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Abstract

This paper introduces Transductive Support
Vector Machines (TSVMs) for text classi�-
cation. While regular Support Vector Ma-
chines (SVMs) try to induce a general deci-
sion function for a learning task, Transduc-
tive Support Vector Machines take into ac-
count a particular test set and try to mini-
mize misclassi�cations of just those particu-
lar examples. The paper presents an anal-
ysis of why TSVMs are well suited for text
classi�cation. These theoretical �ndings are
supported by experiments on three test col-
lections. The experiments show substantial
improvements over inductive methods, espe-
cially for small training sets, cutting the num-
ber of labeled training examples down to a
twentieth on some tasks. This work also pro-
poses an algorithm for training TSVMs e�-
ciently, handling 10,000 examples and more.

1 Introduction

Over the recent years, text classi�cation has become
one of the key techniques for organizing online in-
formation. It can be used to organize document
databases, �lter spam from people's email, or learn
users' newsreading preferences. Since hand-coding
text-classi�ers is impractical | or at best costly | in
many settings, it is preferable to learn classi�ers from
examples. It is crucial that the learner be able to gen-
eralize well using little training data. A news-�ltering
service, for example, requiring a hundred days' worth
of training data is unlikely to please even the most
patient users.

The work presented here tackles the problem of learn-
ing from small training samples by taking a transduc-
tive [Vapnik, 1998], instead of an inductive approach.
In the inductive setting the learner tries to induce a
decision function which has a low error rate on the
whole distribution of examples for the particular learn-
ing task. Often, this setting is unnecessarily complex.
In many situations we do not care about the particular
decision function, but rather that we classify a given
set of examples (i.e. a test set) with as few errors as
possible. This is the goal of transductive inference.

Some examples of transductive text classi�cation tasks
are the following. All have in common that there is
little training data, but a very large test set.

Relevance Feedback : This is a standard technique
in free-text information retrieval. The user marks
some documents returned by an initial query as
relevant or irrelevant. These compose the training
set of a text classi�cation task, while the remain-
ing document database is the test set. The user
is interested in a good classi�cation of the test set
into those documents relevant or irrelevant to the
query.

Netnews Filtering : Each day a large number of
netnews articles is posted. Given the few training
examples the user labeled on previous days, he or
she wants today's most interesting articles.

Reorganizing a document collection : With the
advance of paperless o�ces, companies start using
document databases with classi�cation schemes.
When introducing new categories, they need text
classi�ers which, given some training examples,
classify the rest of the database automatically.

This paper introduces Transductive Support Vector
Machines (TSVMs) for text classi�cation. They sub-



stantially improve the already excellent performance
of SVMs for text classi�cation [Joachims, 1998, Du-
mais et al., 1998]. Especially for very small training
sets, TSVMs reduce the required amount of labeled
training data down to a twentieth for some tasks. To
facilitate the large-scale transductive learning needed
for text classi�cation, this paper also proposes a new
algorithm for e�ciently training TSVMs with 10,000
examples and more.

2 Text Classi�cation

The goal of text classi�cation is the automatic assign-
ment of documents to a �xed number of semantic cat-
egories. Each document can be in multiple, exactly
one, or no category at all. Using machine learning,
the objective is to learn classi�ers from examples which
assign categories automatically. This is a supervised
learning problem. To facilitate e�ective and e�cient
learning, each category is treated as a separate binary
classi�cation problem. Each such problem answers the
question of whether or not a document should be as-
signed to a particular category.

Documents, which typically are strings of characters,
have to be transformed into a representation suit-
able for the learning algorithm and the classi�cation
task. Information Retrieval research suggests that
word stems work well as representation units and that
for many tasks their ordering can be ignored without
losing too much information. The word stem is de-
rived from the occurrence form of a word by removing
case and 
ection information [Porter, 1980]. For ex-
ample \computes", \computing", and \computer" are
all mapped to the same stem \comput". The terms
\word" and \word stem" will be used synonymously
in the following.

This leads to an attribute-value representation of text.
Each distinct word wi corresponds to a feature with
TF (wi; x), the number of times word wi occurs in the
document x, as its value. Figure 1 shows an example
feature vector for a particular document. Re�ning this
basic representation, it has been shown that scaling the
dimensions of the feature vector with their inverse doc-
ument frequency IDF (wi) [Salton and Buckley, 1988]
leads to an improved performance. IDF (wi) can
be calculated from the document frequency DF (wi),
which is the number of documents the word wi occurs
in.

IDF (wi) = log

�
n

DF (wi)

�
(1)

Here, n is the total number of documents. Intuitively,
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Figure 1: Representing text as a feature vector.

the inverse document frequency of a word is low if it
occurs in many documents and is highest if the word
occurs in only one. To abstract from di�erent docu-
ment lengths, each document feature vector ~xi is nor-
malized to unit length.

3 Transductive Support Vector
Machines

The setting of transductive inference was introduced
by Vapnik (see for example [Vapnik, 1998]). For a
learning task P (~x; y) = P (yj~x)P (~x) the learner L is
given a hypothesis space H of functions h : X �!
f�1; 1g and an i.i.d. sample Strain of n training ex-
amples

(~x1; y1); (~x2; y2); :::; (~xn; yn) (2)

Each training example consists of a document vector
~x 2 X and a binary label y 2 f�1;+1g. In contrast to
the inductive setting, the learner is also given an i.i.d.
sample Stest of k test examples

~x�1; ~x
�

2; :::; ~x
�

k (3)

from the same distribution. The transductive learner
L aims to selects a function hL = L(Strain; Stest) from
H using Strain and Stest so that the expected number
of erroneous predictions

R(L) =

Z
1

k

kX
i=1

�(hL(~x
�

i ); y
�

i )dP (~x1; y1) � � �dP (~x
�

k; y
�

k)

on the test examples is minimized. �(a; b) is zero if
a = b, otherwise it is one. Vapnik [Vapnik, 1998] gives
bounds on the relative uniform deviation of training



error

Rtrain(h) =
1

n

nX
i=1

�(h(~xi); yi) (4)

and test error

Rtest(h) =
1

k

kX
i=1

�(h(~x�i ); y
true
i ) (5)

With probability 1� �

Rtest(h) � Rtrain(h) + 
(n; k; d; �) (6)

where the con�dence interval 
(n; k; d; �) depends on
the number of training examples n, the number of test
examples k, and the VC-Dimension d of H (see [Vap-
nik, 1998] for details).

This problem of transductive inference may not seem
profoundly di�erent from the usual inductive setting
studied in machine learning. One could learn a deci-
sion rule based on the training data and then apply
it to the test data afterwards. Nevertheless, to solve
the problem of estimating k binary values y�1 ; :::; y

�

k we
need to solve the more complex problem of estimating
a function over a possibly continuous space. This may
not be the best solution when the size n of the training
sample (2) is small.

What information do we get from studying the test
sample (3) and how can we use it? The training and
the test sample split the hypothesis space H into a
�nite number of equivalence classes H 0. Two func-
tions from H belong to the same equivalence class if
they both classify the training and the test sample
in the same way. This reduces the learning problem
from �nding a function in the possibly in�nite set H
to �nding one of �nitely many equivalence classes H0.
Most importantly, we can use these equivalence classes
to build a structure of increasing VC-Dimension for
structural risk minimization [Vapnik, 1998].

H 0

1 � H0

2 � � � � � H0 (7)

Unlike in the inductive setting, we can study the loca-
tion of the test examples when de�ning the structure.
Using prior knowledge about the nature of P (~x; y) we
can build a more appropriate structure and learn more
quickly. What this means for text classi�cation is an-
alyzed in section 4. In particular, we can build the
structure based on the margin of separating hyper-
planes on both the training and the test data. Vapnik
shows that with the size of the margin we can control
the maximum number of equivalence classes (i. e. the
VC-Dimension).

Figure 2: The maximum margin hyperplanes. Posi-
tive/negative examples are marked as +/�, test ex-
amples as dots. The dashed line is the solution of the
inductive SVM. The solid line shows the transductive
classi�cation.

Theorem 1 ([Vapnik, 1998])
Consider hyperplanes h(~x) = signf~x � ~w + bg as hy-
pothesis space H. If the attribute vectors of a training
sample (2) and a test sample (3) are contained in a
ball of diameter D, then there are at most

Nr < exp

�
d

�
n+ k

d
+ 1

��
; d = min

�
a;

�
D2

�2

�
+ 1

�

equivalence classes which contain a separating hyper-
plane with

8ni=1

���� ~w

jj~wjj
� ~xi + b

���� � � 8kj=1

���� ~w

jj~wjj
� ~x�j + b

���� � �

(i.e. margin larger or equal to �). a is the dimension-
ality of the space, and [b] is the integer part of b.

Note that the VC-Dimension does not necessarily de-
pend on the number of features, but can be much lower
than the dimensionality of the space. Let's use this
structure based on the margin of separating hyper-
planes. Structural risk minimization tells us that we
get the smallest bound on the test error if we select the
equivalence class from the structure element H0

i which
minimizes (6). For linearly separable problems this
leads to the following optimization problem [Vapnik,
1998].

OP 1 (Transductive SVM (lin. sep. case))
Minimize over (y�1 ; :::; y

�

n; ~w; b):

1

2
jj~wjj2

subject to: 8ni=1 : yi[~w � ~xi + b] � 1

8kj=1 : y
�

j [~w � ~x�j + b] � 1



Solving this problem means �nding a labelling
y�1 ; :::; y

�

k of the test data and a hyperplane < ~w; b >,
so that this hyperplane separates both training and
test data with maximum margin. Figure 2 illustrates
this. To be able to handle non-separable data, we can
introduce slack variables �i similarly to the way we do
with inductive SVMs.

OP 2 (Transductive SVM (non-sep. case))
Minimize over (y�1 ; :::; y

�

n; ~w; b; �1; :::; �n; �
�

1 ; :::; �
�

k):

1

2
jj~wjj2+ C

nX
i=0

�i +C�

kX
j=0

��j

subject to: 8ni=1 : yi[~w � ~xi + b] � 1� �i

8kj=1 : y
�

j [~w � ~x�j + b] � 1� ��j

8ni=1 : �i > 0

8kj=1 : �
�

j > 0

C and C� are parameters set by the user. They allow
trading o� margin size against misclassifying training
examples or excluding test examples. How this opti-
mization problem can be solved e�ciently is the sub-
ject of section 4.1.

4 What Makes TSVMs Especially
well Suited for Text Classi�cation?

The text classi�cation task is characterized by a spe-
cial set of properties. They are independent of whether
text classi�cation is used for information �ltering, rel-
evance feedback, or for assigning semantic categories
to news articles.

High dimensional input space:
When learning text classi�ers one has to deal with
very many (more than 10,000) features, since each
(stemmed) word is a feature.

Document vectors are sparse:
For each document, the corresponding document
vector ~xi contains few entries that are not zero.

Few irrelevant features:
Experiments in [Joachims, 1998] suggest that
most words are relevant. So aggressive feature
selection has to be handled with care, since it can
easily lead to a loss of important information1.

1This does not mean that aggressive feature selection
cannot be bene�cial for certain learning algorithms or cer-
tain tasks (see [Yang and Pedersen, 1997][Mladeni�c, 1998]).
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Figure 3: Example of a text classi�cation problem
with co-occurrence pattern. Rows correspond to doc-
uments, columns to words. A table entry of 1 denotes
the occurrence of a word in a document.

Arguments from [Joachims, 1998] show that SVMs are
especially well-suited for this setting, outperforming
conventional methods substantially while also being
more robust. Dumais et al. [Dumais et al., 1998] come
to similar conclusions. TSVMs inherit most properties
of SVMs so that the same arguments apply to TSVMs
as well.

But how can TSVMs be any better? In the �eld of
information retrieval it is well known that words in
natural language occur in strong co-occurrence pat-
terns (see [van Rijsbergen, 1977]). Some words are
likely to occur together in one document, others are
not. For examples, when asking the search engine
Altavista about all documents containing the words
pepper and salt, it returns 327,180 web pages. When
asking for the documents with the words pepper and
physics, we get only 4,220 hits, although physics is
a more popular word on the web than salt. Many
approaches in information retrieval try to exploit this
cluster structure of text (see [van Rijsbergen, 1977]).
And it is this co-occurrence information that TSVMs
exploit as prior knowledge about the learning task.

Let's look at the example in �gure 3. Imagine doc-
ument D1 was given as a training example for class
A and document D6 was given as a training example
for class B. How should we classify documents D2
to D4 (the test set)? Even if we did not understand
the meaning of the words, we would classify D2 and
D3 into class A, and D3 and D4 into class B. We
would do so even though D1 and D3 do not share
any informative words. The reason we choose this
classi�cation of the test data over the others stems
from our prior knowledge about the properties of text
and common text classi�cation tasks. Often we want
to classify documents by topic, source, or style. For
these type of classi�cation tasks we �nd stronger co-
occurrence patterns within categories than between



Algorithm TSVM:

Input: { training examples (~x1; y1); :::; (~xn; yn)
{ test examples ~x�1; :::; ~x

�

k

Parameters: { C,C�: parameters from OP(2)
{ num+: number of test examples to be assigned to class +

Output: { predicted labels of the test examples y�1 ; :::; y
�

k

(~w; b; ~�; ) := solve svm qp([(~x1; y1):::(~xn; yn)]; [];C; 0; 0);

Classify the test examples using < ~w; b >. The num+ test examples with
the highest value of ~w � ~x�j + b are assigned to the class + (y�j := 1);
the remaining test examples are assigned to class � (y�j := �1).

C�
�
:= 10�5; // some small number

C�+ := 10�5 �
num+

k�num+
;

while((C�
�
< C�) k (C�+ < C�))f // Loop 1

(~w; b; ~�; ~��) := solve svm qp([(~x1; y1):::(~xn; yn)]; [(~x�1; y
�

1):::(~x
�

k; y
�

k)]; C;C
�

�
; C�+);

while(9m;l : (y�m � y�l < 0)&(��m > 0)&(��l > 0)&(��m + ��l > 2)) f // Loop 2

y�m := �y�m; // take a positive and a negative test
y�l := �y�l ; // example, switch their labels, and retrain

(~w; b; ~�; ~��) := solve svm qp([(~x1; y1):::(~xn; yn)]; [(~x�1; y
�

1):::(~x
�

k; y
�

k)]; C;C
�

�
; C�+);

g

C�
�
:=min(C�

�
� 2; C�);

C�+ :=min(C�+ � 2; C�);

g

return(y�1; :::; y
�

k);

Figure 4: Algorithm for training Transductive Support Vector Machines.

di�erent categories. In our example we analyzed the
co-occurrence information in the test data and found
two clusters. These clusters indicate di�erent topics
of fD1; D2; D3g vs. fD4; D5; D6g, and we choose the
cluster separator as our classi�cation. Note again that
we got to this classi�cation by studying the location
of the test examples, which is not possible for an in-
ductive learner.

The TSVM outputs the same classi�cation as we sug-
gested above, although all 16 dichotomies of D2 to D5
can be achieved with linear separators. Assigning D2
and D3 to class A and D3 and D4 to class B is the
maximum margin solution (i.e. the solution of opti-
mization problem OP1). We see that the maximum
margin bias re
ects our prior knowledge about text
classi�cation well. By analyzing the test set, we can
exploit this prior knowledge for learning.

4.1 Solving the Optimization Problem

Training a transductive SVM means solving the
(partly) combinatorial optimization problemOP2. For

a small number of test examples, this problem can be
solved optimally simply by trying all possible assign-
ments of y�1 ; :::; y

�

k to the two classes. However, this
approach become intractable for test sets with more
than 10 examples. Previous approaches using branch-
and-bound search [Wapnik and Tscherwonenkis, 1979]
push the limit to some extent, but still lag behind the
needs of the text classi�cation problem. The algorithm
proposed next is designed to handle the large test sets
common in text classi�cation with 10,000 test exam-
ples and more. It �nds an approximate solution to op-
timization problem OP2 using a form of local search.

The key idea of the algorithm is that it begins with
a labeling of the test data based on the classi�cation
of an inductive SVM. Then it improves the solution
by switching the labels of test examples so that the
objective function decreases. The algorithm takes the
training data and the test examples as input and out-
puts the predicted classi�cation of the test examples.
Besides the two parameters C and C�, the user can
specify the number of test examples to be assigned
to class +. This allows trading-o� recall vs. preci-



sion (see section 5.2). The following description of the
algorithm covers only the linear case. A generaliza-
tion to non-linear hypothesis spaces using kernels is
straightforward.

The algorithm is summarized in �gure 4. It starts with
training an inductive SVM on the training data and
classifying the test data accordingly. Then it uniformly
increases the in
uence of the test examples by incre-
menting the cost-factors C�

�
and C�

+ up to the user
de�ned value of C� (loop 1). The algorithm uses un-
balanced costs C�

�
and C�

+ to better accomodate the
user de�ned ratio num+. While the criterion in the
condition of loop 2 identi�es two examples for which
changing the class labels leads to a decrease in the cur-
rent objective function, these examples are switched.

The function solve svm qp refers to quadratic pro-
grams of the following type.

OP 3 (Inductive SVM (primal))

Minimize over (~w; b; ~�; ~��):

1

2
jj~wjj2 + C

nX
i=1

�i + C�

�

X
j:y�

j
=�1

��j +C�

+

X
j:y�

j
=1

��j

subject to: 8ni=1 : yi[~w � ~xi + b] � 1� �i

8kj=1 : y
�

j [~w � ~xj + b] � 1� ��j

This optimization problem can be solved in its dual
formulation using SVMlight [Joachims, 1999]2. Espe-
cially designed for text classi�cation, SVMlight can ef-
�ciently handle problems with many thousand support
vectors, converges fast, and has minimal memory re-
quirements. Let's �nally look at an algorithmic prop-
erty of the algorithm before evaluating its performance
empirically in section 5.

Theorem 2 Algorithm 1 converges in a �nite number
of steps.

Proof: To prove this, it is necessary to show that
loop 2 is exited after a �nite number of iterations. This
holds since the objective function of optimization prob-
lem OP2 decreases with every iteration of loop 2 as the
following argument shows. The condition y�my

�

l < 0 in
loop 2 requires that the examples to be switched have
di�erent class labels. Let y�m = 1 so that we can write

1

2
jj~wjj2+C

nX
i=0

�i +C�

�

X
j:y�

j
=�1

��i +C�

+

X
j:y�

j
=1

��i

2Available at http://www-ai.cs.uni-dortmund.de/svm
light

=
1

2
jj~wjj2 + C

nX
i=0

�i + :::+C�

+�
�

m + :::+C�

�
��l + :::

>
1

2
jj~wjj2+C

nX
i=0

�i +:::+C
�

�
(2���m)+:::+C

�

+(2��
�

l )+:::

=
1

2
jj~wjj2+C

nX
i=0

�i + :::+ C�

�
��

0

m + :::+ C�

+�
�
0

l + :::

It is easy to verify that the constraints of OP2 are
ful�lled for the new values of y�m, y

�

l , �
�
0

m , and ��
0

l

(potentially, after setting negative ��
0

m or ��
0

m to zero).
The inequality holds due to the selection criterion
in loop 2, since ��

0

m = max(2 � ��m; 0) < ��l and

��
0

l = max(2 � ��l ; 0) < ��m. This means that loop
2 is exited after a �nite number of iterations, since
there is only a �nite number of permutations of the
test examples. Loop 1 also terminates after a �nite
number of iterations, since C�

�
is bounded by C�. 2

5 Experiments

5.1 Test Collections

The empirical evaluation is done on three test col-
lection. The �rst one is the Reuters-21578 dataset3

collected from the Reuters newswire in 1987. The
\ModApte" split is used, leading to a corpus of 9,603
training documents and 3,299 test documents. Of the
135 potential topic categories only the most frequent
10 are used, while keeping all documents. Both stem-
ming and stop-word removal are used.

The second dataset is the WebKB collection4 of
WWW pages made available by the CMU text-
learning group. Following the setup in [Nigam et al.,
1998], only the classes course, faculty, project, and
student are used. Documents not in one of these
classes are deleted. After removing documents which
just contain the relocation command for the browser,
this leaves 4,183 examples. The pages from Cornell
University are used for training, while all other pages
are used for testing. Like in [Nigam et al., 1998], stem-
ming and stop-word removal are not used.

The third test collection is taken from the Ohsumed
corpus5 compiled by William Hersh. From the 50,216
documents in 1991 which have abstracts, the �rst
10,000 are used for training and the second 10,000 are

3Available at http://www.research.att.com/�lewis/
reuters21578.html

4Available at http://www.cs.cmu.edu/afs/cs/project/
theo-20/www/data

5Available at ftp://medir.ohsu.edu/pub/ohsumed



Bayes SVM TSVM

earn 78.8 91.3 95.4
acq 57.4 67.8 76.6
money-fx 43.9 41.3 60.0
grain 40.1 56.2 68.5
crude 24.8 40.9 83.6
trade 22.1 29.5 34.0
interest 24.5 35.6 50.8
ship 33.2 32.5 46.3
wheat 19.5 47.9 54.4
corn 14.5 41.3 43.7

average 35.9 48.4 60.8

Figure 5: P/R-breakeven point for the ten most fre-
quent Reuters categories using 17 training and 3,299
test examples. Naive Bayes uses feature selection by
empirical mutual information with local dictionaries of
size 1,000. No feature selection was done for SVM and
TSVM.

used for testing. The task is to assign documents to
one or multiple categories of the 5 most frequent MeSH
\diseases" categories. A document belongs to a cat-
egory if it is indexed with at least one indexing term
from that category. Both stemming and stop-word re-
moval are used.

5.2 Performance Measures

Since for both the Reuters dataset and the Ohsumed
collection documents can be in multiple categories, the
Precision/Recall-Breakeven Point is used as a measure
of performance. The P/R-breakeven point is a com-
mon measure for evaluating text classi�ers. It is based
on the two well know statistics recall and precision
widely used in information retrieval. Precision is the
probability that a document predicted to be in class
\+" truly belongs to this class. Recall is the probabil-
ity that a document belonging to class \+" is classi�ed
into this class (see [Raghavan et al., 1989]). Both can
be estimated from the contingency table.

Between high recall and high precision exists a trade-
o�. The P/R-breakeven point is de�ned as that value
for which precision and recall are equal. The trans-
ductive SVM uses the breakeven point for which the
number of false positives equals the number of false
negatives. For the inductive SVM and the Naive Bayes
classi�er the breakeven point is computed by varying
the threshold on their \con�dence value".
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Figure 6: Average P/R-breakeven point on the
Reuters dataset for di�erent training set sizes and a
test set size of 3,299.
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Figure 7: Average P/R-breakeven point on the
Reuters dataset for 17 training documents and varying
test set size for the TSVM.

5.3 Results

The following experiments show the e�ect of using the
transductive SVM instead of inductive methods. To
provide a baseline for comparison, the results of the
inductive SVM and a multinomial Naive Bayes clas-
si�er as described in [Joachims, 1997, McCallum and
Nigam, 1998] are added. Where applicable, the results
are averaged over a number of random training (test)
samples.

Figure 5 gives the results for the Reuters dataset. For
training sets of 17 documents and test sets of 3,299
documents, the transductive SVM leads to an im-
proved performance on all categories, raising the av-



Bayes SVM TSVM

course 57.2 68.7 93.8
faculty 42.4 52.5 53.7
project 21.4 37.5 18.4
student 63.5 70.0 83.8

average 46.1 57.2 62.4

Figure 8: Average P/R-breakeven points for the We-
bKB categories using 9 training and 3957 test exam-
ples. Naive Bayes uses a global dictionary with the
2,000 highest mutual information words. No feature
selection was done for the SVM. Due to the large num-
ber of words, the TSVM used only those words which
occur at least 5 times in the whole sample.

Bayes SVM TSVM

pathology 39.6 41.8 43.4
Cardiovascular 49.0 58.0 69.1
Neoplasms 53.1 65.1 70.3
Nervous System 28.1 35.5 38.1
Immunologic 28.3 42.8 46.7

average 39.6 48.6 53.5

Figure 9: Average P/R-breakeven points for the
Ohsumed categories using 120 training and 10,000 test
examples. Here, Naive Bayes uses local dictionaries of
1,000 words selected by mutual information. No fea-
ture selection was done for the SVM. The TSVM again
uses all words that occur at least 5 times in the whole
sample.

erage of the P/R-breakeven points from 48:4 for the
inductive SVM to 60:8. These averages correspond to
the left-most points in �gure 6. This graph shows the
e�ect of varying the size of the training set. The ad-
vantage of using the transductive approach is largest
for small training sets. For increasing training set size,
the performance of the SVM approaches that of the
TSVM. The in
uence of the test set size on the per-
formance of the TSVM is displayed in �gure 7. The
bigger the test set, the larger the performance gap be-
tween SVM and TSVM. Adding more test examples
beyond 3,299 is not likely to increase performance by
much, since the graph is already very 
at.

The results on the WebKB dataset are similar (�g-
ure 8). The average of the P/R-breakeven points in-
creases from 57:2 to 62:4 by using the transductive
approach. Nevertheless, for the category project the
TSVM performs substantially worse, while the gain
on the category course is large. Let's look at this
in more detail. Figures 10 and 11 show how the per-
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Figure 10: Average P/R-breakeven point on the We-
bKB category course for di�erent training set sizes.

0

20

40

60

80

100

9 16 29 57 113 226

P
/R

-b
re

ak
ev

en
 p

oi
nt

 (
cl

as
s 

pr
oj

ec
t)

Examples in training set

Transductive SVM
SVM

Naive Bayes

Figure 11: Average P/R-breakeven point on the We-
bKB category project for di�erent training set sizes.

formance changes with increasing training set size for
course and project. While for course the TSVM
nearly reaches its peak performance immediately, it
needs more training examples to surpass the inductive
SVM for project. Why does this happen?

First, project is the least populous class. Among 9
training examples, there is only one from the project
category. But more importantly, a look at the project
pages reveals that many of them give a description
of the project topic. My conjecture is that the margin
along this \topic dimension" is large, and so the TSVM
tries to separate the test data by topic. Only when
there are enough project pages with di�erent topics in
the training set, the generalization along the project
topic is ruled out. Most course pages at Cornell, on the
other hand, do not give much topic information besides



the title, but rather link to assignments, lecture notes
etc. So the TSVM is not \distracted" by large margins
along the topics.

The results in �gure 9 for the Ohsumed collection com-
plete the empirical evidence given in this paper, also
supporting its point.

6 Related Work

Previously, Nigam et al. [Nigam et al., 1998] proposed
another approach to using unlabeled data for text clas-
si�cation. They use a multinomial Naive Bayes clas-
si�er and incorporate unlabeled data using the EM-
algorithm. One problem with using Naive Bayes is
that its independence assumption is clearly violated
for text. Nevertheless, using EM showed substantial
improvements over the performance of a regular Naive
Bayes classi�er.

Blum and Mitchell's work on co-training [Blum and
Mitchell, 1998] uses unlabeled data in a particular set-
ting. They exploit the fact that, for some problems,
each example can be described by multiple representa-
tions. WWW-pages, for example, can be represented
as the text on the page and/or the anchor texts on the
hyperlinks pointing to this page. Blum and Mitchell
develop a boosting scheme which exploits a conditional
independence between these representations.

Early empirical results using transduction can be
found in [Vapnik and Sterin, 1977]. More recently,
Bennett [Bennett, 1999] showed small improvements
for some of the standard UCI datasets. For ease of
computation, she conducted the experiments only for
a linear-programming approach which minimizes the
L1 norm instead of L2 and prohibits the use of ker-
nels. Connecting to concepts of algorithmic random-
ness, [Gammerman et al., 1998] presented an approach
to estimating the con�dence of a prediction based on
a transductive setting.

7 Conclusions and Outlook

This paper has introduced Transductive Support Vec-
tor Machines for text classi�cation. Exploiting the
particular statistical properties of text, it has iden-
ti�ed that the margin of separating hyperplanes is a
natural way to encode prior knowledge for learning
text classi�ers. By taking a transductive instead of
an inductive approach, the test set can be used as an
additional source of information about margins.

Introducing a new algorithm for training TSVMs

that can handle 10,000 examples and more, this
work presented empirical results on three test col-
lections. On all data sets the transductive approach
showed improvements over the currently best perform-
ing method, most substantially for small training sam-
ples and large test sets.

There are still a lot of open questions regarding trans-
ductive inference and SVMs. Particularly interesting
is a PAC-style model for transductive inference to iden-
tify which concept classes bene�t from transductive
learning. How does the sample complexity behave for
both the training and the test set? What is the rela-
tionship between the concept and the instance distri-
bution? Regarding text classi�cation in particular, is
there a better basic representation for text, aligning
margin and learning bias even better? Besides ques-
tions from learning theory, more research in algorithms
for training TSVMs is needed. How well does the algo-
rithm presented here approximate the global solution?
Will the results get even better, if we invest more time
into search? Finally, the transductive classi�cation im-
plicitly de�nes a decision rule. Is it possible to use this
decision rule in an inductive fashion and will it perform
well also on new test examples?
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