation sequence O, and the total number of times a transitions
is made from B at any time given M and O.

Basically the same applies when T is an abstract transition. However, we have to be
a little bit more careful because we have no direct access to ξ(T). Let ξt(gcl, T) be the

probability of following the abstract transition T via its ground instance gcl ≡ p : GH
GO
←−− GB

at time t, i.e.,

ξt(gcl, T) =
αt(GB) · p · βt+1(GH)

P (O |M)
· µ(GH | HσB) · µ(Ot−1 | OσBσH) , (4)

where σB, σH are as in the forward procedure (see above) and P (O | M) is the probability
that the model generated the sequence O. Again, the boxed terms constitute the main
difference to the corresponding HMM formula. In order to apply Equation (3) to compute
improved estimates of probabilities associated with abstract transitions, we set

ξ(T) =

T
∑

t=1

ξt(T) =

T
∑

t=1

∑

gcl

ξt(gcl, T)

where the inner sum runs over all ground instances of T.

This leads to the following re-estimation method, where we assume that the sets Si of
reachable states are reused from the computations of the α- and β-values:

10

Logical Hidden Markov Models

1: /* initialization of expected counts */
2: foreach T ∈ ∆ ∪Υ do
3: ξ(T) := m /* or 0 if not using pseudocounts */
4: /* compute expected counts */
5: for t = 0, 1, . . . , T do
6: foreach S ∈ St do

7: foreach max. specific T ≡ p : H
O
←− B ∈ ∆ ∪Υ s.t. σB = mgu(S, B) exists do

8: foreach S′ = HσBσH ∈ GΣ(HσB) s.t. S′ ∈ St+1 ∧ mgu(Ot, OσBσH) exists do

9: ξ(T) := ξ(T) + αt(S) · p · βt+1(S
′)
/

P (O |M)· µ(S′ | HσB) · µ(Ot−1 | OσBσH)

Here, equation (4) can be found in line 9. In line 3, we set pseudocounts as small sample-
size regularizers. Other methods to avoid a biased underestimate of probabilities and even
zero probabilities such as m-estimates, see e.g. (Mitchell, 1997), can be easily adapted.

To estimate the selection probabilities, recall that µ follows a näıve Bayes scheme. There-
fore, the estimated probability for a domain element d ∈ D for some domain D is the ratio
between the number of times d is selected and the number of times any d′ ∈ D is selected.
The procedure for computing the ξ-values can thus be reused.

Altogether, the Baum-Welch algorithm works as follows: While not converged, (1) es-
timate the abstract transition probabilities, and (2) the selection probabilities. Since it is
an instance of the EM algorithm, it increases the likelihood of the data with every update,
and according to McLachlan and Krishnan (1997), it is guaranteed to reach a stationary
point. All standard techniques to overcome limitations of EM algorithms are applicable.
The computational complexity (per iteration) is O(k · (α+ d)) = O(k · T · s2 + k · d) where
k is the number of sequences, α is the complexity of computing the α-values (see above),
and d is the sum over the sizes of domains associated to predicates. Recently, Kersting
and Raiko (2005) combined the Baum-Welch algorithm with structure search for model
selection of logical hidden Markov models using inductive logic programming (Muggleton
& De Raedt, 1994) refinement operators. The refinement operators account for different
abstraction levels which have to be explored.

5. Advantages of LOHMMs

In this section, we will investigate the benefits of LOHMMs: (1) LOHMMs are strictly
more expressive than HMMs, and (2), using abstraction, logical variables and unification
can be beneficial. More specifically, with (2), we will show that

(B1) LOHMMs can be — by design — smaller than their propositional instantiations, and

(B2) unification can yield better log-likelihood estimates.

5.1 On the Expressivity of LOHMMs

Whereas HMMs specify probability distributions over regular languages, LOHMMs specify
probability distributions over more expressive languages.

11

Kersting, De Raedt, & Raiko

Theorem 2 For any (consistent) probabilistic context-free grammar (PCFG) G for some
language L there exists a LOHMM M s.t. PG(w) = PM (w) for all w ∈ L.

The proof (see Appendix C) makes use of abstract states of unbounded ’depth’. More
precisely, functors are used to implement a stack. Without functors, LOHMMs cannot
encode PCFGs and, because the Herbrand base is finite, it can be proven that there always
exists an equivalent HMM.

Furthermore, if functors are allowed, LOHMMs are strictly more expressive than PCFGs.
They can specify probability distributions over some languages that are context-sensitive:

1.0 : stack(s(0), s(0)) ← start

0.8 : stack(s(X), s(X))
a
←− stack(X, X)

0.2 : unstack(s(X), s(X))
a
←− stack(X, X)

1.0 : unstack(X, Y)
b
←− unstack(s(X), Y)

1.0 : unstack(s(0), Y)
c
←− unstack(s(0), s(Y))

1.0 : end
end
←−− unstack(s(0), s(0))

The LOHMM defines a distribution over {anbncn | n > 0}.
Finally, the use of logical variables also enables one to deal with identifiers. Identifiers

are special types of constants that denote objects. Indeed, recall the UNIX command
sequence emacs lohmms.tex, ls, latex lohmms.tex, . . . from the introduction. The filename
lohmms.tex is an identifier. Usually, the specific identifiers do not matter but rather the
fact that the same object occurs multiple times in the sequence. LOHMMs can easily deal
with identifiers by setting the selection probability µ to a constant for the arguments in
which identifiers can occur. Unification then takes care of the necessary variable bindings.

5.2 Benefits of Abstraction through Variables and Unification

Reconsider the domain of UNIX command sequences. Unix users oftenly reuse a newly cre-
ated directory in subsequent commands such as in mkdir(vt100x), cd(vt100x), ls(vt100x) .
Unification should allow us to elegantly employ this information because it allows us to spec-
ify that, after observing the created directory, the model makes a transition into a state
where the newly created directory is used:

p1 : cd(Dir, mkdir)← mkdir(Dir, com) and p2 : cd(, mkdir)← mkdir(Dir, com)

If the first transition is followed, the cd command will move to the newly created directory;
if the second transition is followed, it is not specified which directory cd will move to. Thus,
the LOHMM captures the reuse of created directories as an argument of future commands.
Moreover, the LOHMM encodes the simplest possible case to show the benefits of unifica-
tion. At any time, the observation sequence uniquely determines the state sequence, and
functors are not used. Therefore, we left out the abstract output symbols associated with
abstract transitions. In total, the LOHMM U , modelling the reuse of directories, consists
of 542 parameters only but still covers more than 451000 (ground) states, see Appendix D
for the complete model. The compression in the number of parameters supports (B1).

To empirically investigate the benefits of unification, we compare U with the variant N
of U where no variables are shared, i.e., no unification is used such that for instance the

12

Logical Hidden Markov Models

first transition above is not allowed, see Appendix D. N has 164 parameters less than U .
We computed the following zero-one win function

f(O) =

{

1 if
[

log PU (O)− logPN (O)
]

> 0

0 otherwise

leave-one-out cross-validated on Unix shell logs collected by Greenberg (1988). Overall,
the data consists of 168 users of four groups: computer scientists, nonprogrammers, novices
and others. About 300000 commands have been logged with an average of 110 sessions
per user. We present here results for a subset of the data. We considered all computer
scientist sessions in which at least a single mkdir command appears. These yield 283 logical
sequences over in total 3286 ground atoms. The LOO win was 81.63%. Other LOO statistics
are also in favor of U :

training test

logP (OOO) log PU (OOO)
PN (OOO) logP (O) log PU (O)

PN (O)

U −11361.0
1795.3

−42.8
7.91

N −13157.0 −50.7

Thus, although U has 164 parameters more than N , it shows a better generalization per-
formance. This result supports (B2). A pattern often found in U was 1

0.15 : cd(Dir, mkdir)← mkdir(Dir, com) and 0.08 : cd(, mkdir)← mkdir(Dir, com)

favoring changing to the directory just made. This knowledge cannot be captured in N

0.25 : cd(, mkdir) ← mkdir(Dir, com).

The results clearly show that abstraction through variables and unification can be beneficial
for some applications, i.e., (B1) and (B2) hold.

6. Real World Applications

Our intentions here are to investigate whether LOHMMs can be applied to real world
domains. More precisely, we will investigate whether benefits (B1) and (B2) can also be
exploited in real world application domains. Additionally, we will investigate whether

(B3) LOHMMs are competitive with ILP algorithms that can also utilize unification and
abstraction through variables, and

(B4) LOHMMs can handle tree-structured data similar to PCFGs.

To this aim, we conducted experiments on two bioinformatics application domains: protein
fold recognition (Kersting et al., 2003) and mRNA signal structure detection (Horváth et al.,
2001). Both application domains are multiclass problems with five different classes each.

1. The sum of probabilities is not the same (0.15 + 0.08 = 0.23 6= 0.25) because of the use of pseudo counts
and because of the subliminal non-determinism (w.r.t. abstract states) in U , i.e., in case that the first
transition fires, the second one also fires.

13

Kersting, De Raedt, & Raiko

6.1 Methodology

In order to tackle the multiclass problem with LOHMMs, we followed a plug-in estimate
approach. Let {c1, c2, . . . , ck} be the set of possible classes. Given a finite set of training
examples {(xi, yi)}

n
i=1 ⊆ X × {c1, c2, . . . , cn}, one tries to find f : X → {c1, c2, . . . , ck}

f(x) = arg max
c∈{c1,c2,...,ck}

P (x |M,λ∗c) · P (c) . (5)

with low approximation error on the training data as well as on unseen examples. In
Equation (5), M denotes the model structure which is the same for all classes, λ∗

c denotes
the maximum likelihood parameters of M for class c estimated on the training examples
with yi = c only, and P (c) is the prior class distribution.

We implemented the Baum-Welch algorithm (with pseudocounts m, see line 3) for maxi-
mum likelihood parameter estimation using the Prolog system Yap-4.4.4. In all experiments,
we set m = 1 and let the Baum-Welch algorithm stop if the change in log-likelihood was
less than 0.1 from one iteration to the next. The experiments were ran on a Pentium-IV
3.2 GHz Linux machine.

6.2 Protein Fold Recognition

Protein fold recognition is concerned with how proteins fold in nature, i.e., their three-
dimensional structures. This is an important problem as the biological functions of proteins
depend on the way they fold. A common approach is to use database searches to find pro-
teins (of known fold) similar to a newly discovered protein (of unknown fold). To facilitate
protein fold recognition, several expert-based classification schemes of proteins have been
developed that group the current set of known protein structures according to the simi-
larity of their folds. For instance, the structural classification of proteins (Hubbard et al.,
1997) (SCOP) database hierarchically organizes proteins according to their structures and
evolutionary origin. From a machine learning perspective, SCOP induces a classification
problem: given a protein of unknown fold, assign it to the best matching group of the
classification scheme. This protein fold classification problem has been investigated by Tur-
cotte et al. (2001) based on the inductive logic programming (ILP) system PROGOL and
by Kersting et al. (2003) based on LOHMMs.

The secondary structure of protein domains2 can elegantly be represented as logical se-
quences. For example, the secondary structure of the Ribosomal protein L4 is represented as

st(null, 2), he(right, alpha, 6), st(plus, 2), he(right, alpha, 4), st(plus, 2),

he(right, alpha, 4), st(plus, 3), he(right, alpha, 4), st(plus, 1), he(hright, alpha, 6)

Helices of a certain type, orientation and length he(HelixType,HelixOrientation ,Length),
and strands of a certain orientation and length st(StrandOrientation,Length) are atoms over
logical predicates. The application of traditional HMMs to such sequences requires one to
either ignore the structure of helices and strands, which results in a loss of information, or to
take all possible combinations (of arguments such as orientation and length) into account,
which leads to a combinatorial explosion in the number of parameters

2. A domain can be viewed as a sub-section of a protein which appears in a number of distantly related
proteins and which can fold independently of the rest of the protein.

14

Logical Hidden Markov Models

block(B, 0) block(s(B), 0)

block(B, s(s(s(0))))

block(B, s(P))

block(B, P) block(s(B), P)

block(s(B), s(P))

Block B of length 3 Block s(B) of length 2

block(s(B), s(0))

Transition to next block

Dynamics within block Dynamics within block

Transition to next block

end

Figure 4: Scheme of a left-to-right LOHMM block model.

The results reported by Kersting et al. (2003) indicate that LOHMMs are well-suited
for protein fold classification: the number of parameters of a LOHMM can by an order of
magnitude be smaller than the number of a corresponding HMM (120 versus approximately
62000) and the generalization performance, a 74% accuracy, is comparable to Turcotte
et al. (2001)’s result based on the ILP system Progol, a 75% accuracy. Kersting et al.
(2003), however, do not cross-validate their results nor investigate – as it is common in
bioinformatics – the impact of primary sequence similarity on the classification accuracy. For
instance, the two most commonly requested ASTRAL subsets are the subset of sequences
with less than 95% identity to each other (95 cut) and with less than 40% identity to each
other (40 cut). Motivated by this, we conducted the following new experiments.

The data consists of logical sequences of the secondary structure of protein domains.
As in (Kersting et al., 2003), the task is to predict one of the five most populated SCOP
folds of alpha and beta proteins (a/b): TIM beta/alpha-barrel (fold 1), NAD(P)-binding
Rossmann-fold domains (fold 2), Ribosomal protein L4 (fold 23), Cysteine hydrolase (fold
37), and Phosphotyrosine protein phosphatases I-like (fold 55). The class of a/b proteins
consists of proteins with mainly parallel beta sheets (beta-alpha-beta units). The data have
been extracted automatically from the ASTRAL dataset version 1.65 (Chandonia et al.,
2004) for the 95 cut and for the 40 cut. As in (Kersting et al., 2003), we consider strands
and helices only, i.e., coils and isolated strands are discarded. For the 95 cut, this yields
816 logical sequences consisting of in total 22210 ground atoms. The number of sequences
in the classes are listed as 293, 151, 87, 195, and 90. For the 40 cut, this yields 523 logical
sequences consisting of in total 14986 ground atoms. The number of sequences in the classes
are listed as 182, 100, 66, 122, and 53.

LOHMM structure: The used LOHMM structure follows a left-to-right block topology,
see Figure 4, to model blocks of consecutive helices (resp. strands). Being in a Block of some
size s, say 3, the model will remain in the same block for s = 3 time steps. A similar idea
has been used by Koivisto et al. (2002, 2004) to model haplotypes. In contrast to common
HMM block models (Won et al., 2004), the transition parameters are shared within each
block and one can ensure that the model makes a transition to the next state s(Block) only
at the end of a block; in our example after exactly 3 intra-block transitions. Furthermore,

15

Kersting, De Raedt, & Raiko

there are specific abstract transitions for all helix types and strand orientations to model
the priori distribution, the intra- and the inter-block transitions. The number of blocks and
their sizes were chosen according to the empirical distribution over sequence lengths in the
data so that the beginning and the ending of protein domains was likely captured in detail.
This yield the following block structure

1 2 41 46 47 61 62 76 7719 20 27 28 40

... ...

where the numbers denote the positions within protein domains. Furthermore, note that
the last block gathers all remaining transitions. The blocks themselves are modelled using
hidden abstract states over

hc(HelixType,HelixOrientation ,Length ,Block) and sc(StrandOrientation ,Length ,Block) .

Here, Length denotes the number of consecutive bases the structure element consists of.
The length was discretized into 10 bins such that the original lengths were uniformally
distributed. In total, the LOHMM has 295 parameters. The corresponding HMM without
parameter sharing has more than 65200 parameters. This clearly confirms (B1).

Results: We performed a 10-fold cross-validation. On the 95 cut dataset, the accuracy was
76% and took approx. 25 minutes per cross-validation iteration; on the 40 cut, the accuracy
was 73% and took approx. 12 minutes per cross-validation iteration. The results validate
Kersting et al. (2003)’s results and, in turn, clearly show that (B3) holds. Moreover, the
novel results on the 40 cut dataset indicate that the similarities detected by the LOHMMs
between the protein domain structures were not accompanied by high sequence similarity.

6.3 mRNA Signal Structure Detection

mRNA sequences consist of bases (guanine, adenine, uracil, cytosine) and fold intramolec-
ularly to form a number of short base-paired stems (Durbin et al., 1998). This base-paired
structure is called the secondary structure, cf. Figures 5 and 6. The secondary structure
contains special subsequences called signal structures that are responsible for special bio-
logical functions, such as RNA-protein interactions and cellular transport. The function of
each signal structure class is based on the common characteristic binding site of all class
elements. The elements are not necessarily identical but very similar. They can vary in
topology (tree structure), in size (number of constituting bases), and in base sequence.

The goal of our experiments was to recognize instances of signal structures classes in
mRNA molecules. The first application of relational learning to recognize the signal struc-
ture class of mRNA molecules was described in (Bohnebeck et al., 1998; Horváth et al.,
2001) where the relational instance-based learner RIBL was applied. The dataset 3 we
used was similar to the one described by Horváth et al. (2001). It consisted of 93 mRNA
secondary structure sequences. More precisely, it was composed of 15 and 5 SECIS (Seleno-
cysteine Insertion Sequence), 27 IRE (Iron Responsive Element), 36 TAR (Trans Activating
Region) and 10 histone stem loops constituting five classes.

3. The dataset is not the same as described in (Horváth et al., 2001) because we could not obtain the original
dataset. We will compare to the smaller data set used in (Horváth et al., 2001) which consisted of 66
signal structures and is very close to our data set. On a larger data set (with 400 structures) (Horváth
et al., 2001) report an error rate of 3.8% .

16

Logical Hidden Markov Models

a u
u a
c a
u a
u g
u a
a a

c
c

g
g

c g
c g
c g

a
u

u

a
a

g a

a

PSfrag replacements

helical(stem, n(n(n(n(n(n(n(0))))))), a, u).

helical(stem, n(n(n(n(n(n(0)))))), u, a).

helical(stem, n(n(n(n(n(0))))), c, a).

helical(stem, n(n(n(n(0)))), u, a).

helical(stem, n(n(n(0))), u, g).

helical(stem, n(n(0)), u, a).

helical(stem, n(0), a, a).

single(bulge5, n(0), a).

helical(stem, n(n(0)), c, g).

helical(stem, n(0), c, g).

single(bulge5, n(n(n(0))), g).

single(bulge5, n(n(0)), a).

single(bulge5, n(0), a).

helical(stem, n(n(n(0))), c, g).

helical(stem, n(n(0)), c, g).

helical(stem, n(0), c, g).

single(hairpin, n(n(n(0))), a).

single(hairpin, n(n(0)), u).

single(hairpin, n(0), u).

single(bulge3, n(0), a).

Figure 5: The chain representation of a SECIS signal structure. The ground atoms are
ordered clockwise starting with helical(stem, n(n(n(n(n(n(n(0))))))), a, u) at the
lower left-hand side corner.

The secondary structure is composed of different building blocks such as stacking region,
hairpin loops, interior loops etc. In contrast to the secondary structure of proteins that forms
chains, the secondary structure of mRNA forms a tree. As trees can not easily be handled
using HMMs, mRNA secondary structure data is more challenging than that of proteins.
Moreover, Horváth et al. (2001) report that making the tree structure available to RIBL
as background knowledge had an influence on the classification accuracy. More precisely,
using a simple chain representation RIBL achieved a 77.2% leave-one-out cross-validation
(LOO) accuracy whereas using the tree structure as background knowledge RIBL achieved
a 95.4% LOO accuracy.

We followed Horváth et al.’s experimental setup, that is, we adapted their data repre-
sentations to LOHMMs and compared a chain model with a tree model.

Chain Representation: In the chain representation (see also Figure 5),
signal structures are described by single(TypeSingle,Position ,Acid) or
helical(TypeHelical ,Position ,Acid ,Acid). Depending on its type, a structure el-
ement is represented by either single/3 or helical/4. Their first argument
TypeSingle (resp. TypeHelical) specifies the type of the structure element, i.e.,
single, bulge3, bulge5, hairpin (resp. stem). The argument Position is the posi-
tion of the sequence element within the corresponding structure element counted down,
i.e.4, {n13(0), n12(0), . . . , n1(0)}. The maximal position was set to 13 as this was the
maximal position observed in the data. The last argument encodes the observed nucleotide
(pair).

The used LOHMM structure follows again the left-to-right block structure shown in
Figure 4. Its underlying idea is to model blocks of consecutive helical structure ele-
ments. The hidden states are modelled using single(TypeSingle,Position ,Acid ,Block)

4. n
m(0) is shorthand for the recursive application of the functor n on 0 m times, i.e., for position m.

17

Kersting, De Raedt, & Raiko

and helical(TypeHelical ,Position ,Acid ,Acid ,Block). Being in a Block of consecutive he-
lical (resp. single) structure elements, the model will remain in the Block or transition to a
single element. The transition to a single (resp. helical) element only occurs at Position
n(0). At all other positions n(Position), there were transitions from helical (resp. single)
structure elements to helical (resp. single) structure elements at Position capturing the dy-
namics of the nucleotide pairs (resp. nucleotides) within structure elements. For instance,
the transitions for block n(0) at position n(n(0)) were

a : he(stem, n(0), X, Y, n(0))
pa:he(stem,n(0),X,Y)
←−−−−−−−−−−−− he(stem, n(n(0)), X, Y, n(0)))

b : he(stem, n(0), Y, X, n(0))
pb:he(stem,n(0),X,Y)
←−−−−−−−−−−−− he(stem, n(n(0)), X, Y, n(0)))

c : he(stem, n(0), X, , n(0))
pc:he(stem,n(0),X,Y)
←−−−−−−−−−−−− he(stem, n(n(0)), X, Y, n(0)))

d : he(stem, n(0), , Y, n(0))
pd:he(stem,n(0),X,Y)
←−−−−−−−−−−−− he(stem, n(n(0)), X, Y, n(0)))

e : he(stem, n(0), , , n(0))
pe:he(stem,n(0),X,Y)
←−−−−−−−−−−−− he(stem, n(n(0)), X, Y, n(0)))

In total, there were 5 possible blocks as this was the maximal number of blocks of consecutive
helical structure elements observed in the data. Overall, the LOHMM has 702 parameters.
In contrast, the corresponding HMM has more than 16600 transitions validating (B1).

Results: The LOO test log-likelihood was −63.7, and an EM iteration took on average
26 seconds.

Without the unification-based transitions b-d, i.e., using only the abstract transitions

a : he(stem, n(0), X, Y, n(0))
pa:he(stem,n(0),X,Y)
←−−−−−−−−−−−− he(stem, n(n(0)), X, Y, n(0)))

e : he(stem, n(0), , , n(0))
pe:he(stem,n(0),X,Y)
←−−−−−−−−−−−− he(stem, n(n(0)), X, Y, n(0))),

the model has 506 parameters. The LOO test log-likelihood was −64.21, and an EM iter-
ation took on average 20 seconds. The difference in LOO test log-likelihood is statistically
significant (paired t-test, p = 0.01).

Omitting even transition a, the LOO test log-likelihood dropped to −66.06, and the
average time per EM iteration was 18 seconds. The model has 341 parameters. The
difference in average LOO log-likelihood is statistically significant (paired t-test, p = 0.001).

The results clearly show that unification can yield better LOO test log-likelihoods, i.e.,
(B2) holds.

Tree Representation: In the tree representation (see Figure 6 (a)), the idea is to capture
the tree structure formed by the secondary structure elements, see Figure 6 (b). Each
training instance is described as a sequence of ground facts over

root(0, root,#Children),

helical(ID,ParentID ,#Children ,Type ,Size),

nucleotide pair(BasePair),

single(ID,ParentID ,#Children ,Type ,Size),

nucleotide(Base) .

18

Logical Hidden Markov Models

a u
u a
c a
u a
u g
u a
a a

c
c

g
g

c g
c g
c g

a
u

u

a
a

g a

a

PSfrag replacements

root(0, root, [c]).

helical(s(0), 0, [c, c], stem, n(n(n(n(n(n(n(0)))))))).

nucleotide pair((a, u)).

nucleotide pair((u, a)).

nucleotide pair((c, a)).

nucleotide pair((u, a)).

nucleotide pair((u, g)).

nucleotide pair((u, a)).

nucleotide pair((a, a)).

single(s(s(0)), s(0), [], bulge5, n(0)).

nucleotide(a).

helical(s(s(s(0))), s(0), [c, c, c], stem, n(n(0))).

nucleotide pair((c, g)).

nucleotide pair((c, g)).

single(s(s(s(s(0)))), s(s(s(0))), [], bulge5, n(n(n(0)))).

nucleotide(g).

nucleotide(a).

nucleotide(a).

helical(s(s(s(s(s(0))))), s(s(s(0))), [c], stem, n(n(n(0)))).

nucleotide pair((c, g)).

nucleotide pair((c, g)).

nucleotide pair((c, g)). single(s(s(s(s(s(s(0)))))), s(s(s(s(s(0))))),

[], hairpin, n(n(n(0)))).

nucleotide(a).

nucleotide(u).

nucleotide(u).

single(s(s(s(s(s(s(s(0))))))), s(s(s(0))),

[], bulge3, n(0)).

nucleotide(a).

0

s(0)

s(s(0))s(s(s(0)))

s(s(s(s(0))))

s(s(s(s(s(0))))

s(s(s(s(s(s(0))))))

s(s(s(s(s(s(s(0)))))))

Figure 6: The tree representation of a SECIS signal structure. (a) The logical sequence,
i.e., the sequence of ground atoms representing the SECIS signal structure. The
ground atoms are ordered clockwise starting with root(0, root, [c]) in the lower
left-hand side corner. (b) The tree formed by the secondary structure elements.

Here, ID and ParentID are natural numbers 0, s(0), s(s(0)), . . . encoding the child-
parent relation, #Children denotes the number5 of children [], [c], [c, c], . . ., Type is the
type of the structure element such as stem, hairpin, . . ., and Size is a natural number
0, n(0), n(n(0)), . . . Atoms root(0, root,#Children) are used to root the topology. The
maximal #Children was 9 and the maximal Size was 13 as this was the maximal value
observed in the data.

As trees can not easily be handled using HMMs, we used a LOHMM which basically
encodes a PCFG. Due to Theorem 2, this is possible. The used LOHMM structure can be
found in Appendix E. It processes the mRNA trees in in-order. Unification is only used for
parsing the tree. As for the chain representation, we used a Position argument in the hidden
states to encode the dynamics of nucleotides (nucleotide pairs) within secondary structure
elements. The maximal Position was again 13. In contrast to the chain representation,
nucleotide pairs such as (a, u) are treated as constants. Thus, the argument BasePair
consists of 16 elements.

Results: The LOO test log-likelihood was −55.56. Thus, exploiting the tree structure
yields better probabilistic models. On average, an EM iteration took 14 seconds. Overall,
the result shows that (B4) holds.

Although the Baum-Welch algorithm attempts to maximize a different objective func-
tion, namely the likelihood of the data, it is interesting to compare LOHMMs and RIBL in
terms of classification accuracy.

5. Here, we use the Prolog short hand notation [·] for lists. A list either is the constant [] representing the
empty list, or is a compound term with functor ./2 and two arguments, which are respectively the head
and tail of the list. Thus [a, b, c] is the compound term .(a, .(b, .(c, []))).

19

Kersting, De Raedt, & Raiko

Classification Accuracy: On the chain representation, the LOO accuracies of all
LOHMMs were 99% (92/93). This is a considerable improvement on RIBL’s 77.2% (51/66)
LOO accuracy for this representation. On the tree representation, the LOHMM also
achieved a LOO accuracy of 99% (92/93). This is comparable to RIBL’s LOO accuracy of
97% (64/66) on this kind of representation.

Thus, already the chain LOHMMs show marked increases in LOO accuracy when com-
pared to RIBL (Horváth et al., 2001). In order to achieve similar LOO accuracies, Horváth
et al. (2001) had to make the tree structure available to RIBL as background knowledge.
For LOHMMs, this had a significant influence on the LOO test log-likelihood, but not on
the LOO accuracies. This clearly supports (B3). Moreover, according to Horváth et al.,
the mRNA application can also be considered a success in terms of the application domain,
although this was not the primary goal of our experiments. There exist also alternative
parameter estimation techniques and other models, such as covariance models (Eddy &
Durbin, 1994) or pair hidden Markov models (Sakakibara, 2003), that might have been
used as well as a basis for comparison. However, as LOHMMs employ (inductive) logic pro-
gramming principles, it is appropriate to compare with other systems within this paradigm
such as RIBL.

7. Related Work

LOHMMs combine two different research directions. On the one hand, they are related to
several extensions of HMMs and probabilistic grammars. On the other hand, they are also
related to the recent interest in combining inductive logic programming principles with
probability theory (De Raedt & Kersting, 2003, 2004).

In the first type of approaches, the underlying idea is to upgrade HMMs and probabilistic
grammars to represent more structured state spaces.

Hierarchical HMMs (Fine et al., 1998), factorial HMMs (Ghahramani & Jordan, 1997),
and HMMs based on tree automata (Frasconi et al., 2002) decompose the state variables into
smaller units. In hierarchical HMMs states themselves can be HMMs, in factorial HMMs
they can be factored into k state variables which depend on one another only through
the observation, and in tree based HMMs the represented probability distributions are
defined over tree structures. The key difference with LOHMMs is that these approaches
do not employ the logical concept of unification. Unification is essential because it allows
us to introduce abstract transitions, which do not consist of more detailed states. As
our experimental evidence shows, sharing information among abstract states by means
of unification can lead to more accurate model estimation. The same holds for relational
Markov models (RMMs) (Anderson et al., 2002) to which LOHMMs are most closely related.
In RMMs, states can be of different types, with each type described by a different set
of variables. The domain of each variable can be hierarchically structured. The main
differences between LOHMMs and RMMs are that RMMs do not either support variable
binding nor unification nor hidden states.

The equivalent of HMMs for context-free languages are probabilistic context-free gram-
mars (PCFGs). Like HMMs, they do not consider sequences of logical atoms and do not
employ unification. Nevertheless, there is a formal resemblance between the Baum-Welch

20

Logical Hidden Markov Models

algorithms for LOHMMs and for PCFGs. In case that a LOHMM encodes a PCFG both
algorithms are identical from a theoretical point of view. They re-estimate the parameters
as the ratio of the expected number of times a transition (resp. production) is used and the
expected number of times a transition (resp. production) might have been used. The proof
of Theorem 2 assumes that the PCFG is given in Greibach normal form6 (GNF) and uses a
pushdown automaton to parse sentences. For grammars in GNF, pushdown automata are
common for parsing. In contrast, the actual computations of the Baum-Welch algorithm
for PCFGs, the so called Inside-Outside algorithm (Baker, 1979; Lari & Young, 1990), is
usually formulated for grammars in Chomsky normal form7. The Inside-Outside algorithm
can make use of the efficient CYK algorithm (Hopcroft & Ullman, 1979) for parsing strings.

An alternative to learning PCFGs from strings only is to learn from more structured data
such as skeletons, which are derivation trees with the nonterminal nodes removed (Levy &
Joshi, 1978). Skeletons are exactly the set of trees accepted by skeletal tree automata (STA).
Informally, an STA, when given a tree as input, processes the tree bottom up, assigning a
state to each node based on the states of that node’s children. The STA accepts a tree iff
it assigns a final state to the root of the tree. Due to this automata-based characterization
of the skeletons of derivation trees, the learning problem of (P)CFGs can be reduced to
the problem of an STA. In particular, STA techniques have been adapted to learning tree
grammars and (P)CFGs (Sakakibara, 1992; Sakakibara et al., 1994) efficiently.

PCFGs have been extended in several ways. Most closely related to LOHMMs are
unification-based grammars which have been extensively studied in computational linguis-
tics. Examples are (stochastic) attribute-value grammars (Abney, 1997), probabilistic fea-
ture grammars (Goodman, 1997), head-driven phrase structure grammars (Pollard & Sag,
1994), and lexical-functional grammars (Bresnan, 2001). For learning within such frame-
works, methods from undirected graphical models are used; see (Johnson, 2003) for a de-
scription of some recent work. The key difference to LOHMMs is that only nonterminals
are replaced with structured, more complex entities. Thus, observation sequences of flat
symbols and not of atoms are modelled. Goodman’s probabilistic feature grammars are an
exception. They treat terminals and nonterminals as vectors of features. No abstraction is
made, i.e., the feature vectors are ground instances, and no unification can be employed.
Therefore, the number of parameters that needs to be estimated becomes easily very large,
data sparsity is a serious problem. Goodman applied smoothing to overcome the problem.

LOHMMs are generally related to (stochastic) tree automata, see e.g. (Car-
rasco, Oncina, & Calera-Rubio, 2001). Reconsider the Unix command sequence
mkdir(vt100x), mv(new∗, vt100x), ls(vt100x), cd(vt100x) . Each atom forms a tree, see
Figure 7 (a), and, indeed, the whole sequence of atoms also forms a (degenerated) tree,
see Figure 7 (b). Tree automata process single trees vertically, e.g., bottom-up. A state in
the automaton is assigned to every node in the tree. The state depends on the node label
and on the states associated to the siblings of the node. They do not focus on sequential
domains. In contrast, LOHMMs are intended for learning in sequential domains. They
process sequences of trees horizontally, i.e., from left to right. Furthermore, unification

6. A grammar is in GNF iff all productions are of the form A← aV where A is a variable, a is exactly one
terminal and V is a string of none or more variables.

7. A grammar is in CNF iff every production is of the form A← B, C or A← a where A, B and C are variables,
and a is a terminal.

21

Kersting, De Raedt, & Raiko

mkdir

vt100x

mv

new∗ vt100x

ls

vt100x

cd

vt100x

mkdir

vt100x

ls

vt100x

mv

new∗ vt100x

cd

vt100x

(b)(a)

con

con

con

Figure 7: (a) Each atom in the logical sequence mkdir(vt100x), mv(new∗, vt100x),
ls(vt100x), cd(vt100x) forms a tree. The shaded nodes denote shared labels
among the trees. (b) The same sequence represented as a single tree. The pred-
icate con/2 represents the concatenation operator.

is used to share information between consecutive sequence elements. As Figure 7 (b)
illustrates, tree automata can only employ this information when allowing higher-order
transitions, i.e., states depend on their node labels and on the states associated to
predecessors 1, 2, . . . levels down the tree.

In the second type of approaches, most attention has been devoted to developing highly
expressive formalisms, such as e.g. PCUP (Eisele, 1994), PCLP (Riezler, 1998), SLPs (Mug-
gleton, 1996), PLPs (Ngo & Haddawy, 1997), RBNs (Jaeger, 1997), PRMs (Friedman et al.,
1999), PRISM (Sato & Kameya, 2001), BLPs (Kersting & De Raedt, 2001b, 2001a), and
DPRMs (Sanghai et al., 2003). LOHMMs can be seen as an attempt towards downgrading
such highly expressive frameworks. Indeed, applying the main idea underlying LOHMMs
to non-regular probabilistic grammar, i.e., replacing flat symbols with atoms, yields – in
principle – stochastic logic programs (Muggleton, 1996). As a consequence, LOHMMs rep-
resent an interesting position on the expressiveness scale. Whereas they retain most of the
essential logical features of the more expressive formalisms, they seem easier to understand,
adapt and learn. This is akin to many contemporary considerations in inductive logic pro-
gramming (Muggleton & De Raedt, 1994) and multi-relational data mining (Džeroski &
Lavrač, 2001).

8. Conclusions

Logical hidden Markov models, a new formalism for representing probability distributions
over sequences of logical atoms, have been introduced and solutions to the three central
inference problems (evaluation, most likely state sequence and parameter estimation) have
been provided. Experiments have demonstrated that unification can improve generalization
accuracy, that the number of parameters of a LOHMM can be an order of magnitude smaller
than the number of parameters of the corresponding HMM, that the solutions presented

22

Logical Hidden Markov Models

perform well in practice and also that LOHMMs possess several advantages over traditional
HMMs for applications involving structured sequences.

Acknowledgments The authors thank Andreas Karwath and Johannes Horstmann for
interesting collaborations on the protein data; Ingo Thon for interesting collaboration on
analyzing the Unix command sequences; and Saul Greenberg for providing the Unix com-
mand sequence data. The authors would also like to thank the anonymous reviewers for com-
ments which considerably improved the paper. This research was partly supported by the
European Union IST programme under contract numbers IST-2001-33053 and FP6-508861
(Application of Probabilistic Inductive Logic Programming (APrIL) I and II). Tapani Raiko
was supported by a Marie Curie fellowship at DAISY, HPMT-CT-2001-00251.

References

Abney, S. (1997). Stochastic Attribute-Value Grammars. Computational Linguistics, 23 (4),
597–618.

Abney, S., McAllester, D., & Pereira, F. (1999). Relating probabilistic grammars and au-
tomata. In Proceedings of 37th Annual Meeting of the Association for Computational
Linguistics (ACL-1999), pp. 542–549. Morgan Kaufmann.

Anderson, C., Domingos, P., & Weld, D. (2002). Relational Markov Models and their Ap-
plication to Adaptive Web Navigation. In Proceedings of the Eighth International
Conference on Knowledge Discovery and Data Mining (KDD-2002), pp. 143–152 Ed-
monton, Canada. ACM Press.

Baker, J. (1979). Trainable grammars for speech recognition. In Speech communication
paper presented at th 97th Meeting of the Acoustical Society of America, pp. 547–550
Boston, MA.

Bauer, H. (1991). Wahrscheinlichkeitstheorie (4. edition). Walter de Gruyter, Berlin, New
York.

Baum, L. (1972). An inequality and associated maximization technique in statistical esti-
mation for probabilistic functions of markov processes. Inequalities, 3, 1–8.

Bohnebeck, U., Horváth, T., & Wrobel, S. (1998). Term comparison in first-order similarity
measures. In Proceedings of the Eigth International Conference on Inductive Logic
Programming (ILP-98), Vol. 1446 of LNCS, pp. 65–79. Springer.

Bresnan, J. (2001). Lexical-Functional Syntax. Blackwell, Malden, MA.

Carrasco, R., Oncina, J., & Calera-Rubio, J. (2001). Stochastic inference of regular tree
languages. Machine Learning, 44 (1/2), 185–197.

Chandonia, J., Hon, G., Walker, N., Lo Conte, L., P.Koehl, & Brenner, S. (2004). The
ASTRAL compendium in 2004. Nucleic Acids Research, 32, D189–D192.

Davison, B., & Hirsh, H. (1998). Predicting Sequences of User Actions. In Predicting the
Future: AI Approaches to Time-Series Analysis, pp. 5–12. AAAI Press.

23

Kersting, De Raedt, & Raiko

De Raedt, L., & Kersting, K. (2003). Probabilistic Logic Learning. ACM-SIGKDD Explo-
rations: Special issue on Multi-Relational Data Mining, 5 (1), 31–48.

De Raedt, L., & Kersting, K. (2004). Probabilistic Inductive Logic Programming. In
Ben-David, S., Case, J., & Maruoka, A. (Eds.), Proceedings of the 15th International
Conference on Algorithmic Learning Theory (ALT-2004), Vol. 3244 of LNCS, pp.
19–36 Padova, Italy. Springer.

Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (1998). Biological sequence analysis:
Probabilistic models of proteins and nucleic acids. Cambridge University Press.

Džeroski, S., & Lavrač, N. (Eds.). (2001). Relational data mining. Springer-Verlag, Berlin.

Eddy, S., & Durbin, R. (1994). RNA sequence analysis using covariance models. Nucleic
Acids Res., 22 (11), 2079–2088.

Eisele, A. (1994). Towards probabilistic extensions of contraint-based grammars. In
Dörne, J. (Ed.), Computational Aspects of Constraint-Based Linguistics Decription-II.
DYNA-2 deliverable R1.2.B.

Fine, S., Singer, Y., & Tishby, N. (1998). The hierarchical hidden markov model: analysis
and applications. Machine Learning, 32, 41–62.

Frasconi, P., Soda, G., & Vullo, A. (2002). Hidden markov models for text categorization
in multi-page documents. Journal of Intelligent Information Systems, 18, 195–217.

Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999). Learning probabilistic relational
models. In Proceedings of Sixteenth International Joint Conference on Artificial In-
telligence (IJCAI-1999), pp. 1300–1307. Morgan Kaufmann.

Fristedt, B., & Gray, L. (1997). A Modern Approach to Probability Theory. Probability and
its applications. Birkhäuser Boston.

Ghahramani, Z., & Jordan, M. (1997). Factorial hidden Markov models. Machine Learning,
29, 245–273.

Goodman, J. (1997). Probabilistic feature grammars. In Proceedings of the Fifth Interna-
tional Workshop on Parsing Technologies (IWPT-97) Boston, MA, USA.

Greenberg, S. (1988). Using Unix: collected traces of 168 users. Tech. rep., Dept. of
Computer Science, University of Calgary, Alberta.

Hopcroft, J., & Ullman, J. (1979). Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Company.

Horváth, T., Wrobel, S., & Bohnebeck, U. (2001). Relational Instance-Based learning with
Lists and Terms. Machine Learning, 43 (1/2), 53–80.

Hubbard, T., Murzin, A., Brenner, S., & Chotia, C. (1997). SCOP : a structural classification
of proteins database. NAR, 27 (1), 236–239.

24

Logical Hidden Markov Models

Jacobs, N., & Blockeel, H. (2001). The Learning Shell: Automated Macro Construction. In
User Modeling 2001, pp. 34–43.

Jaeger, M. (1997). Relational Bayesian networks. In Proceedings of the Thirteenth Confer-
ence on Uncertainty in Artificial Intelligence (UAI), pp. 266–273. Morgan Kaufmann.

Katz, S. (1987). Estimation of probabilities from sparse data for hte language model com-
ponent of a speech recognizer. IEEE Transactions on Acoustics, Speech, and Signal
Processing (ASSP), 35, 400–401.

Kersting, K., & De Raedt, L. (2001a). Adaptive Bayesian Logic Programs. In Rouveirol,
C., & Sebag, M. (Eds.), Proceedings of the 11th International Conference on Inductive
Logic Programming (ILP-01), Vol. 2157 of LNAI, pp. 118–131. Springer.

Kersting, K., & De Raedt, L. (2001b). Towards Combining Inductive Logic Programming
with Bayesian Networks. In Rouveirol, C., & Sebag, M. (Eds.), Proceedings of the
11th International Conference on Inductive Logic Programming (ILP-01), Vol. 2157
of LNAI, pp. 118–131. Springer.

Kersting, K., & Raiko, T. (2005). ’Say EM’ for Selecting Probabilistic Models for Logical
Sequences. In Bacchus, F., & Jaakkola, T. (Eds.), Proceedings of the 21st Conference
on Uncertainty in Artificial Intelligence, UAI 2005, pp. 300–307 Edinburgh, Scotland.

Kersting, K., Raiko, T., Kramer, S., & De Raedt, L. (2003). Towards discovering struc-
tural signatures of protein folds based on logical hidden markov models. In Altman,
R., Dunker, A., Hunter, L., Jung, T., & Klein, T. (Eds.), Proceedings of the Pa-
cific Symposium on Biocomputing (PSB-03), pp. 192–203 Kauai, Hawaii, USA. World
Scientific.

Koivisto, M., Kivioja, T., Mannila, H., Rastas, P., & Ukkonen, E. (2004). Hidden Markov
Modelling Techniques for Haplotype Analysis. In Ben-David, S., Case, J., & Maruoka,
A. (Eds.), Proceedings of 15th International Conference on Algorithmic Learning The-
ory (ALT-04), Vol. 3244 of LNCS, pp. 37–52. Springer.

Koivisto, M., Perola, M., Varilo, T., Hennah, W., Ekelund, J., Lukk, M., Peltonen, L.,
Ukkonen, E., & Mannila, H. (2002). An MDL method for finding haplotype blocks
and for estimating the strength of haplotype block boundaries. In Altman, R., Dunker,
A., Hunter, L., Jung, T., & Klein, T. (Eds.), Proceedings of the Pacific Symposium
on Biocomputing (PSB-02), pp. 502–513. World Scientific.

Korvemaker, B., & Greiner, R. (2000). Predicting UNIX command files: Adjusting to user
patterns. In Adaptive User Interfaces: Papers from the 2000 AAAI Spring Symposium,
pp. 59–64.

Kulp, D., Haussler, D., Reese, M., & Eeckman, F. (1996). A Generalized Hidden Markov
Model for the Recognition of Human Genes in DNA. In States, D., Agarwal, P.,
Gaasterland, T., Hunter, L., & Smith, R. (Eds.), Proceedings of the Fourth Interna-
tional Conference on Intelligent Systems for Molecular Biology,(ISMB-96), pp. 134–
142 St. Louis, MO, USA. AAAI.

25

Kersting, De Raedt, & Raiko

Lane, T. (1999). Hidden Markov Models for Human/Computer Interface Modeling. In
Rudström, Å. (Ed.), Proceedings of the IJCAI-99 Workshop on Learning about Users,
pp. 35–44 Stockholm, Sweden.

Lari, K., & Young, S. (1990). The estimation of stochastic context-free grammars using the
inside-outside algorithm. Computer Speech and Language, 4, 35–56.

Levy, L., & Joshi, A. (1978). Skeletal structural descriptions. Information and Control,
2 (2), 192–211.

McLachlan, G., & Krishnan, T. (1997). The EM Algorithm and Extensions. Wiley, New
York.

Mitchell, T. M. (1997). Machine Learning. The McGraw-Hill Companies, Inc.

Muggleton, S. (1996). Stochastic logic programs. In De Raedt, L. (Ed.), Advances in
Inductive Logic Programming, pp. 254–264. IOS Press.

Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: Theory and methods.
Journal of Logic Programming, 19 (20), 629–679.

Ngo, L., & Haddawy, P. (1997). Answering queries from context-sensitive probabilistic
knowledge bases. Theoretical Computer Science, 171, 147–177.

Pollard, C., & Sag, I. (1994). Head-driven Phrase Structure Grammar. The University of
Chicago Press, Chicago.

Rabiner, L., & Juang, B. (1986). An Introduction to Hidden Markov Models. IEEE ASSP
Magazine, 3 (1), 4–16.

Riezler, S. (1998). Statistical inference and probabilistic modelling for constraint-based
nlp. In Schrder, B., Lenders, W., & und T. Portele, W. H. (Eds.), Proceedings of
the 4th Conference on Natural Language Processing (KONVENS-98). Also as CoRR
cs.CL/9905010.

Sakakibara, Y. (1992). Efficient learning of context-free grammars from positive structural
examples. Information and Computation, 97 (1), 23–60.

Sakakibara, Y. (2003). Pair hidden markov models on tree structures. Bioinformatics,
19 (Suppl.1), i232–i240.

Sakakibara, Y., Brown, M., Hughey, R., Mian, I., Sjolander, K., & Underwood, R. (1994).
Stochastic context-free grammars for tRNA modelling. Nucleic Acids Research,
22 (23), 5112–5120.

Sanghai, S., Domingos, P., & Weld, D. (2003). Dynamic probabilistic relational models.
In Gottlob, G., & Walsh, T. (Eds.), Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence (IJCAI-03), pp. 992–997 Acapulco, Mexico. Mor-
gan Kaufmann.

26

Logical Hidden Markov Models

Sato, T., & Kameya, Y. (2001). Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research (JAIR), 15, 391–454.

Schölkopf, B., & Warmuth, M. (Eds.). (2003). Learning and Parsing Stochastic Unification-
Based Grammars, Vol. 2777 of LNCS. Springer.

Turcotte, M., Muggleton, S., & Sternberg, M. (2001). The effect of relational background
knowledge on learning of protein three-dimensional fold signatures. Machine Learning,
43 (1/2), 81–95.

Won, K., Prügel-Bennett, A., & Krogh, A. (2004). The Block Hidden Markov Model for Bi-
ological Sequence Analysis. In Negoita, M., Howlett, R., & Jain, L. (Eds.), Proceedings
of the Eighth International Conference on Knowledge-Based Intelligent Information
and Engineering Systems (KES-04), Vol. 3213 of LNCS, pp. 64–70. Springer.

Appendix A. Proof of Theorem 1

Let M = (Σ, µ,∆,Υ) be a LOHMM. To show that M specifies a time discrete stochastic
process, i.e., a sequence of random variables 〈Xt〉t=1,2,..., where the domains of the random
variable Xt is hb(Σ), the Herbrand base over Σ, we define the immediate state operator
TM -operator and the current emission operator EM -operator.

Definition 4 (TM -Operator, EM -Operator) The operators TM : 2hbΣ → 2hbΣ and EM :
2hbΣ → 2hbΣ are

TM (I) = {HσBσH | ∃(p : H
O
←− B) ∈M : BσB ∈ I,HσBσH ∈ GΣ(H)}

EM (I) = {OσBσHσO | ∃(p : H
O
←− B) ∈M : BσB ∈ I, HσBσG ∈ GΣ(H)

and OσBσHσO ∈ GΣ(O)}

For each i = 1, 2, 3, . . ., the set T i+1
M ({start}) := TM (T i

M ({start})) with
T 1

M ({start}) := TM ({start}) specifies the state set at clock i which forms a random vari-
able Yi. The set U i

M ({start}) specifies the possible symbols emitted when transitioning
from i to i + 1. It forms the variable Ui. Each Yi (resp. Ui) can be extended to a random
variable Zi (resp. Ui) over hbΣ:

P (Zi = z) =

{

0.0 : z 6∈ T i
M ({start})

P (Yi = z) : otherwise

Figure 8 depicts the influence relation among Zi and Ui. Using standard arguments from
probability theory and noting that

P (Ui = Ui | Zi+1 = zi+1, Zi = zi) =
P (Zi+1 = zi+1, Ui = ui | Zi)

∑

ui
P (Zi+1, ui | Zi)

and P (Zi+1 | Zi) =
∑

ui

P (Zi+1, ui | Zi)

where the probability distributions are due to equation (1), it is easy to show that Kol-
mogorov’s extension theorem (see (Bauer, 1991; Fristedt & Gray, 1997)) holds. Thus, M
specifies a unique probability distribution over

⊗t
i=1(Zi × Ui) for each t > 0 and in the

limit t→∞. �

27

Kersting, De Raedt, & Raiko

...

PSfrag replacements

Z1 Z2 Z3

U1 U2 U3

Figure 8: Discrete time stochastic process induced by a LOHMM. The nodes Zi and Ui

represent random variables over hbΣ.

Appendix B. Moore Representations of LOHMMs

For HMMs, Moore representations, i.e., output symbols are associated with states and Mealy
representations, i.e., output symbols are associated with transitions, are equivalent. In this
appendix, we will investigate to which extend this also holds for LOHMMs.

Let L be a Mealy-LOHMM according to definition 3. In the following, we will derive
the notation of an equivalent LOHMM L′ in Moore representation where there are abstract
transitions and abstract emissions (see below). Each predicate b/n in L is extended to b/n+
1 in L′. The domains of the first n arguments are the same as for b/n. The last argument
will store the observation to be emitted. More precisely, for each abstract transition

p : h(w1, . . . , wl)
o(v1,...,vk)
←−−−−−− b(u1, . . . , un)

in L, there is an abstract transition

p : h(w1, . . . , wl, o(v
′
1, . . . , v

′
k))← b(u1, . . . , un,)

in L′. The primes in o(v′1, . . . , v
′
k) denote that we replaced each free 8 variables o(v1, . . . , vk)

by some distinguished constant symbol, say #. Due to this, it holds that

µ(h(w1, . . . , wl)) = µ(h(w1, . . . , wl, o(v
′
1, . . . , v

′
k))) , (6)

and L′’s output distribution can be specified using abstract emissions which are expressions
of the form

1.0 : o(v1, . . . , vk)← h(w1, . . . , wl, o(v
′
1, . . . , v

′
k)) . (7)

The semantics of an abstract transition in L′ is that being in some
state S′t ∈ GΣ′(b(u1, . . . , un,)) the system will make a transition into state
S′
t+1
∈ GΣ′(h(w1, . . . , wl, o(v

′
1, . . . , v

′
k))) with probability

p · µ(S′t+1 | h(w1, . . . , wl, o(v
′
1, . . . , v

′
k)) | σS′

t
) (8)

where σS′
t
= mgu(S′

t
, b(u1, . . . , un,)). Due to Equation (6), Equation (8) can be rewritten

as

p · µ(S′t+1 | h(w1, . . . , wl) | σS′
t
) .

8. A variable X ∈ vars(o(v1, . . . , vk)) is free iff X 6∈ vars(h(w1, . . . , wl)) ∪ vars(b(u1, . . . , un)).

28

Logical Hidden Markov Models

Due to equation (7), the system will emit the output symbol ot+1 ∈ GΣ′(o(v1, . . . , vk)) in
state S′

t+1
with probability

µ(ot+1 | o(v1, . . . , vk)σS′
t+1
σS′

t
)

where σS′
t+1

= mgu(h(w1, . . . , wl, o(v
′
1, . . . , v

′
k)), S

′
t+1

). Due to the construction of L′, there

exists a triple (St , St+1 , Ot+1) in L for each triple (S′t , S
′
t+1

, Ot+1), t > 0, in L′ (and vise
versa). Hence,both LOHMMs assign the same overall transition probability.

L and L′ differ only in the way the initialize sequences 〈(S′
t
, S′

t+1
, Ot+1 〉t=0,2...,T (resp.

〈(St , St+1 , Ot+1〉t=0,2...,T). Whereas L starts in some state S0 and makes a transition to S1

emitting O1, the Moore-LOHMM L′ is supposed to emit a symbol O0 in S′0 before making a
transition to S′1. We compensate for this using the prior distribution. The existence of the
correct prior distribution for L′ can be seen as follows. In L, there are only finitely many
states reachable at time t = 1, i.e, PL(q0 = S) > 0 holds for only a finite set of ground
states S. The probability PL(q0 = s) can be computed similar to α1(S). We set t = 1 in line
6, neglecting the condition on Ot−1 in line 10, and dropping µ(Ot−1 | OσBσH) from line 14.
Completely listing all states S ∈ S1 together with PL(q0 = S), i.e., PL(q0 = S) : S← start ,
constitutes the prior distribution of L′.

The argumentation basically followed the approach to transform a Mealy machine into a
Moore machine, see e.g. (Hopcroft & Ullman, 1979). Furthermore, the mapping of a Moore-
LOHMM – as introduced in the present section – into a Mealy-LOHMM is straightforward.

Appendix C. Proof of Theorem 2

Let T be a terminal alphabet and N a nonterminal alphabet. A probabilistic context-free
grammar (PCFG) G consists of a distinguished start symbol S ∈ N plus a finite set of
productions of the form p : X → α, where X ∈ N , α ∈ (N ∪ T)∗ and p ∈ [0, 1]. For all
X ∈ N ,

∑

:X→α p = 1. A PCFG defines a stochastic process with sentential forms as states,
and leftmost rewriting steps as transitions. We denote a single rewriting operation of the
grammar by a single arrow →. If as a result of one ore more rewriting operations we are
able to rewrite β ∈ (N ∪ T)∗ as a sequence γ ∈ (N ∪ T)∗ of nonterminals and terminals,
then we write β ⇒∗ γ. The probability of this rewriting is the product of all probability
values associated to productions used in the derivation. We assume G to be consistent, i.e.,
that the sum of all probabilities of derivations S ⇒∗ β such that β ∈ T ∗ sum to 1.0.

We can assume that the PCFG G is in Greibach normal form. This follows from Abney
et al. (1999)’s Theorem 6 because G is consistent. Thus, every production P ∈ G is of
the form p : X → aY1 . . . Yn for some n ≥ 0. In order to encode G as a LOHMM M , we
introduce (1) for each non-terminal symbol X in G a constant symbol nX and (2) for each
terminal symbol t in G a constant symbol t. For each production P ∈ G, we include an
abstract transition of the form p : stack([nY1, . . . , nYn|S])

a
←− stack([nX|S]), if n > 0, and

p : stack(S)
a
←− stack([nX|S]), if n = 0. Furthermore, we include 1.0 : stack([s])← start

and 1.0 : end
end
←−− stack([]). It is now straightforward to prove by induction that M and G

are equivalent. �

29

Kersting, De Raedt, & Raiko

Appendix D. Logical Hidden Markov Model for Unix Command

Sequences

The LOHMMs described below model Unix command sequences triggered by mkdir. To
this aim, we transformed the original Greenberg data into a sequence of logical atoms over
com, mkdir(Dir, LastCom), ls(Dir, LastCom), cd(Dir, Dir, LastCom), cp(Dir, Dir, LastCom)
and mv(Dir, Dir, LastCom). The domain of LastCom was {start, com, mkdir, ls, cd, cp, mv}.
The domain of Dir consisted of all argument entries for mkdir, ls, cd, cp, mv in the original
dataset. Switches, pipes, etc. were neglected, and paths were made absolute. This yields
212 constants in the domain of Dir. All original commands, which were not mkdir, ls, cd,
cp, or mv, were represented as com. If mkdir did not appear within 10 time steps before a
command C ∈ {ls, cd, cp,mv}, C was represented as com. Overall, this yields more than
451000 ground states that have to be covered by a Markov model.

The “unification” LOHMM U basically implements a second order Markov model, i.e.,
the probability of making a transition depends upon the current state and the previous
state. It has 542 parameters and the following structure:

com ← start.
mkdir(Dir, start) ← start.

com ← com.
mkdir(Dir, com) ← com.

end ← com.

Furthermore, for each C ∈ {start, com} there are

mkdir(Dir, com) ← mkdir(Dir,C).
mkdir(, com) ← mkdir(Dir,C).

com ← mkdir(Dir,C).
end ← mkdir(Dir,C).

ls(Dir, mkdir) ← mkdir(Dir,C).
ls(, mkdir) ← mkdir(Dir,C).

cd(Dir, mkdir) ← mkdir(Dir,C).

cd(, mkdir) ← mkdir(Dir,C).
cp(, Dir, mkdir) ← mkdir(Dir,C).
cp(Dir, , mkdir) ← mkdir(Dir,C).

cp(, , mkdir) ← mkdir(Dir,C).
mv(, Dir, mkdir) ← mkdir(Dir,C).
mv(Dir, , mkdir) ← mkdir(Dir,C).

mv(, , mkdir) ← mkdir(Dir,C).

together with for each C ∈ {mkdir, ls, cd, cp, mv} and for each C1 ∈ {cd, ls} (resp.
C2 ∈ {cp, mv})

mkdir(Dir, com) ← C1(Dir,C).
mkdir(, com) ← C1(Dir,C).

com ← C1(Dir,C).
end ← C1(Dir,C).

ls(Dir,C1) ← C1(Dir,C).
ls(,C1) ← C1(Dir,C).

cd(Dir,C1) ← C1(Dir,C).
cd(,C1) ← C1(Dir,C).

cp(, Dir,C1) ← C1(Dir,C).
cp(Dir, ,C1) ← C1(Dir,C).

cp(, ,C1) ← C1(Dir,C).
mv(, Dir,C1) ← C1(Dir,C).
mv(Dir, ,C1) ← C1(Dir,C).

mv(, ,C1) ← C1(Dir,C).

mkdir(, com) ← C2(From, To,C).
com ← C2(From, To,C).
end ← C2(From, To,C).

ls(From,C2) ← C2(From, To,C).
ls(To,C2) ← C2(From, To,C).
ls(,C2) ← C2(From, To,C).

cd(From,C2) ← C2(From, To,C).
cd(To,C2) ← C2(From, To,C).
cd(,C2) ← C2(From, To,C).

cp(From, ,C2) ← C2(From, To,C).
cp(, To,C2) ← C2(From, To,C).
cp(, ,C2) ← C2(From, To,C).

mv(From, ,C2) ← C2(From, To,C).
mv(, To,C2) ← C2(From, To,C).
mv(, ,C2) ← C2(From, To,C).

30

Logical Hidden Markov Models

Because all states are fully observable, we omitted the output symbols associated with
clauses, and, for the sake of simplicity, we omitted associated probability values.

The “no unification” LOHMM N is the variant of U where no variables were shared
such as

mkdir(, com) ← cp(From, To,C).
com ← cp(From, To,C).
end ← cp(From, To,C).

ls(, cp) ← cp(From, To,C).
cd(, cp) ← cp(From, To,C).

cp(, , cp) ← cp(From, To,C).
mv(, , cp) ← cp(From, To,C).

Because only transitions are affected, N has 164 parameters less than U , i.e., 378.

Appendix E. Tree-based LOHMM for mRNA Sequences

The LOHMM processes the nodes of mRNA trees in in-order. The structure of the LOHMM
is shown at the end of the section. There are copies of the shaded parts. Terms are
abbreviated using their starting alphanumerical; tr stands for tree, he for helical, si for
single, nuc for nucleotide, and nuc p for nucleotide pair.

The domain of #Children covers the maximal branching factor found in the data, i.e.,
{[c], [c, c], . . . , [c, c, c, c, c, c, c, c, c]}; the domain of Type consists of all types occurring in
the data, i.e., {stem, single, bulge3, bulge5, hairpin}; and for Size, the domain covers
the maximal length of a secondary structure element in the data, i.e., the longest sequence
of consecutive bases respectively base pairs constituting a secondary structure element.
The length was encoded as {n1(0), n2(0), . . . , n13(0)} where nm(0) denotes the recursive
application of the functor n m times. For Base and BasePair , the domains were the 4 bases
respectively the 16 base pairs. In total, there are 491 parameters.

31

K
e
r
s
t
in

g
,
D

e
R

a
e
d
t
,
&

R
a
ik

o

s
e
q
u
e
n
c
e

m
o
d
e
l

m
o
d
e
l

t
r
e
e

se(T, L, s(Id), B, [s(Id) − B, Pa − [C2|Cs]|R])

0.25 : he(s(Id), Pa, B, T, L)

0.25 : si(s(Id), Pa, [], T, L)

se(hairpin, A, Id, B, S)

se(hairpin, n(A), Id, B, S)

se(hairpin, n(0), Id, B, S)

se(stem, A, Id, B, S)

se(stem, n(0), s(), , []) se(stem, n(0), Id, B, S)

0.0625 : nuc p(a, a)

Copies for nuc(g), nuc(c), and nuc(u)

0.25 : nuc(a) 0.0625 : nuc p(a, a)0.25 : nuc(a)

0.0625 : nuc p(a, a)0.25 : nuc(a)

Copies for n2(0), n3(0), . . . , n13(0)

Copies for each type single, bulge3, bulge5

end

Copies for nuc p(a, g), . . . , nuc p(u, u)

0.25 : he(s(Id), Pa, [], T, L)

tr(Id, , [Pa − [C1, C2|Cs]|R])

0.25 : si(s(Id), Pa, B, T, L)

se(T, L, s(Id), [], [Pa − [C2|Cs]|R])

my startstart
1.0

and tr(Id, [c, c, c], [Pa − [C]|R])

Copies for tr(Id, [c], [Pa − [C]|R]), tr(Id, [c, c], [Pa − [C]|R]), Copies for tr(Id, [c], [Pa − [C1, C2|Cs]|R]), tr(Id, [c, c], [Pa − [C1, C2|Cs]|R]),

and tr(Id, [c, c, c], [Pa − [C1, C2|Cs]|R])

tr(Id, , [Pa − [C]|R])
0.25 : he(s(Id), Pa, B, T, L)

0.25 : si(s(Id), Pa, B, T, L)

0.25 : he(s(Id), Pa, [], T, L)

se(T, L, s(Id), [], R) se(T, L, s(Id), B, [s(Id) − B|R])

0.25 : si(s(Id), Pa, [], T, L)

se(hairpin, n(0), s(), , [])

Copies for nuc(g), nuc(c), and nuc(u)

tr(Id, B, S)

se(stem, n(A), Id, B, S)

Copies for nuc p(a, g), . . . , nuc p(u, u)

Copies for each length of sequence n2(0), n3(0), . . . , n13(0)

se(, , , ,)

1.0 : root(0, root, X)

tr(0, X, [0 − X])

tr(, ,)

F
igu

re
9:

T
h
e
m

R
N

A
L
O

H
M

M
stru

ctu
re.

T
h
e

sy
m

b
ol

d
en

otes
an

on
y
m

ou
s
variab

les
w

h
ich

are
read

an
d

treated
as

d
istin

ct,
n
ew

variab
les

each
tim

e
th

ey
are

en
cou

n
tered

.
T

h
ere

are
cop

ies
of

th
e

sh
ad

ed
p
art.

T
erm

s
are

ab
b
rev

iated
u
sin

g
th

eir
startin

g
alp

h
an

u
m

erical;
t
r

stan
d
s

for
t
r
e
e
,
s
e

for
s
t
r
u
c
t
u
r
e
e
l
e
m
e
n
t
,
h
e

for
h
e
l
i
c
a
l
,

s
i

for
s
i
n
g
l
e
,
n
u
c

for
n
u
c
l
e
o
t
i
d
e
,
an

d
n
u
c
p

for
n
u
c
l
e
o
t
i
d
e
p
a
i
r
.

3
2

