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Notation

~xi input patterns
yi target values (classes)
X feature space
n number of training examples
k number of test examples
N dimensionality of the input space
L learner
H hypothesis space
h hypothesis from the hypothesis space
hL hypothesis that the learner L returns
R(h) (expected) risk of the hypothesis h
Remp(h) empirical risk of the hypothesis h on a training sample
L loss function
L0=1 0=1-loss function

~w weight vector of a hyperplane < ~w; b >
b constant o�set (or threshold) of a hyperplane < ~w; b >
Æ margin of a hyperplane
R radius of a ball containing the data, usually approximated by max k~xk2
�i Lagrange multiplier
~� vector of all Lagrange multipliers
�i slack variables
(~x1 � ~x2) dot product between vectors ~x1 and ~x2
K Mercer kernel
Q Hessian of the quadratic program

Err error rate
Rec recall
Prec precision
F� Rijsbergen's F�-measure
PRBEP precision/Recall breakeven point
PRAV G arithmetic average of precision and recall

~xT transpose of the vector ~x
< the set of real numbers
N the set of natural numbers
jXj cardinality of set X
abs(a) absolute value of a
k:k1 L1-norm , k~xk1 :=

P
abs(xi)

k:k2 or k:k L2-norm (Euclidean distance), k~xk := p
(~x � ~x)

exp(a) 2:7182818a

ln logarithm to base 2:7182818
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Chapter 1

Introduction

With the rapid growth of the World Wide Web, the task of classifying natural language
documents into a prede�ned set of semantic categories has become one of the key methods
for organizing online information. This task is commonly referred to as text classi�cation.
It is a basic building block in a wide range of applications. For example, directories
like Yahoo! categorize Web pages by topic, online newspapers customize themselves to
a particular user's reading preferences, and routing agents at service hotlines forward
incoming email to the appropriate expert by content. While it was possible in the past
to have human indexers do the category assignments manually, the exponential growth
of the number of online documents and the increased pace with which information needs
to be distributed has created the need for automatic document classi�cation.

The �rst step towards automatic document classi�cation is a knowledge engineering
approach. Experts handcraft classi�cation rules that can classify new documents automat-
ically. However, handcrafting classi�cation rules is diÆcult and time-consuming [Hayes
and Weinstein, 1990]. Therefore, in many situations this approach is still too ineÆcient
and impractical. For example, when the number of categories is large, handcrafting a
classi�cation rule for each category can be prohibitively expensive. Even worse, when the
classi�cation rule is needed as part of a desktop application that is customized to a par-
ticular user, an expert knowledge engineer simply is not available. DiÆculties also arise
when the category de�nitions change over time. In this case, maintaining classi�cation
rules by hand can quickly become intractable.

A machine-learning approach to building text-classi�cation rules can overcome these
problems. Given a relatively small set of manually classi�ed training documents, the
problem of learning text-classi�cation rules can be cast as a supervised learning problem.
The learning algorithm is given access to the labeled training documents and produces
a classi�cation rule automatically. While this learning problem was already studied in
the past, the motivation for the work in this dissertation is to provide the �rst learning
approach that can eÆciently, e�ectively, and provably solve the challenge of learning text
classi�ers from examples for a large and well-de�ned class of problems.

1.1 Challenges

The task of learning text classi�ers poses a new combination of challenges for machine
learning. It is characterized by the following properties:

Large Input Space: In text classi�cation, the input to the learner consist of natural
language. Natural language is expressive enough to describe many phenomena in the
world | many even with multiple, equivalent forms. As formulated in linguistics,

1



2 CHAPTER 1. INTRODUCTION

\the sentences of a language may be unlimited in number" ([Lyons, 1968], Section
4.2.2), but surely it is large. For example, it is unlikely that the current sentence
has ever been formulated before. Therefore, text classi�cation inherently deals with
a large space of potential examples. Even strongly simplifying transformations, like
ignoring ordering on the word level and representing a piece of text merely by a
histogram of word frequencies, still leads to input spaces with 30,000 and more
dimensions.

Little Training Data: For most learning algorithms, the required number of train-
ing examples to produce a suÆciently accurate classi�cation rule scales with the
dimensionality of the input space. In this case, the number of training examples to
assure a good learning result vastly outnumbers what can be made available with
reasonable e�ort. For a polynomial least squares approach, Fuhr formulates the
rule of thumb that \there should be at least 50-100 elements in the learning sample
per component of the polynomial structure" [Fuhr et al., 1994, page 188]. However,
when learning text classi�ers, one is usually faced with a paradoxical situation of
having fewer training examples than dimensions in the feature space.

Noise: Most natural language documents contain language mistakes. Despite my best
e�orts, you will probably �nd spelling errors, typos, and ungrammatical sentences
in this dissertation. In machine-learning terminology, this can be interpreted as
noise. Furthermore, the process of generating training documents often produces
mislabeled examples, also leading to noise.

Complex Learning Tasks: The classes of text-classi�cation tasks are generally based
on the semantic understanding of natural language by humans. For example, the
classes might describe the topic of the text, the reading preferences of a particular
user, or the importance of email messages. For none of theses tasks formal and
operational de�nitions exist. The learner must able to approximate such complex
concepts.

Computational Efficiency: Training classi�ers in a high-dimensional input space with
several thousands of training examples can be a computationally diÆcult problem
for conventional learners. To get useful learning methods for text classi�cation in
practical applications, it is necessary to develop training algorithms that can handle,
in particular, the large number of features eÆciently.

Providing a solution to this challenging class of learning problems motivates the meth-
ods, the theory, and the algorithms developed in this dissertation. The approach taken
here follows Vapnik's idea of maximum-margin separation, most prominently implemented
in support vector machines (SVMs).

1.2 Goals

This dissertation presents a new machine-learning approach to the problem of learning
text classi�ers from examples. It is not primarily about methods, nor primarily about
theory, nor primarily about algorithms. Rather, it aims to address all relevant aspects of
this particular class of learning problems. Currently, there is no other approach that is
computationally eÆcient, for which there is a well-founded learning theory that describes
its mechanics with respect to text classi�cation, and that performs well and robustly in
practice. The approach presented in the following overcomes these problems of conven-
tional learning methods. The main aspects are as follows:
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Methods: Applying text classi�cation in the real world requires robust learning meth-
ods. This dissertation proposes Vapnik's support vector machine (SVM) as a new
method for inductive and transductive learning of text classi�ers. It develops a new
method for model selection that allows SVMs to be applied with robust e�ectiveness
and high eÆciency.

Theory: This dissertation develops a learning theory of text classi�cation. The impact
of this theory is threefold. First, from a practical point of view, the theory gives
guidelines for when and how to use SVMs for text classi�cation. Second, the theory
puts the currently informal problem of text classi�cation on a formal ground. This
makes it accessable to formal analysis and guides the development of new methods.
And third, the theory provides guarantees about the learning result.

Algorithms: Methods are of little practical use without eÆcient algorithms. Therefore,
this dissertation develops algorithms for training inductive and transductive SVMs
eÆciently even on large problems.

This dissertation is divided into three parts, each re
ecting one of these aspects. Since
this work addresses all three issues, it requires a mixture of techniques and concepts
from several domains. It is located at the intersection of machine learning, statistics,
mathematical programming, and information retrieval.

Besides its contribution to the application problem of learning text classi�ers, this
work develops some widely applicable machine-learning techniques. While I limit their
discussion to the text-classi�cation problem, both the particular techniques and the gen-
eral approach taken here are not limited to text classi�cation. On a meta level, this
dissertation demonstrates a conceptual approach to understanding a class of learning
problems that can also be transferred to other domains.

1.3 Overview and Structure of the Argument

The approach presented in this dissertation is based on the key insight that margin, the
complexity measure used e.g. in support vector machines, is ideal for text classi�cation. In
particular, this dissertation shows how maximum-margin methods can overcome both the
learning theoretical and the algorithmic problems of high-dimensional input spaces in text
classi�cation. With respect to learning theory, it explains how it is possible to overcome
the over�tting problem. From the computational perspective, it explores algorithms that
do not depend on the dimensionality of the feature space. And �nally, it demonstrates
the robustness and state-of-the-art performance of maximum-margin methods in multiple
learning scenarios and on multiple learning tasks.

According to these three aspects, this dissertation is structured into three parts {
namely Theory,Methods, and Algorithms. This re
ects the holistic approach taken
in this work. While it is diÆcult to clearly separate these three aspects, the �rst part
mainly deals with learning theory, while the second part focuses on practical methods
and experimental results, and the third part develops eÆcient algorithms.

1.3.1 Theory

In the theory part, I �rst present a statistical learning model of text classi�cation. None
of the conventional methods have an appropriate model that explains why and when they
will perform well on a particular text-classi�cation task. While the models for some meth-
ods, like the naive Bayes classi�er, are overly restrictive and inappropriate for text, others,
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like decision-tree learners, rely purely on empirical evidence. Their suitability for learning
text classi�ers is not well understood. To overcome this de�ciency, Chapter 4 presents
a statistical learning model that connects the statistical properties of text-classi�cation
tasks with the generalization performance of a support vector machine. The model ex-
plains how the maximum-margin approach can avoid the \curse of dimensionality" for
text classi�cation even without a feature-selection step that is essential for many conven-
tional methods. This is the �rst model explaining when and why a particular learning
method works well for text classi�cation. The model identi�es suÆcient conditions of
text-classi�cation tasks that provably lead to low classi�cation error.

The theoretical model is based on an intensional description of the text-classi�cation
task. It models prior knowledge about the learning task and does not require training
data. When training data becomes available, it can replace the intensional model. With
the training data, the question of whether the learning algorithm is suitable for the task
in terms of generalization performance becomes a problem of error estimation. Chapter 5
develops a method to estimate the generalization error, as well as, for example, precision
and recall of a support vector machine. Unlike brute-force cross-validation and boot-
strapping methods, the estimator is computationally very eÆcient and does not require
additional data like hold-out testing. The estimate makes it possible to eÆciently detect
when the accuracy of a learned classi�cation rule is appropriate for the task at hand.

1.3.2 Methods

The methods section of this dissertation starts with Chapter 6. It empirically evaluates
SVMs for text classi�cation and proposes a two step process for model selection. Model
selection is the problem of selecting between di�erent representations and parameter set-
tings for a learning task. The most appropriate document representation depends on the
particular task. Chapter 6 shows how selection among multiple representations, prepro-
cessing steps like stemming, stopword removal, and weighting schemes, as well as the
setting of other learning parameters can be done eÆciently and without need for expert
interventions. The resulting SVM is compared to conventional methods. It is shown that
SVMs substantially outperform existing methods.

Chapter 7 proposes a new framework to model many text classi�cation and infor-
mation retrieval tasks more appropriately. The new model is based on the transductive
setting. In contrast to inductive learning, in the transductive setting the examples to be
classi�ed are part of the input to the learner. A typical transductive learning task is rel-
evance feedback in information retrieval. Since the learner operates on a �xed document
collection, all documents that will be classi�ed using the learned classi�cation rule are
available to the learning algorithm. A typical inductive learning task is the routing of
e-mails. The documents to be classi�ed arrive one by one and are not available at training
time. The maximum-margin approach presented in this dissertation o�ers the 
exibility
to model both scenarios. Each text-classi�cation problem can therefore be modeled in
the most appropriate way, exploiting all information that is available.

1.3.3 Algorithms

The third part of this dissertation presents new algorithms for training inductive and
transductive support vector machines. Unlike most conventional learning algorithms,
their time complexity does not necessarily depend on of the dimensionality of the feature
space. This is very important for text classi�cation, since the feature space often contains
more than 30,000 attributes.
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But not only is the number of features generally high, the training set can be large
as well. While training an inductive support vector machine can be reduced to a stan-
dard quadratic optimization problem, standard methods for solving such problems are
inappropriate or even intractable for large data sets. Chapter 8 proposes and analyzes
a new training algorithm for inductive SVMs that can handle large training sets with
50,000 and more examples eÆciently. It also describes its implementation in SVM light ,
software which has already found use in many scienti�c and commercial applications.

Finally, a solution to training transductive SVMs is presented in Chapter 9. Training
a support vector machine in the transductive framework requires solving a mixed integer
quadratic program for which there is no known eÆcient solution. Chapter 9 proposes and
evaluates an algorithm that eÆciently �nds an approximation to the solution and can
handle large data sets.

1.4 Summary

In summary, the thesis of this research is that taking a maximum-margin approach, I can
provide the �rst framework for the problem of learning text classi�ers from examples that
combines a learning theoretical foundation, with methods giving state-of-the-art predic-
tion performance, and eÆcient training algorithms. Developing the theoretical learning
model of text classi�cation, designing and evaluating practical methods for text classi�-
cation based on support vector machines, and designing eÆcient training algorithms for
large problems are the central goals of the work presented in this dissertation.

The following two chapters summarize the state-of-the-art that served as the starting
point for this thesis.
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Chapter 2

Text Classi�cation

This chapter reviews the state-of-the-art in learning text classi�ers from examples. First,
it gives formal de�nitions of the most common scenarios in text classi�cation | namely
binary, multi-class, and multi-label. Furthermore, it gives an overview of di�erent repre-
sentations of text, feature selection methods, and criteria for evaluating predictive perfor-
mance. The chapter ends with a description of the experimental setup used throughout
this dissertation.

2.1 Learning Task

How precisely is the task of learning text classi�ers from examples de�ned? To develop
e�ective methods and to evaluate their results, it is necessary to de�ne the learning task
in a formal way. The following describes the common inductive learning setting that is
used in most existing studies. The novel setting of transductive inference is introduced in
Chapter 7 and is not considered here.

The goal in inductive text classi�cation is to infer a classi�cation rule from a sample
of labeled training documents so that it classi�es new examples with high accuracy. More
formally, the learner L is given a training sample S of n examples

(~x1; y1); : : : ; (~xn; yn) (2.1)

drawn independently and identically distributed (i.i.d.)1 according to an unknown but
�xed distribution Pr(~x; y). This distribution speci�es the particular learning task. Each
example consists of the document vector ~x and the class label y. The document vector ~x
describes the documents. Most commonly, ~x is a high-dimensional vector describing which
words occur in the document. Other document representations are discussed in Section
2.2. The form of the class label depends on the type of classi�cation task. The following
discusses binary, multi-class, and multi-label tasks individually. Each implies a particular
measure of performance R(h) { called risk { that measures how well a classi�cation rule
h performs. This performance measure is based on a loss function L(h(~x); y) 2 < that
measures in how far the class label predicted by a classi�cation rule h(~x) and the observed
label y are di�erent. The corresponding performance measure R(h) is the expectation of
the loss with respect to Pr(~x; y).

R(h) =

Z
L(h(~x); y)dPr(~x; y) (2.2)

1While the i.i.d. assumption is essential for the theortical results in statistical learning theory, it is
not essential for the learning algorithms presented in the following. They will work even if the i.i.d.
assumption is (mildly) violated.

7



8 CHAPTER 2. TEXT CLASSIFICATION

Since this performance measure depends on the unknown distribution Pr(~x; y), it cannot
be computed directly. The only explicit information about Pr(~x; y) is the training sample
S. Using this training sample S the learner L aims to �nd a classi�cation rule hL = L(S)
that minimizes the risk.

So far, both the loss function L(h(~x); y) and the learning method L are not speci�ed.
Di�erent loss function are discussed in the following, while Section 2.5 and Chapter 3
discuss learning algorithms.

2.1.1 Binary Setting

The binary setting is the simplest, yet most important formulation of the learning prob-
lem. The more complex tasks discussed in the following can be reduced to this case under
mild assumptions. In the binary setting there are exactly two classes. For example, these
two classes can be \relevant" and \non-relevant" in an information retrieval application.
Similarly, a simple email �lter may have the task to decide between \spam" and \non-
spam" messages. This implies that the class label y has only two possible values. For
notational convenience let these values be +1 and �1. So y 2 f�1;+1g.

The most common loss function for the binary case is the 0=1-loss. This loss function
checks whether the predicted class label h(~x) and y are equal. If h(~x) equals y, then it
returns the value 0. If they are unequal, it returns 1.

L0=1(h(~x); y) =

(
0 h(~x) = y
1 otherwise

(2.3)

The performance measure associated with this loss function is error rate Err(h). Error
rate is the probability of making a false prediction on an example that is randomly drawn
according to Pr(~x; y).

Err(h) = Pr(h(~x) 6= yjh) =
Z
L0=1(h(~x); y)dPr(~x; y) (2.4)

Error rate treats all types of errors equally. For example, in spam �ltering it considers
deleting an important message as spam just as bad as passing a spam message to the
user. Clearly, this is inappropriate. The �rst type of error should incur a larger loss than
the second type of error. This can be achieved using cost factors C�+ and C+�. For the
�rst type of error the loss function returns C�+ while it returns C+� for the second type
of error.

L0=1(h(~x); y) =

8><
>:

C+� h(~x) = +1 and y = �1
C�+ h(~x) = �1 and y = +1
0 otherwise

(2.5)

An SVM that minimizes misclassi�cation cost instead of error rate is discussed in Section
3.4.

While error rate and misclassi�cation cost are the quantities minimized by learning
algorithms, the performance of a text classi�cation rule is usually measured di�erently
in practice. The most common performance measures are precision and recall, as well as
combined measures like F1 and the precision/recall breakeven point. These measures are
introduced in Section 2.6. Ideally, one would like to optimize, for example, F1 directly
[Lewis, 1995]. Unfortunately, it is not clear how to design eÆcient learning algorithms
for doing that. Therefore, error rate or misclassi�cation cost is used as a proxy. A weak
justi�cation is that an error rate of 0 implies perfect precision and recall. Nevertheless,
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low error rate does not necessarily imply both high precision and high recall. However,
the minimization of error rate or cost has proven successful in practice.

Most learning algorithms produce classi�cation rules hL(~x) that not only output the
binary classi�cation +1 or -1, but also output a real number. This number is often related
to Pr(y = +1j~x), the probability that example ~x has the observed class label y = +1. If
hL(~x) induces the same ordering as Pr(y = +1j~x), the resulting precision/recall curves
are optimal [Robertson, 1977]. The analysis in [Platt, 1999b] shows that the output of an
SVM classi�cation rule does produce a good ordering. It is comparable to the estimates
of other methods that approximate Pr(y = +1j~x) directly.

2.1.2 Multi-Class Setting

Some classi�cation tasks involve more than two classes. For example, an email routing
agent at a service hotline might need to forward an incoming message to one out of ten
customer representatives. This means the class label y can assume 10, or in general l,
di�erent values. So, without loss of generality, y 2 f1; : : : ; lg. Since 0=1-loss naturally
generalizes to this multi-class setting, the previous de�nition of error rate also applies to
multi-class classi�cation. Similarly, cost factors can be introduced in a straightforward
way.

Some text classi�cation algorithms, like decision tree learners, can handle multi-class
problems directly. While an approach to multi-class classi�cation with SVMs exists [We-
ston and Watkins, 1998], it is computationally ineÆcient. Other learning algorithms are
strictly limited to binary problems. However, a multi-class problem can always be split
into a set of l binary tasks, if the binary learning algorithm provides an estimate of
Pr(y = ij~x). For each class i, a binary learning problem is generated as follows. For the

i-th binary learning task, the class label is y
(i)
bin = +1 i� y = i. For y 6= i the binary

class label is y
(i)
bin = �1. Now an individual classi�er is trained for each binary problem

resulting in l binary classi�cation rules h(1); : : : ; h(l). To classify a new example ~x, the
output of each h(i)(~x) as an estimate of Pr(y = ij~x) is analyzed. The example is classi�ed
into that class for which the corresponding h(i)(~x) is largest.

A justi�cation for this procedure gives Bayes's rule. Bayes's rule describes the optimal
behavior of a classi�cation algorithm that has access to Pr(y = ij~x) for all classes i. Bayes
showed that the error rate is minimized when the algorithm assigns each example to the
class i for which Pr(y = ij~x) is highest. Therefore, if the binary learning algorithm
provides a good estimate of Pr(y = ij~x), the resulting error rate will be low.

This reduction of a multi-class problem into l binary tasks is often called a one-
against-the-rest strategy. A less-frequently used but promising alternative is pair-wise
classi�cation (e.g. [Kre�el, 1999]). This strategy leads to l(l � 1)=2 binary classi�cation
problems. For each pair of classes, a learner is trained to discriminate between examples
of just these two classes. New documents are classi�ed by, for example, majority vote of
all l(l � 1)=2 predictions. A more eÆcient decision strategy is proposed in [Platt et al.,
2000].

2.1.3 Multi-Label Setting

Most text-classi�cation tasks fall into the multi-label setting. Unlike in the multi-class
case, there is no one-to-one correspondence between class and document. Instead, for a
�xed number l of categories, each document can be in multiple, exactly one, or no category
at all. For example, these categories can be semantic topic identi�ers for indexing news ar-
ticles. Accordingly, a single news story could be in the categories soccer and germany.
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This setting can be modeled using a multivariate class label in the form of an l-dimensional
binary vector, i.e. ~y 2 f+1;�1gl. Each individual component indicates whether a doc-
ument belongs to that category on not. Since the class label is an l-dimensional binary
vector, the corresponding classi�cation rule must output an l-dimensional binary vector
as well.

No currently used text-classi�cation algorithms can handle this multivariate y directly.
Furthermore, it is not clear how to count errors in the multi-label setting. In the strict
sense of 0=1-loss, an error occurs whenever the binary vector predicted by the classi�cation
rule is di�erent from the observed class label vector ~y. However, this loss function does
not model \close misses". A good loss function for the multi-label setting should indicate
in how many positions the prediction and the observed class label di�er. A reasonable
distance metric for binary vectors is Hamming distance. The Hamming distance counts
the number of mismatches and results in the following loss function.

LHamming(h(~x); ~y) =
lX

i=1

L0=1(h
(i)(~x); y(i)) (2.6)

h(i)(~x) and y(i) denote the individual components of the binary vectors. So the expected
loss equals the sum of the error rates of l binary tasks.

R(h) =
lX

i=1

Err(h(i)) (2.7)

This motivates that a multi-label task can also be split up into a set of binary classi�cation
tasks. Each category is treated as a separate binary classi�cation problem. Such a
binary problem answers the question of whether or not a document should be assigned
to a particular category. For each category i, de�ne the binary classi�cation task as

follows. The class label is y
(i)
bin = 1 i� y(i) = 1. For y(i) = �1 the binary class label is

y
(i)
bin = �1. Now an individual classi�er is trained for each binary problem resulting in l
binary classi�cation rules h(1); : : : ; h(1). A category i is assigned to a document ~x, if the
corresponding classi�cation rule h(1)(~x) predicts +1.

Why and when is this split-up into binary tasks justi�ed? The learning task in the
multi-label setting is Pr(~x; y) = Pr(~x; y(1); : : : ; y(l)). Again, Bayes's rule says that the opti-
mal classi�cation regarding L0=1 is achieved for y

(1); : : : ; y(l) maximizing Pr(y(1); : : : ; y(l)j~x).
Assume that the categories are independent given the document vector. This is a rather
mild assumption, since the document vector ~x should carry most of the relevant infor-
mation. Then it holds that Pr(y(1); : : : ; y(l)j~x) = Pr(y(1)j~x) � � �Pr(y(l)j~x). So, if each
binary classi�er maximizes Pr(y(i)j~x) individually, this will result in the maximum of
Pr(y(1); : : : ; y(l)j~x). This shows that, under the independence assumption, minimizing
error rate on each binary task leads to a minimum overall risk. It is an open question
whether exploiting dependencies between categories can improve performance in practice.

2.2 Representing Text

The representation of example vectors ~x has a crucial in
uence on how well the learning
algorithm can generalize. It has to \�t" to the implicit assumptions of the learning
algorithm. Since these assumptions, like the form of classi�cation rules and the preference
ordering among them, are usually inherent to the learning algorithm { and therefore �xed
{ choosing the representation is the central modeling tool. Even text that is already
stored in machine readable form (e.g. HTML, PDF, PostScript) is generally not directly
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suitable for most learning algorithms. It has to be transformed into the representation
that is appropriate for both the learning algorithm and the classi�cation task.

A fundamental problem when dealing with natural language is that context has a
substantial in
uence on the meaning of a piece of text (see [Blair, 1992]). For example,
the same word can have di�erent meaning in two sentences. The word \bank" can refer
to the �nancial institution, a piece of furniture, and the side of the river (synonyms). The
same sentence can have di�erent meanings depending on the speaker, the audience, and
the situation. Di�erent approaches to representing text for text classi�cation recognize
or ignore these dependencies to a varying extent. They can be structured according to
the level on which they analyze text, according to the following categories:

1. Morphological Level: the structure of words

2. Lexical Level: complete words

3. Syntactic Level: the structure of sentences

4. Semantic Level: the meaning of text

5. Pragmatic Level: the meaning of text with respect to context and situation (e.g.
dialog structure)

The basic building blocks on each level will be called indexing terms. So, on the lexical
level, indexing terms refer to words, while on the syntactic level indexing terms can refer
to phrases or whole sentences.

Structuring natural-language processing and analysis along these categories was found
useful in linguistics. Nevertheless, no category can be treated independently of the others.
On each level, ambiguities exist that can only be solved using the next higher level. On
the lexical level alone, for example, it is not possible to decide whether the word \book"
is a verb or a noun. This ambiguity can be resolved on the syntactic level ("Please book
that 
ight!").

The following presents di�erent representations based on the morphological, the lexi-
cal, the syntactic, and the semantic level for the English language. Representations recog-
nizing the pragmatic structure of text have not been explored yet. Generally, the higher
the level, the more detail the representation captures about the text. However, along with
greater detail comes an increased complexity in producing such representations automat-
ically. For example, producing semantic representations requires substantial knowledge
about the domain of interest and can only be solved approximately with state-of-the-art
methods.

The discussion begins with word-based representations. They are by far the most
common way to represent text for text classi�cation and will be used throughout this
dissertation.

2.2.1 Lexical Level

In many cases words are meaningful units of little ambiguity even without considering
context. While synonyms like \bank" exist, it is often assumed that they have little impact
on the representation of a document as a whole. In fact, word-based representations have
been found very e�ective in information retrieval and text classi�cation (see e.g. [Lewis,
1992a]). They are the basis for most work in text classi�cation.

A substantial advantage of word-based representations is their simplicity. It is rela-
tively straightforward to design algorithms that eÆciently decompose text into words. A
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Figure 2.1: Representing text as an attribute vector.

simple algorithm that splits a string into words by white space characters will usually
produce satisfactory results for the English language2.

Ignoring logical structure and layout, using words as indexing terms transforms a
document from a string of characters into a sequence of words. In addition, it is usually
assumed that the ordering of the words is irrelevant (or at least of minor importance) for
the classi�cation task. So, a word sequence can be projected onto a bag of words. Only
the frequency of a word in a document is recorded, while all structure of the document is
ignored. This representation is commonly called the bag-of-words approach.

The bag-of-words representation makes text accessible to most machine-learning al-
gorithms. These algorithms require that each example be described by a vector of �xed
dimensionality. Each component of the vector represents the value of one attribute of
the example. Commonly, each word w is treated as one such attribute. The value of an
attribute for a particular document d can be, for example, the number of times it occurs
in the document. This quantity is called the term frequency TF (w; d) of word w in doc-
ument d. Figure 2.1 illustrates how an example document is projected onto an attribute
vector in the bag-of-words representation. Other methods for computing the value of an
attribute are discussed in Section 2.4.

Representing documents as bags of words is a common technique in information re-
trieval. Clearly, this transformation leads to a loss of information about the document.
However, more sophisticated representations have not yet shown consistent and substan-
tial improvements. For information retrieval, Lewis formulated the following ([Lewis,
1992b], page 7):

Reviews of this research have led to the widely-held conclusion that no text
representation is signi�cantly superior to representing documents by isolated
words drawn from the original text, and that text representation has a rela-
tively minor in
uence on e�ectiveness.

2In languages with composite nouns, �nding individual words is more diÆcult. In Turkish even whole
sentences can consist of a single composite expression.
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While more expressive representations can capture more of the meaning of the document,
their increased complexity degrades the quality of statistical models based on them. The
bag-of-words representation appears to be a good compromise between expressiveness and
model complexity.

The following hypothesis o�ers an intuitive explanation for why words are good repre-
sentational units. The reason why words provide a reasonable granularity for representing
documents might be found in the evolution of language. Words are the elements of the
language where syntax and semantics meet. They are the basic syntactic building blocks
that carry their own meaning. The vocabulary of a language is under constant develop-
ment. Intuitively speaking, the composition and use of words is permanently optimized
so that they encode an optimum of information. Clearly, such an optimum is relative
to the tasks for which we use language [Whorf, 1959]. Language continuously adapts to
the distribution of tasks, in particular by introducing new words. So the vocabulary of
the language re
ects what we deem as important. The same notion of importance also
drives the text-classi�cation tasks we usually consider and care about. The following ex-
ample illustrates this. For an Eskimo, classifying weather reports by the type of expected
snowfall might be a reasonable and important text-classi�cation task. The Eskimo lan-
guage is said to have many words di�erentiating between di�erent types of snow [Whorf,
1959, page 216]3. A bag-of-words approach will most likely be successful. However, the
bag-of-words approach will probably fail using the English language on this task. English
does not provide particular words, but requires more complicated constructions. On the
other hand, it is very unlikely that someone from middle-europe will ever ask this text
classi�cation question4. In short, the hypothesis can be stated as follows:

The vocabulary of a language re
ects the prior distribution of text-classi�cation
tasks. Those text-classi�cation tasks for which the vocabulary contains indica-
tive keywords are a priori more likely.

Here, language does not only refer to ethnical languages, but also, for example, to technical
languages of scienti�c disciplines. The validation of this hypothesis is an interesting open
question.

2.2.2 Morphological Level

n-Grams are the most popular representation on the morphological level. Instead of
using words as indexing terms, strings of n characters are here used as the basic building
blocks. For example, the 3-gram (i.e. trigram) representation of the word \book" is \ bo",
\boo", \ook", \ok ". The document as a whole is again a bag of these basic building
blocks. The trigram representation naturally models similarity between words. While
\computer" and \computers" are di�erent words, they share most of their trigrams. While
this is a desirable similarity, trigram based similarity can also be misleading (\computer"
and \commuter"). An advantage of n-gram representations is that they provide some
robustness against spelling errors. Furthermore, generating the n-gram representation of a
document is straightforward even for languages with many composite forms. Experimental
results can be found in e.g. [Neumann and Schmeier, 1999].

3Note that this example is still subject to debate, e.g. the necessity to include coding length.
4However, e.g. the German language does provide a rich vocabulary to describe di�erent types of

sausage and beer.
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2.2.3 Syntactic Level

With improved tools linguistic tools, large amounts of text can now be analyzed eÆciently
with respect to their syntactic structure. Syntactic representations generally use indexing
terms that consist of multiple words. Their composition is based on syntactic structure.
The most commonly used syntactic structures are noun phrases (e.g. [Fagan, 1987][Croft
and Lewis, 1990][Lewis, 1992b][Lewis, 1992a]). This approach is commonly called Syn-
tactic Phrase Indexing. Other phrasal and syntactic features are explored in [Rilo� and
Lehnert, 1994][F�urnkranz et al., 1998][Neumann and Schmeier, 1999][Basili et al., 1999].

Another approach to generating multi-word indexing terms is based on statistical
methods. Here, co-occurrence patterns are analyzed. A group of words is considered an
indexing term if they co-occur frequently (e.g. [Fagan, 1987][Croft and Lewis, 1990]) or if
they have a similar distribution with respect to the target concept [Baker and McCallum,
1998]. Fuhr et al. use syntactic preprocessing to generate candidates for indexing terms
from which they �lter good phrases using statistical methods [Fuhr et al., 1991].

2.2.4 Semantic Level

Clearly, text classi�ers can only work optimally if they can capture the semantics of
documents suÆciently. Unfortunately, it is not yet possible to automatically extract the
semantics of free text and represent it in an operational form.

To some extent, the semantics of a document can be captured using taxonomies and
indexing languages with a �xed vocabulary. Examples are MeSH for the �eld of medicine,
the Dewey decimal classi�cation for libraries, or Yahoo! categories for the World Wide
Web. Documents are manually assigned to one or multiple categories. A hierarchical
structure of the categories allows inferences along an is-a relationship. However, such an
indexing of documents is usually not available. While the assignment of categories can
potentially be automated [Yang and Chute, 1993], this task is itself a text-classi�cation
problem.

Section 2.3.2 discusses Latent Semantic Indexing [Deerwester et al., 1990]. Using a
linear Principal-Component Analysis, this method aims to automatically generate seman-
tic categories based on a bag-of-words representation. However, it is unclear why such a
linear transformation should necessarily align meaning along orthogonal dimensions.

Predicate logic and semantic nets [Brachman and Schmolze, 1985] o�er powerful rep-
resentation languages that are very operational. However, representing documents in logic
requires manual translation, which makes it impractical for most applications.

2.3 Feature Selection

Modifying the basic representation in a preprocessing step before running the learner
is common practice in text classi�cation. This step is called feature selection. Feature
selection is supposed to remove irrelevant or inappropriate attributes from the representa-
tion. Protection against over�tting is the most common motivation for feature selection
in text classi�cation. A second motivation for feature selection is improving computa-
tional eÆciency, since many learning algorithms cannot handle high-dimensional feature
spaces. Some applications might impose strict memory and time constraints that can
only be ful�lled using feature selection. This section reviews the most commonly used
feature-selection techniques, di�erentiating between the following two approaches.

Feature Subset Selection The new representation consists of a subset of the original
attributes.
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Feature Construction New features are introduced by combining original features.

The description of feature-selection methods will assume a bag-of-words representation.
However, most methods can also be applied to other representations in a straightforward
way.

2.3.1 Feature Subset Selection

One method for identifying irrelevant features that applies exclusively to text is stopword
elimination. It is based on the assumption that words like \the" or \and" are irrelevant
independent of the classi�cation task. Such words are removed from the feature vector.

While stopword elimination removes mostly high frequency words from the attribute
set, document frequency thresholding [Yang and Pedersen, 1997] removes particularly in-
frequent words. All words that occur in less than m documents of the training corpus are
not considered as features. Varying m can dramatically reduce the number of features
even for small values of m. Document frequency thresholding is based on the assumption
that infrequent words are not informative or, at least, not in
uential due to their rare
occurrences [Yang and Pedersen, 1997]. Apt�e and Damerau justify this selection meth-
ods based on the statistical properties of low-frequency words [Apt�e and Damerau, 1994].
They conjecture that parameter estimates for low-frequency terms are not reliable enough
to contribute useful information.

Unlike stopword elimination and document frequency thresholding, the following fea-
ture selection methods analyze the class labels in the training data to remove irrelevant
attributes. Approaches for selecting attributes based on search and cross-validation (e.g.
[Caruana and Freitag, 1994]) provide promising methods, but were not applied to text
classi�cation yet. For eÆciency reasons most feature selection methods for text classi�-
cation are based on ranking terms according to some statistical measure of relevance.

Mutual information (or information gain e.g.[Cover and Thomas, 1991][Quinlan, 1986])
is one of the most common measures of relevance in machine learning in general. It mea-
sures the reduction of entropy provided by considering two random variables Y and W
together instead of individually.

I(Y;W ) = H(Y )�H(Y jW ) (2.8)

=
X

y2f�1;+1g

X
w2f0;1g

Pr(y;w)
Pr(y;w)

Pr(y) Pr(w)
(2.9)

Here, the random variable Y indicates the class label assigned to a document. The
random variableW describes whether a particular word occurs in the document. Entropy
H(X) is the measure of uncertainty in the random variable X. It measures the expected
number of bits necessary to encode X. I(W;Y ) describes the information that word W
contributes to encoding the class label Y independent of the other words in the document.
The probabilities can be estimated from the training sample using maximum likelihood
estimates, leading to an estimate of I(W;Y ). The terms with the highest (empirical)
mutual information are selected as features. However, it is unknown how to a priori select
the number of features appropriately. Applications of mutual information can be found in
e.g. [Yang and Pedersen, 1997][Lewis and Ringuette, 1994][van Rijsbergen, 1977][Lewis,
1992a][Mladeni�c, 1998].

Odds ratio [van Rijsbergen et al., 1981] is an alternative ranking measure commonly
used in information retrieval. If the probability distribution Pr(Y jW ) is known, then
min [Pr(y = 1jw);Pr(y = �1jw)] is the Bayes optimal error rate that can be achieved,
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if only word W can be observed. This optimal error rate is achieved by the classi�er

sign
h
log Pr(y=1jw)

Pr(y=�1jw)
i
. So under an independence assumption

log
Pr(y = 1jw)
Pr(y = �1jw) (2.10)

is a suitable measure of relevance for W . The probabilities are commonly estimated from
the training set using Bayesian estimates. Experiments using odds ratio can be found in
e.g. [Mladeni�c, 1998].

�2 tests (see e.g. [Mood et al., 1974]) are another way to measure the dependence
between a term W and the class label Y . It tests W and Y for independence. The value
of the test statistic is used as the ranking criterion. Experiments can be found in e.g.
[Yang and Pedersen, 1997][Sch}utze et al., 1995].

Note that feature selection based on such rankings implies strong assumptions about
the learning task. It is a greedy process that does not account for dependencies between
words. All statistical ranking criteria make independence assumptions of some sort. This
dissertation shows that such a feature selection step is not necessary. This does not
mean that selecting an appropriate representation is not crucial for solving a learning
task. However, selecting attributes based on training data to improve generalization
performance merely covers up de�ciencies of the learning algorithm. Such feature selection
uses the same information that is available to the learning algorithm { namely the training
data. An appropriate learning algorithm should be able to detect irrelevant features as
part of the learning process.

2.3.2 Feature Construction

The methods described in this section aim to reduce dimensionality by introducing new
features. These new features should represents most of the information from the original
representation while minimizing the number of attributes.

Stemming conducts a morphological analysis of words. Feature construction by stem-
ming assumes that di�erent word forms based on the same stem are equivalent with
respect to the classi�cation task. It collapses all words to their stem, introducing the
stem as a new feature and removing features corresponding to word forms. This means
that words like \computing", \computability", and \computer" are projected onto the
same attribute \comput". A simple rule-based algorithm for stemming English words is
described in [Porter, 1980].

While stemming abstracts from the syntactical form of a word, thesauri (e.g. WordNet
[Miller et al., 1990]) group words into semantic categories. A thesaurus can contain several
kinds of relations between words. Synonyms, for example, are grouped into equivalence
classes. Often thesauri also contain relations like more-general and more-speci�c. The use
of thesauri for text classi�cation is explored in e.g. [Junker and Abecker, 1997][Fisher,
1994][Scott and Matwin, 1998][de Buenaga Rodr�iguez et al., 1997].

Latent semantic indexing (LSI) [Deerwester et al., 1990] is a special form of linear
principal component analysis (e.g. [Sch�olkopf, 1997]) applied to text. LSI produces a
mapping of the feature vectors into a lower dimensional sub-space using singular value
decomposition. It computes an orthogonal transformation of the coordinate system. The
new coordinate values correspond to the new features. Keeping only the s largest sin-
gular values, the new feature space is of lower rank while preserving as much of the
original feature vectors as possible. The best value of s is a priori unknown and has to
be determined, for example, by cross-validation. The hope behind this transformation
is that related words are clustered into the same principal component. Applications of
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latent semantic indexing for text classi�cation can be found in [Foltz, 1990][Berry et al.,
1995][Foltz and Dumais, 1992][Wiener et al., 1995]. LSI works exclusively on the feature
vectors, but ignores class labels. Extensions to incorporate class information are proposed
in [Wiener et al., 1995][Dumais, 1994][Sch}utze et al., 1995][Yang, 1995].

Term clustering has a goal similar to that of LSI. Semantically similar terms shall be
grouped into one cluster. The cluster then acts as a new feature. Clusters are generated
using unsupervised learning algorithms (e.g. [Cheeseman et al., 1988]). These methods
require that words are described using meta-attributes. The most common way of gener-
ating such meta-attributes for terms is by reversing the roles of documents and words. A
word is described by the documents it occurs in (see e.g. [Spark-Jones, 1973][Croft and
Lewis, 1990][Lewis, 1992a][Crouch, 1988]). Therefore, in a collection of 1000 documents,
each term has 1000 meta-attributes. The clustering algorithms group words according to
a distance measure among meta-attribute vectors. The hope is that this distance measure
re
ects semantic closeness by exploiting co-occurrence patterns.

2.4 Term Weighting

Intuitively, term weighting is a \soft" form of feature selection. While feature selection
fully removes certain dimensions of the data, term weighting merely adjusts the relative
in
uence of attributes. The term-weighting methods presented in the following were devel-
oped for the vector space model [Salton, 1971][Salton, 1991]. While originally developed
for information retrieval, they have proven to be useful also for text classi�cation.

Term-weighting schemes usually consist of three components [Salton and Buckley,
1988]. The document component captures statistics about a particular term in a particular
document. The basic measure is term frequency TF (wi; dj). It is de�ned as the number
of times words wi occurs in document dj. The idea is that terms occurring more often in
a document are more relevant than infrequent terms. However, frequent terms may occur
in almost any document of a collection. Such terms will not help discriminate between
classes. The collection component is designed to assign lower weight to such terms. Its
basic statistic is document frequency DF (wi), i.e. number of documents in which word
wi occurs at least once. If the document frequency is high, the weight of the term is
reduced. And �nally, documents can be of di�erent length. A normalization component
is supposed to adjust the weights so that small and large documents can be compared on
the same scale.

Table 2.1 lists the most frequently used choices for each component. For the �nal fea-
ture vector ~x, the value xi for word wi is computed by multiplying the three components.
The �rst column of the table de�nes an abbreviation that allows specifying choices in a
compact way. The following combinations will be used in this dissertation.

bxc This string refers to a simple binary representation. Each word occurring in the
document has weight 1, while all other words have weight 0. The resulting weight
vector is normalized to unit length.

xi =
OCC(wi; d)qP
j OCC(wj; d)2

(2.11)

OCC(wi; d) returns 1, if word wi occurs in document d, otherwise 0.

txc This representation uses the raw term frequencies (TF). Again, length is normalized
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Document Component

b 1:0 binary weight equal to 1 for terms present in the
document (term frequency is ignored)

t TF (wi; d) raw term frequency

n 0:5 + 0:5 TF (wi;d)
maxj TF (wj ;d)

augmented normalized term frequency (the im-
pact of high term frequencies vs. low term fre-
quencies is reduced)

Collection Component

x 1:0 ignore document frequency

t log jDj
DF (wi)

inverse document frequency. jDj is that total
number of documents in the collection. (terms oc-
curring in many documents receive lower weight)

n log jDj�DF (wi)
DF (wi)

probabilistic inverse collection frequency (again,
terms occurring in many documents receive lower
weight)

Normalization Component

x 1:0 no normalization

c 1pP
x2
j

normalize resulting vector to length 1 (i.e. L2)

a 1P
xj

normalize resulting vector in terms of L1

Table 2.1: Common word weighting components mostly taken from [Salton and Buckley,
1988].
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according to L2.

xi =
TF (wi; d)qP
j TF (wj ; d)2

(2.12)

tfc This is the popular TFIDF representation with Euclidean length normalization.

xi =
TF (wi; d) log

� jDj
DF (wi)

�
rP

j

h
TF (wj ; d) log

� jDj
DF (wj)

�i2 (2.13)

Further details can be found in [Salton and Buckley, 1988].

2.5 Conventional Learning Methods

Throughout this dissertation, support vector machines will be compared to four standard
learning methods, all of which have shown good results on text categorization problems
in previous studies. Each method represents a di�erent machine-learning approach: gen-
erative modelling using a naive Bayes classi�er, the Rocchio algorithm (the most popular
learning method from information retrieval), an instance-based k-nearest-neighbor classi-
�er, and the C4.5 decision tree/rule learner. The following introduces these methods and
gives and overview of other approaches.

2.5.1 Naive Bayes Classi�er

The idea of the naive Bayes classi�er is to use a probabilistic model of text to estimate
Pr(yjd), the probability that a document d is in class y. To make the estimation of the
parameters of the model possible, rather strong assumptions are incorporated. In the
following, word-based unigram models of text will be used (cf. [Joachims, 1997a]). This
multinomial event model is di�erent from the multivariate Bernoulli model used by Lewis
[Lewis, 1992c] and earlier proposed by [Maron, 1961]. Unlike the multivariate Bernoulli
model, it can take the occurrence frequency of a word in a document into account and it
is found to have better classi�cation accuracy [McCallum and Nigam, 1998].

In the multinomial mixture model, words are assumed to occur independently of the
other words in the document. For each category, there is one component in the model.
All documents assigned to a particular category are assumed to be generated according
to the component associated with this category.

The following describes one approach to estimating Pr(yjd). Bayes's rule says that to
achieve the highest classi�cation accuracy, d should be assigned to the class y 2 f�1;+1g
for which Pr(yjd) is highest.

hBAY ES(d) = argmaxy2f�1;+1g Pr(yjd) (2.14)

Pr(yjd) can be split up by considering documents separately according to their length
l.

Pr(yjd) =
X1

l=1
Pr(yjd; l) � Pr(ljd) (2.15)

Pr(ljd) equals one for the length l0 of document d and is zero otherwise. After applying
Bayes's theorem to Pr(yjd; l) we can therefore write:

Pr(yjd) = Pr(djy; l0) � Pr(yjl0)P
y02f�1;+1g Pr(djy0; l0) � Pr(y0jl0)

(2.16)
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* *Category1 (y1): * * * *
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^=

text categorizationDocument (d): methodsSeveral for have ...

Figure 2.2: In the multinomial model a document is assumed to be generated by repeat-
edly drawing words i.i.d. from the mixture component corresponding to the class of the
document.

Pr(djy; l0) is the probability of observing document d in class y given its length l0.
Pr(yjl0) is the prior probability that a document of length l0 is in class y. In the fol-
lowing we will assume that the category of a document does not depend on its length,
so Pr(yjl0) = Pr(y). An estimate P̂r(y) for Pr(y) can be calculated from the fraction of
training documents that is assigned to class y.

P̂r(y) =
jyjP

y02f�1;+1g jy0j
=
jyj
jDj (2.17)

jyj denotes the number of training documents in class y 2 f�1;+1g and jDj is the total
number of documents.

The estimation of Pr(djy; l0) is more diÆcult. Pr(djy; l0) is the probability of observing
a document d in class y given that we consider only documents of length l0. Since there is -
even for a simplifying representation as used here - a huge number of di�erent documents,
it is impossible to collect a suÆciently large number of training examples to estimate this
probability without prior knowledge or further assumptions. In our case the estimation
becomes possible due to the way documents are assumed to be generated. The unigram
models introduced above imply that a word's occurrence is only dependent on the class
the document comes from, but that it occurs independently5 of the other words in the
document and that it is not dependent on the document length. This is illustrated in
Figure 2.2. So Pr(djy; l0) can be written as:

Pr(djy; l0) �
Yjdj

i=1
Pr(wijy) (2.18)

wi ranges over the sequence of words in document d which are considered as features.
jdj is the number of words in document d. The estimation of Pr(djy) is reduced to
estimating each Pr(wijy) independently. A Bayesian estimate is used for Pr(wijy).

P̂r(wijy) = 1 + TF (wi; y)

jF j+Pw02jF j TF (w0; y)
(2.19)

TF (w; y) is the overall number of times word w occurs within the documents in class
y. This estimator, which is often called the Laplace estimator, is suggested in [Vapnik,
1982, pages 54-55]. It assumes that the observation of each word is a priori equally likely.

5The weaker assumption of \linked-dependence" is actually suÆcient [Cooper, 1991], but not considered
here for simplicity.
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It was found that this Bayesian estimator works well in practice, since it does not falsely
estimate probabilities to be zero [Joachims, 1997a].

The following is the resulting classi�cation rule if equations (2.14), (2.16) and (2.18)
are combined.

hBAY ES(d) = argmaxy2f�1;+1g
Pr(y) �

jdjQ
i=1

Pr(wijy)
P

y02f�1;+1g
Pr(y0) �

jdjQ
i=1

Pr(wijy0)
(2.20)

= argmaxy2f�1;+1g

Pr(y) � Q
w2X

Pr(wjy)TF (w;d)

P
y02f�1;+1g

Pr(y0) � Q
w2X

Pr(wjy0)TF (w;d)
(2.21)

If Pr(yjd) is not needed as a measure of con�dence, the denominator can be left out,
since it does not change the argmax. Experimental results for naive Bayes classi�ers can
be found in e.g. [Lewis, 1992c][Lewis and Ringuette, 1994][Lang, 1995][Pazzani et al.,
1996][Joachims, 1997a][Joachims, 1998b][McCallum and Nigam, 1998][Sahami, 1998].

2.5.2 Rocchio Algorithm

This type of classi�er is based on the relevance-feedback algorithm originally proposed by
Rocchio [Rocchio, 1971] for the vector-space retrieval model [Salton, 1991]. It has been
extensively used for text classi�cation.

First, both the normalized document vectors of the positive examples as well as those
of the negative examples are summed up. The linear component of the classi�cation rule
is then computed as

~w =
1

ji : yi = +1j
X

i:yi=+1

~xi � �
1

jj : yj = �1j
X

j:yj=+1

~xj (2.22)

Rocchio requires that negative elements of the vector w are set to 0. � is a parameter that
adjusts the relative impact of positive and negative training examples. Buckley [Buckley
et al., 1994] recommends � = 0:25. Nevertheless, the optimal values are likely to be task-
dependent and the performance of the resulting classi�er strongly depends on a \good"
choice of �.

To classify a new document ~x, the cosine between ~w and ~x is computed. Using an
appropriate threshold on the cosine leads to a binary classi�cation rule. The Rocchio
algorithm does not provide a means to compute a good threshold. One solution is to
obtain a threshold via hold-out testing.

Why should the weight vector ~w classify new documents well? With the cosine as
the similarity metric and � = 1, Rocchio shows that for ~w as computed above, the mean
similarity of the positive training examples with ~w minus the mean similarity of the
negative training examples with ~w is maximized.

1

ji : yi = +1j
X

i:yi=+1

cos(~w; ~xi)� 1

jj : yi = �1j
X

j:yi=�1
cos(~w; ~xj) �! max (2.23)

However, it is unclear if or how maximizing this function connects to the accuracy of the
resulting classi�er. The standard parametric distributions that imply good generalization
performance appear inappropriate for text. Experiments with the Rocchio algorithm are
reported in [Sch}utze et al., 1995] [Balabanovic and Shoham, 1995] [Lang, 1995] [de Kroon
et al., 1996] [Cohen, 1996] [Joachims, 1997a] [Joachims, 1998b] [Dumais et al., 1998].
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2.5.3 k-Nearest Neighbors

The k-nearest-neighbor (k-NN) classi�er is based on the assumption that examples located
close to each other according to a user-de�ned similarity metric are likely to belong to
the same class. Like the naive Bayes classi�er, it can be derived from Bayes's rule [Michie
et al., 1994]. k-NN classi�ers were found to show good performance on text-categorization
tasks [Yang, 1997][Yang, 1999] [Masand et al., 1992]. This paper follows the setup in
[Yang, 1997]. The cosine is used as a similarity metric. knn(~x) denotes the indices of the
k documents which have the highest cosine with the document to classify ~x.

hknn(~x) = sign

0
B@

P
i2knn(~x)

yi cos(~x; ~xi)

P
i2knn(~x)

cos(~x; ~xi)

1
CA (2.24)

Further details can be found in [Mitchell, 1997].

2.5.4 Decision Tree Classi�er

Representative of decision-tree learners, the C4.5 algorithm [Quinlan, 1993] is used for the
experiments in this paper. It is the most popular decision-tree algorithm and has shown
good results on a variety of problems. It is used with the default parameter settings
and with rule post-pruning turned on. C4.5 outputs a con�dence value when classifying
new examples. This value is used to compute precision/recall tables. Previous results
with decision tree or rule learning algorithms are reported in [Lewis and Ringuette, 1994]
[Moulinier et al., 1996][Apt�e and Damerau, 1994][Cohen, 1995][Cohen, 1996].

2.5.5 Other Methods

One of the shortcomings of the naive Bayes classi�er is its unjusti�ed conditional inde-
pendence assumption. It can be interpreted as a Bayesian network in its simplest form.
Using more general Bayesian network models, researchers have tried to overcome the lim-
itations of naive Bayes [Sahami, 1998][Tzeras and Hartmann, 1993]. Sahami was able to
show that an automatically constructed Bayesian network with limited dependence can
improve prediction performance.

Logistics regression (e.g. [Michie et al., 1994]) is a di�erent way of estimating the
probability Pr(yj~x). Instead of estimating a generative model, logistic regression takes a
discriminative approach. Similar to a linear support vector machines, statistic regression
�nds a hyperplane in feature space. The di�erence is that statistic regression optimizes
conditional likelihood on the training data. Text-classi�cation experiments with unregu-
larized logistic regression can be found in [Sch}utze et al., 1995]. However, regularization
like in the SVM should improve performance also for logistic regression.

Neural nets (e.g. [Mitchell, 1997]) are closely related to logistic regression, but deal
with more complex than linear models. Since neural nets are sensitive to over�tting, they
require feature selection like latent semantic indexing. This combination is explored in
[Sch}utze et al., 1995] and [Wiener et al., 1995]. A similar approach using linear regression
is explored in [Yang, 1999]. Linear regression is a special case of polynomial regres-
sion [Fuhr, 1989], used in pioneering work on text classi�cation as part of the system
AIR/PHYS [Fuhr and Knorz, 1984].

Boosting algorithms like AdaBoost [Freund and Schapire, 1996] iteratively combine
multiple base hypotheses (e.g. decision trees) using a linear model. Boosted decision trees
have shown excellent performance on text-classi�cation tasks. The size of the trees can
vary from minimal trees of depth 1 (i.e. decision stumps) [Schapire et al., 1998][Schapire
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and Singer, 2000] to large trees [Weiss et al., 1999]. Especially for boosted decision stumps
there is a strong connection to support vector machines [Schapire et al., 1997], since
Boosting can also be interpreted as margin maximization. Instead of measuring margin
in terms of the L2-norm like in the SVM, Boosting maximizes margin in terms of the
L1-norm. With a modi�ed loss function, Boosting can be formulated as an optimization
problem similar to that of the support vector machine (see Optimization Problem 3 in
Section 3.2).

Rule learning approaches to text classi�cation focus on good search strategies and
compact representations. For example, Haneke explores genetic search [Haneke, 1999].
Often, rules and decision trees are found to be more interpretable than, for example, linear
models. Lewis and Ringuette compare a decision tree learner with a naive Bayes classi�er
and �nd similar performance. Unlike C4.5, SWAP-1 [Weiss and Indurkhya, 1993] learns
Horn clauses without building an intermediate decision tree. It can include consecutive
word pairs as features, leading to good results on the Reuters corpus [Apt�e and Damerau,
1994]. Further experiments with several rule learning algorithms can be found in [Cohen,
1995][Moulinier et al., 1996][Moulinier and Ganascia, 1996].

Relational rule learning o�ers a more powerful representation than the propositional
methods discussed so far. Relational predicates are an elegant way to express relations
between attributes. For example, it is easy to represent word ordering, which is usually
ignored in propositional representations. Cohen uses the following relations between words
of a document [Cohen, 1995][Cohen, 1996]:

� near1/2: two words are adjacent

� near2/2: two words are separated by at most one word

� near3/2: two words are separated by at most two words

� after/2: one word occurs in the document after another word

� near1/2: one word directly follows another word

Cohen uses the FOIL6 [Quinlan and Cameron-Jones, 1993] and the FLIPPER [Cohen,
1995] ILP learning algorithms on this representation. Compared to propositional rep-
resentations Cohen concludes that the relational approach can improve performance on
some problems. However, the improvements are rather small so that other parameters
have a larger impact on the result [Cohen, 1995].

Active learning is an interesting modi�cation of the inductive learning setting. The
learner does not observe training examples in a passive way, but can actively ask for e.g.
the label of particular examples. This can reduce the total number of labeled training
examples needed to achieve the same performance as a passive learner. Active learning
for text classi�cation was �rst explored in [Lewis and Gale, 1994]. The recent Ph.D. thesis
of Ray Liere gives interesting results for Winnow and Perceptron learners [Liere, 1999].
Since Winnow and especially the Perceptron algorithm can be interpreted as \online
versions" of support vector machines with particular norms, it is plausible that his results
will transfer to SVMs.

2.6 Performance Measures

This section reviews the most commonly used performance measures for evaluating text
classi�ers. Like already discussed in Section 2.1.1, the performance measures used for eval-
uating text classi�ers are often di�erent from those optimized by the learning algorithm.
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The following discusses loss-based measures (i.e. error rate and cost models), precision
and recall, as well as combined measures like F1 and the precision/recall breakeven point
(PRBEP).

Estimators for these measures can be de�ned based on a contingency table of predic-
tions on an independent test set. The following contingency table provides a convenient
display of the prediction behavior for binary classi�cation.

De�nition 1 (Contingency Table (Binary Classi�cation))

label y = +1 label y = �1
pediction h(~x) = +1 f++ f+�
pediction h(~x) = �1 f�+ f��

Each cell of the table represents one of the four possible outcomes of a prediction h(~x)
for an example (~x; y). The diagonal cells count how often the prediction was correct. The
o�-diagonal entries show the frequency of prediction errors. The sum of all cells equals
the total number of predictions.

2.6.1 Error Rate and Asymmetric Cost

The most common performance measure in machine learning is error rate. It is de�ned
as the probability of the classi�cation rule h predicting the wrong class.

De�nition 2 (Error Rate)

Err(h) = Pr(h(~x) 6= yjh) (2.25)

From the contingency table it can be estimated as

Errtest(h) =
f+� + f�+

f++ + f+� + f�+ + f��
(2.26)

However, unlike for other applications of machine learning, error rate alone is not neces-
sarily a good performance measure in text classi�cation. Usually negative examples vastly
outnumber positive examples. So the simple classi�er always responding h(~x) = �1 in-
dependent of the particular feature vector ~x has a (misleadingly) low error rate.

This behavior is due to the equal weighting of false positives and false negatives
implicit in error rate. For many applications, predicting a positive example correctly is of
higher utility than predicting a negative example correctly. It is possible to incorporate
this into the performance measure using a cost (or, inversely, utility) matrix.

De�nition 3 (Cost Matrix)

label y = +1 label y = �1
pediction h(~x) = +1 C++ C+�
pediction h(~x) = �1 C�+ C��

The elements of the cost matrix are multiplied with the corresponding entries of the
contingency table. They form a linear cost function.

Costtest(h) =
C++ f++ + C+� f+� + C�+ f�+ + C�� f��

f++ + f+� + f�+ + f��
(2.27)

In particular, errors on positive examples and errors on negative examples can be weighted
di�erently using C+� and C�+. A support vector machine with such a cost model is
introduced in Section 3.4.
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2.6.2 Precision and Recall

While cost models address the problem of unequal class distributions, their resulting
score is often not intuitively interpretable. A more detailed summary give scores based
on precision and recall. These measures are of widespread use in information retrieval
and can also be found in ROC analysis [Provost and Fawcett, 1997]. I de�ne the recall
Rec(h) of a classi�cation rule h as the probability that a document with label y = 1 is
classi�ed correctly.

De�nition 4 (Recall)

Rec(h) = Pr(h(~x) = 1jy = 1; h) (2.28)

Based on the contingency table in De�nition 1, a straightforward estimate of the recall
is

Rectest(h) =
f++

f++ + f�+
(2.29)

The precision Prec(h) of a classi�cation rule h is the probability that a document
classi�ed as h(~x) = 1 is indeed classi�ed correctly.

De�nition 5 (Precision)

Prec(h) = Pr(y = 1jh(~x) = 1; h) (2.30)

Similar to recall, a straightforward estimate of the precision is

Prectest(h) =
f++

f++ + f+�
(2.31)

Between high precision and high recall exists a trade-o�. All methods examined in
this dissertation make category assignments by thresholding a \con�dence value". By
adjusting this threshold it is possible to achieve di�erent levels of recall and precision.
When the con�dence value does not imply a total ordering, the PRR method [Raghavan
et al., 1989] is used for interpolation.

2.6.3 Precision/Recall Breakeven Point and F�-Measure

While precision and recall accurately describe the classi�cation performance, considering
two scores makes it diÆcult to compare di�erent learning algorithms. To get a single
performance measure, the (weighted) harmonic mean of precision and recall is commonly
used. It is called the F�-measure and can be written as follows.

De�nition 6 (F�-Measure)

F�(h) =
(1 + �2) Prec(h) Rec(h)

Prec(h) +Rec(h)
(2.32)

� is a parameter. The most commonly used value is � = 1, giving equal weight to
precision and recall. The F�-measure can be estimated from the contingency table using

F�;test(h) =
(1 + �2) f++

(1 + �2) f++ + f�+ + �2f+�
(2.33)

Another measure that summarizes the precision/recall curve using a single value is
the precision/recall breakeven point. It assumes that the classi�cation rule returns a
con�dence value which ranks test examples according to how likely they are in the positive
class.
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De�nition 7 (Precision/Recall Breakeven Point) Given a ranking of documents,
the precision/recall breakeven point (PRBEP) is the value at which precision and recall
are equal.

It is easy to verify that precision and recall are necessarily equal when the number of
test examples predicted to be in the positive class equals the true number of positive test
examples (i.e. f++ + f+� = f++ + f�+).

Clearly, summarizing the whole precision/recall curve using a single value leads to
a loss of information. Both F� and the PRBEP make assumptions about the relative
importance of recall and precision. These assumptions may not be met for a particular
application. However, even without a particular application in mind, they do provide
useful scores for comparing learning algorithms.

2.6.4 Micro- and Macro-Averaging

Often it is useful to compute the average performance of a learning algorithm over multiple
training/test sets or multiple classi�cation tasks. In particular for the multi-label setting,
one is usually interested in how well all the labels can be predicted, not only a single one.
This leads to the question of how the results of m binary tasks can be averaged to get
to a single performance value. There are two common approaches for computing such
averages { macro-averaging and micro-averaging.

Macro-averaging corresponds to the standard way of computing an average. The
performance measure (i.e. precision, recall, etc.) is computed separately for each of the
m experiments. The average is computed as the arithmetic mean of the performance
measure over all experiments. For the F1-measure this implies

Fmacro
1 =

1

l

mX
i=1

F1(hi) (2.34)

Micro-averaging does not average the resulting performance measure, but instead av-
erages the contingency tables. For each cell of the table the arithmetic mean is computed,
leading to an averaged contingency table with elements favg++ , f

avg
+� , f

avg
�+ , and f

avg
�� . Based

on this table, the performance measure is computed. For the F1-measure this implies

Fmicro
1 =

2 favg++

2 favg++ + favg�+ + favg+�
(2.35)

While computing the micro-average is straightforward also for precision and recall, the
classi�cation threshold is not �xed for the precision/recall breakeven point. To get the
micro-average of the PRBEP the following procedure is used. The classi�cation threshold
� is lowered simultaneously over all binary tasks6. At each value of � the microaveraged
precision and recall are computed based on the merged contingency table. To arrive at this
merged table, the contingency tables of all binary tasks at � are added componentwise.

2.7 Experimental Setup

To give a clear idea about the impact of the theoretical results for text classi�cation, all
arguments in this dissertation are evaluated and veri�ed in experiments. This section
motivates and de�nes the experimental setup, namely the test collections, the choice of
representation, and the evaluation criteria.

6Since cosine similarities are not comparable across classes, the method of proportional assignment

[Wiener et al., 1995] is used for the Rocchio algorithm to come up with improved con�dence values.
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2.7.1 Test Collections

The empirical evaluation is done on three test collection. They were chosen to represent
a wide spectrum of text-classi�cation tasks.

The �rst one is the Reuters-21578 dataset7 compiled by David Lewis and originally
collected by the Carnegie group from the Reuters newswire in 1987. The \ModApte" split
is used, leading to a corpus of 9,603 training documents and 3,299 test documents. Of the
135 potential topic categories only those 90 are used for which there is at least one training
and one test example. The Reuters-21578 collection is know to have a fairly restricted
vocabulary. While there are many proper nouns, the training examples contain only
27,658 distinct terms that occur at least once. The articles are authored by professional
writers according to guidelines. The classi�cation task is to assign articles to a set of
topics. For many topic categories there is a rather direct correspondence between words
and categories. For the topic category \wheat" for example, the occurrence of the word
\wheat" in a document is a very good predictor.

The second dataset is the WebKB collection8 of WWW pages made available by the
CMU text-learning group. Following the setup in [Nigam et al., 1998], only the classes
course, faculty, project, and student are used. Documents not in one of these classes
are deleted. After removing documents which just contain the relocation command for
the browser, this leaves 4,183 examples. The pages from Cornell University are used for
testing (229 examples), while all other pages are used for training (3957 examples). The
type of text is very di�erent from the Reuters collection. The documents are WWW pages
with very heterogeneous writing styles, incomplete sentences, and structural information.
After removing all HTML tagging, building a dictionary on the training examples leads
to 38,359 distinct words. Another substantial di�erence is that the classi�cation is not
by topic, but by the function of the page.

The third test collection is taken from the Ohsumed corpus9 compiled by William
Hersh. From the 50,216 documents in 1991 which have abstracts, the �rst 10,000 are used
for training and the second 10,000 are used for testing. The classi�cation task considered
here is to assign the documents to one or multiple categories of the 23 MeSH \diseases"
categories. A document belongs to a category if it is indexed with at least one indexing
term from that category. The documents are medical abstracts, strongly dominated by
special medical terms. 38,679 distinct terms occur in the training examples once or several
times. Unlike the Reuters articles, Ohsumed abstracts address a highly specialized and
trained audience. At least for a person illiterate in medicine, the connection between
words and categories is less direct than for Reuters.

2.7.2 Design Choices

The following lists the basic design decisions for the experiments in this dissertation.
While most particular choices are unlikely to have a substantial impact on the qualitative
results of the experiments, they are listed to make the experiments more understandable
and reproduceable.

� Words are chosen as the basic representational units. This is the standard approach.
However, richer representations (e.g. noun phrases) can easily be incorporated.

� Words are de�ned as non-whitespace strings enclosed by whitespace characters. All
punctuation marks count as whitespace characters. Capital letters are transformed

7Available at http://www.research.att.com/�lewis/reuters21578.html
8Available at http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data
9Available at ftp://medir.ohsu.edu/pub/ohsumed
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to lower-case.

� In the inductive setting, only those words occurring in the training data are con-
sidered as potential features. In the transductive setting, also the test documents
contribute words and their document frequency is used for computing term weights.

� All numbers are projected onto a single token.

� Feature selection (e.g. stemming, stopword removal, etc.) is not used unless noted
otherwise.

� Stemming is performed using the Porter algorithm [Porter, 1980] implemented by
B. Frakes and C. Cox.

� Stopword removal is performed according to the FreeWAIS stoplist given in the
appendix.

� To make short and long documents comparable, feature vectors are normalized to
unit length (not naive Bayes and C4.5 using the binary vector representation).

� The one-against-the-rest approach is used to handle multi-label problems.

� To facilitate comparative studies it is necessary to have a single-valued measure of
predictive performance. Any such measure makes assumptions about the relative
importance of false positives and false negatives. Without a particular application
(and associated costs) the choice is somewhat arbitrary. For the following reasons,
the precision/recall breakeven point is used as the prime evaluation measures in
this dissertation. The PRBEP provides a meaningful score that summarizes the
precision/recall curve in an intuitive way. Unlike F1, the PRBEP stands for a
precision and recall actually achievable by the classi�cation rule. The PRBEP is
already widely used as an evaluation criterion, allowing a comparison with existing
work.

� All signi�cance tests are regarding a 95% con�dence level.



Chapter 3

Support Vector Machines

This chapter gives a short introduction to support vector machines, the basic learning
method used, extended, and analyzed for text classi�cation throughout this dissertation.
Support vector machines [Cortes and Vapnik, 1995][Vapnik, 1998] were developed by
Vapnik et al. based on the Structural Risk Minimization principle [Vapnik, 1982] from
statistical learning theory. The idea of structural risk minimization is to �nd a hypothesis
h from a hypothesis space H for which one can guarantee the lowest probability of error
Err(h) for a given training sample S

(~x1; y1); : : : ; (~xn; yn) ~xi 2 <N ; yi 2 f�1;+1g (3.1)

of n examples. The following upper bound connects the true error of a hypothesis h with
the error Errtrain(h) of h on the training set and the complexity of h [Vapnik, 1998] (see
also Section 5.1.1).

Err(h) � Errtrain(h) +O

 
d ln(nd )� ln(�)

n

!
(3.2)

The bound holds with a probability of at least 1� �. d denotes the VC-dimension [Vap-
nik, 1998], which is a property of the hypothesis space H and indicates its expressiveness.
Equation (3.2) re
ects the well-known trade-o� between the complexity of the hypothesis
space and the training error. A simple hypothesis space (small VC-dimension) will prob-
ably not contain good approximating functions and will lead to a high training (and true)
error. On the other hand a too rich hypothesis space (large VC-dimension) will lead to a
small training error, but the second term in the right-hand side of (3.2) will be large. This
re
ects the fact that for a hypothesis space with high VC-dimension the hypothesis with
low training error may just happen to �t the training data without accurately predicting
new examples. This situation is commonly called \over�tting". It is crucial to pick the
hypothesis space with the \right" complexity.

In Structural Risk Minimization this is done by de�ning a nested structure of hypoth-
esis spaces Hi, so that their respective VC-dimension di increases.

H1 � H2 � H3 � ::: � Hi � ::: and 8i : di � di+1 (3.3)

This structure has to be de�ned a priori, i.e. before analyzing the training data. The goal
is to �nd the index i� for which (3.2) is minimum.

How can one build this structure of increasing VC-dimension in practice? SVMs learn
linear threshold functions of the type:

h(~x) = signf~w � ~x+ bg =
(

+1; if ~w � ~x+ b > 0
�1; else

(3.4)

29
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Each such linear threshold functions corresponds to a hyperplane in feature space. The
sign function signfg returns 1 for a positive argument and�1 for a non-positive argument.
This means that the side of the hyperplane on which an example ~x lies determines how
it is classi�ed by h(~x).

The conventional way of building a structure of increasing VC-dimension works by
restricting the number of features. Linear threshold functions with N features have a
VC-dimension of N + 1 [Vapnik, 1998]. Given a ranked list of features, linear threshold
functions using only the �rst feature have a VC-dimension of 2, those using only the �rst
two features have a VC-dimension of 3, etc. However, this strategy fails if the learning task
requires a large number of features. Furthermore, it is not clear how to de�ne a ranked
list of features a priori. Instead of restricting the number of features, support vector
machines use a re�ned structure which does not necessarily depend on the dimensionality
of the input space. Vapnik showed that margin, i.e. the distance Æ from the hyperplane to
the closest examples, can be used to upper bound the VC-dimension independent of the
number of features. The exact de�nition of margin and its use in support vector machines
is discussed in the following.

While independence of the number of features is an interesting property for text clas-
si�cation, it is only a super�cial justi�cation and does not yet guarantee good predictive
performance. Intuitively, this property does not imply that SVMs will necessarily do well
on high-dimensional learning tasks, but merely that they will not necessarily fail. A con-
nection between SVMs and the properties of text classi�cation that suÆciently implies
good generalization gives Chapter 4.

3.1 Linear Hard-Margin SVMs

For simplicity, let us assume that the training data can be separated by at least one
hyperplane h0. This means that there is a weight vector ~w0 and a threshold b0, so that all
positive training examples are on one side of the hyperplane, while all negative training
examples lie on the other side. This is equivalent to requiring

yi [~w
0 � ~xi + b0] > 0 (3.5)

for each training example (~xi; yi). In general, there can be multiple hyperplanes that
separate the training data without error. This is depicted on the left-hand side of Figure
3.1. From these separating hyperplanes the support vector machine chooses the one with
the largest margin Æ. This particular hyperplane h(~x�) is shown in the right-hand picture
of Figure 3.1. The margin Æ is the distance from the hyperplane to the closest training
examples. For each separable training set, there is only one hyperplane with maximum
margin. The examples closest to the hyperplane are called support vectors. They have a
distance of exactly Æ. In Figure 3.1 the support vectors are marked with circles.

Finding the hyperplane with maximum margin can be translated into the following
optimization problem:

Optimization Problem 1 (Hard-Margin SVM (primal))

minimize: V (~w; b) =
1

2
~w � ~w (3.6)

subject to: 8ni=1 : yi[~w � ~xi + b] � 1 (3.7)

The constraints (3.7) formalize that all training examples should lie on the correct
side of the hyperplane. Using the value of 1 on the right-hand side of the inequalities
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Figure 3.1: A binary classi�cation problem in two dimensions. Positive examples are
marked by +, negative examples by �. Left: many hyperplanes separate the training
examples without error. Right: support vector machines �nd the hyperplane h�, which
separates the positive and negative training examples with maximum margin Æ. The
examples closest to the hyperplane are called support vectors (marked with circles).

instead of 0 enforces a certain distance Æ (i.e. margin) from the hyperplane. It is easy to
verify that

Æ =
1

jj~wjj (3.8)

jj~wjj denotes the L2-norm of ~w. Therefore, minimizing ~w � ~w is equivalent to maximizing
margin. The weight vector ~w and the threshold b solving Optimization Problem 1 describe
the maximum-margin hyperplane.

How do support vector machines implement structural risk minimization? Vapnik
showed that there is a connection between the margin and the VC-dimension.

Lemma 1 ([Vapnik, 1982] VC-dimension of Margin Hyperplanes) Consider hy-
perplanes h(~x) = signf~w �~x+ bg in an N dimensional space as hypotheses. If all example
vectors xi are contained in a ball of radius R and it is required that for all examples xi

abs(~w � ~xi + b) � 1 (3.9)

then this set of hyperplanes has a VC-dimension d bounded by

d � min(

"
R2

~w2

#
; N) + 1 (3.10)

The lemma states that the VC-dimension is lower the larger the margin. Note that
the VC-dimension of maximum-margin hyperplanes does not necessarily depend on the
number of features! Instead the VC-dimension depends on the Euclidean length jj~wjj of
the weight vector ~w optimized by the support vector machine. Intuitively, this means that
the true error of a separating maximum-margin hyperplane is close to the training error
even in high-dimensional spaces, if it has a small weight vector. However, bound (3.2) does
not directly apply to support vector machines, since the VC-dimension depends on the
location of the examples [Vapnik, 1995]. The bounds in [Shawe-Taylor et al., 1996] account
for this data dependency. An overview is given in [Cristianini and Shawe-Taylor, 2000].
A di�erent justi�cation for the generalization performance of support vector machines in
terms of the expected generalization error E(Err(hSVM ) is discussed in Chapter 4.
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Numerically, Optimization Problem 1 can be diÆcult to handle. Therefore, the fol-
lowing Wolfe-dual [Fletcher, 1987] quadratic optimization problem is commonly solved in
practice [Vapnik, 1998]. It has the same solution as Optimization Problem 1.

Optimization Problem 2 (Hard-Margin SVM (dual))

minimize: W (~�) = �
nX
i=1

�i +
1

2

nX
i=1

nX
j=1

yiyj�i�j(~xi � ~xj) (3.11)

subject to:
nX
i=1

yi�i = 0 (3.12)

8i 2 [1::n] : 0 � �i (3.13)

The matrix Q with Qij = yiyj(~xi � ~xj) is commonly referred to as the Hessian. An
eÆcient algorithm for solving this type of optimization problem is developed in Chapter
8. With this algorithm it is possible to train SVMs even on large data sets containing
several ten-thousands of examples and attributes. The result of the optimization process is
a vector of coeÆcients ~�T = (�1; : : : ; �n)

T for which (3.11) is minimum. These coeÆcients
can be used to construct the hyperplane solving Optimization Problem 1.

~w �~x =
 

nX
i=1

�iyi~xi

!
� ~x =

nX
i=1

�iyi(~xi �~x) and b = ysv � ~w �~xsv (3.14)

Equation (3.14) shows that the resulting weight vector of the hyperplane is constructed as
a linear combination of the training examples. Only support vectors have a coeÆcient �i
that is non-zero. To calculate b from the solution of Optimization Problem 2, an arbitrary
support vector ~xsv with its class label ysv can be used.

A variant of the general SVM formulation is the following. Sometimes it is required
for simplicity reasons that the hyperplane passes through the origin of the coordinate
system. Such hyperplanes will be called unbiased hyperplanes in the following. If it is
necessary to emphasize the di�erence, general hyperplanes not necessarily passing through
the origin will be called biased hyperplanes. A hyperplane passing through the origin can
be enforced by using b = 0 in Optimization Problem 1. The corresponding dual is the
same as Optimization Problem 2 without the equality constraint (3.12).

3.2 Soft-Margin SVMs

One problem with the simple formulation above is that training fails when the training
examples are not linearly separable. A solution to Optimization Problems 1 and 2 does not
exist in this case. Even though most text-classi�cation problems are linearly separable,
it might still be preferable to allow some errors on the training data, as indicated by
structural risk minimization. Cortes and Vapnik suggest a solution to this problem [Cortes
and Vapnik, 1995]. It is called the soft-margin SVM. They include an upper bound on
the number of training errors in the objective function of Optimization Problem 1. Then
they minimize this upper bound and the length of the weight vector simultanously.

Optimization Problem 3 (Soft-Margin SVM (primal))

minimize: V (~w; b; ~�) =
1

2
~w � ~w +C

nX
i=1

�i (3.15)

subject to: 8ni=1 : yi[~w � ~xi + b] � 1� �i (3.16)

8ni=1 : �i > 0 (3.17)
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The �i are called slack variables. If a training example lies on the \wrong" side of the
hyperplane, the corresponding �i is greater than 1. Therefore

Pn
i=1 �i is an upper bound

on the number of training errors. The factor C in (3.15) is a parameter that allows one
to trade o� training error vs. model complexity. A small value for C will increase the
number of training errors, while a large C will lead to a behaviour similar to that of a
hard-margin SVM.

For computational reasons it is again useful to solve the Wolfe dual of Optimation
Problem 3 instead of solving Optimization Problem 3 directly. It is of the same form as
Optimization Problem 2. The only di�erence is that C upper-bounds the values of the
�i.

Optimization Problem 4 (Soft-Margin SVM (dual))

minimize: W (~�) = �
nX
i=1

�i +
1

2

nX
i=1

nX
j=1

yiyj�i�j(~xi � ~xj) (3.18)

subject to:
nX
i=1

yi�i = 0 (3.19)

8i 2 [1::n] : 0 � �i � C (3.20)

Again, all training examples with �i > 0 are called support vectors. To di�erentiate
between those with 0 < �i < C and those with �i = C, the former will be called unbounded
support vectors while the latter will be called bounded support vectors. From the solution
of Optimization Problem 4 the classi�cation rule can be computed as

~w �~x =

 
nX
i=1

�iyi~xi

!
� ~x =

nX
i=1

�iyi(~xi �~x) and b = yusv � ~w �~xusv (3.21)

like in the hard-margin case. The only additional restiction is that the support vector
(~xusv; yusv) for calculating b has to be an unbounded support vector. While it is highly
unlikely in practice that one gets a solution of Optimization Problem 4 with only bounded
support vectors, it is theoretically possible (see [Burges and Crisp, 1999] for a discussion).
In this case the solution of the SVM will be called unstable, since the hyperplane is not
uniquely determined. In particular, b can take any value in a certain interval. If there
is at least one unbounded support vector, the solution is called stable. This de�nition of
stability is used in Chapter 5.

By reformulating the training problem, it is possible to ensure that the solution of a
SVM is stable.

Optimization Problem 5 (Stablized Soft-Margin SVM (primal))

minimize: V (~w; b; ~�) =
1

2
~w � ~w +C

nX
i=1

�i (3.22)

subject to: 8ni=1 : yi[~w � ~xi + b] � 1� �i (3.23)

[~w � ~x01 + b] � 1 (3.24)

�[~w � ~x02 + b] � 1 (3.25)

8ni=1 : �i > 0 (3.26)

The ~x01 and ~x02 can be viewed as arti�cial training examples. They are orthogonal to
all training examples and also ~x01 � ~x02 = 0. Their length is jj~x01jj = jj~x02jj = �. � > 0 is
a parameter. It is easy to verify that at least one of ~x01 and ~x02 must be an unbounded
support vector. The Wolfe dual is:



34 CHAPTER 3. SUPPORT VECTOR MACHINES

x1
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Figure 3.2: The left-hand graph shows a training sets that is not linearly separable in
(x1; x2). The right-hand graph depicts the same problem after a non-linear transforma-
tion, now projected onto (x21; x2). In this new space, the training examples are linearly
separable.

Optimization Problem 6 (Stablized Soft-Margin SVM (dual))

maximize: W (~�; ~�) =
nX
i=1

�i � 1

2

nX
i=1

nX
j=1

yiyj�i�jK(~xi; ~xj)+�1+�2� 1

2
(�21+�

2
2)�

2 (3.27)

subject to: �1 � �2 +
nX
i=1

yi�i = 0 (3.28)

8i : 0 � �i � C (3.29)

0 � �1 ^ 0 � �2 (3.30)

3.3 Non-Linear SVMs

So far in this presentation SVMs were discussed only for linear classi�cation rules. Linear
classi�ers are inappropriate for many real-world problems, since they have a non-linear
structure. A remarkable property of SVMs is that they can easily be transformed into
non-linear learners [Boser et al., 1992]. In principle, the approach used is as follows. The
attribute vectors ~xi are mapped into a high-dimensional feature space X 0 using a non-
linear mapping �(~xi). The SVM then learns the maximum-margin linear classi�cation
rule in feature space X 0. Despite the fact that the classi�cation rule is linear in X 0, it is
non-linear when projected into the original input space.

The following example with two input attributes x1 and x2 illustrates this. Let us
choose

�((x1; x2)
T ) = (x21; x

2
2;
p
2x1x2;

p
2x1;

p
2x2; 1)

T (3.31)

as the non-linear mapping. Although it is not possible to linearly separate the examples
in the left part of Figure 3.2, they are separable with a linear function after mapping
them into the feature space using �(~x) (right part of Figure 3.2). One linear separator
(although not the maximum-margin separator) is the weight vector (�1; 0; 0; 0;p2; 0)T
with b = 0 as displayed in the both parts of Figure 3.2.

In general such a mapping �(~x) is ineÆcient to compute. Boser et al. [Boser et al.,
1992] have discovered a special property of SVMs that solves this problem. Both during
training and testing, it is suÆcient to be able to compute dot-products in the feature space,
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i. e. �(~xi) � �(~xj). For special mappings �(~x) such dot-products can be computed very
eÆciently using kernel functions K(~x1; ~x2). If a function K(~x1; ~x2) satis�es the condition
of Mercer's Theorem (see [Vapnik, 1995]), it is guaranteed to compute the inner product
of the vectors ~x1 and ~x2 after they have been mapped into a new \feature" space by some
non-linear mapping �:

�(~x1) � �(~x2) = K(~x1; ~x2) (3.32)

Depending on the choice of kernel function, SVMs learn polynomial classi�ers, radial basis
function (RBF) classi�ers, or two layer sigmoid neural nets.

Kpoly(~x1; ~x2) = (~x1 � ~x2 + 1)d (3.33)

Krbf (~x1; ~x2) = exp(�
(~x1 � ~x2)
2) (3.34)

Ksigmoid(~x1; ~x2) = tanh(s(~x1 � ~x2) + c) (3.35)

The kernel for the example above is Kpoly(~x1; ~x2) = (~x1 � ~x2 + 1)2. Clearly, computing
the kernel function is much more eÆcient than, for example, enumerating all polynomial
terms like in polynomial regression. To use a kernel function, one simply substitutes
every occurrence of the inner product in equations (3.18) and (3.21) with the desired
kernel function.

3.4 Asymmetric Misclassi�cation Cost

In text classi�cation, the number of negative examples is often much larger than the
number of positive examples. In this situation, consider a simple default classi�er that
always predicts \negative". As noted earlier, in terms of error rate this default classi�er
performs excellently and is diÆcult to beat. But, clearly, such a classi�er is of little use.
In practice, one would like to penalize errors on positive examples stronger than errors on
negative examples. This can be achieved using cost factors C�+ and C+� to adjust the
cost of false positives vs. false negatives. Such cost factors can be directly incorporated
into the SVM. Finding the hyperplane that minimizes empirical cost can be translated
into the following Optimization Problem [Morik et al., 1999]:

Optimization Problem 7 (Soft-Margin SVM with Asymmetric Cost (primal))

minimize: V (~w; b; ~�) =
1

2
jj~wjj2 + C�+

X
i:yi=1

�i +C+�
X

j:yj=�1
�j (3.36)

subject to: 8k : yk[~w � ~xk + b] � 1� �k (3.37)

The dual problem is equivalent to Optimization Problem 4 after replacing the upper
bounds on �i with C�+ and C+� for positive and negative examples respectively.

3.5 Other Maximum-Margin Methods

While this dissertation mainly discusses support vector machines, other learning methods
also optimize margin. For example, the success of boosting algorithms like Adaboost
[Freund and Schapire, 1996] can be explained in terms of margins as well [Schapire et al.,
1997]. Unlike SVMs, boosting does not consider the L2-norm of the weight vector, but is
connected to its L1-norm [Grove and Schuurmans, 1998].

It is straightforward to generalize Optimization Problem 3 by replacing the L2-norm
with another norm.
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Optimization Problem 8 (Generic Maximum-Margin Method)

minimize: V (~w; b; ~�) = k~wkl + C
nX
i=1

�i (3.38)

subject to: 8ni=1 : yi[~w � ~xi + b] � 1� �i (3.39)

8ni=1 : �i > 0 (3.40)

An obvious choice is l = 1 like in [Bennett and Demiriz, 1998]. L1 should give preference
to sparser weight vectors. This should be most appropriate when the learning task has a
few strong features, as previously demonstrated for the Winnow algorithm [Kivinen et al.,
1997].

This dissertation mainly discusses support vector machines. However, it is likely that,
depending on the properties of the particular text classi�cation task, other maximum-
margin methods (e.g. using a di�erent norm) can be equally or more suitable.

3.6 Further Work

Support vector machines and other maximum-margin methods like boosting are a cur-
rently very active area of research. This chapter introduces only those results providing
the basis for the work in this dissertation. Each following chapter will give additional
information and related work on their relevant aspects. In particular, chapters 4 and 5
discuss learning theory, while chapters 8 and 9 deal with algorithms for training SVMs.

A more detailed introduction to SVMs is Chris Burges's tutorial [Burges, 1998]. A
more general overview of the state-of-the-art can be found in the recent book [Cristianini
and Shawe-Taylor, 2000] on support vector machines.
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Chapter 4

A Statistical Learning Model of

Text Classi�cation

There are at least two ways to motivate why a particular learning method is suitable for
a particular learning task. Since ultimately one is interested in the performance of the
method, one way to motivate a new method is through comparative studies. Chapters
6 and 7 present such studies and show that SVMs deliver state-of-the-art classi�cation
performance. However, success on benchmarks is a brittle justi�cation for a learning
algorithm and gives only limited insight. Therefore, this dissertation takes a di�erent
approach. It introduces support vector machines for learning text classi�ers from a theo-
retical perspective.

This chapter develops a theoretical learning model of text classi�cation. For the �rst
time, it is possible to connect the statistical properties of text-classi�cation tasks with
the generalization performance of a learner | namely the SVM. Unlike conventional
approaches to learning text classi�ers, which rely primarily on empirical evidence, this
model explains why and when SVMs perform well for text classi�cation. In particular,
it addresses the following questions: Why can support vector machines handle the large
feature spaces in text classi�cation e�ectively? How is this related to the statistical
properties of text? What are suÆcient conditions for applying SVMs to text-classi�cation
problems successfully?

Answering these questions is the subject of this chapter. It presents an abstract
model of text-classi�cation tasks. This model is based on statistical properties of text-
classi�cation problems that are both observable and intuitive, combining results from
information retrieval, computational linguistics, and statistical learning theory. Using
this model, it is possible to prove what types of text-classi�cation problems are eÆciently
learnable with SVMs. In particular, the result is an upper bound connecting the ex-
pected generalization error of a support vector machine with the statistical properties of
a particular text-classi�cation task.

This chapter is structured as follows. The following section will identify the key
properties of text-classi�cation tasks. They motivate the model formally de�ned in Section
4.2. In addition to verifying the assumptions of the model against real text-classi�cation
tasks, this section proves the learnability results. Section 4.3 further validates the model
against experimental data before Section 4.4 analyzes the complexity of text-classi�cation
tasks and identi�es suÆcient conditions for goods generalization performance.

39
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4.1 Properties of Text-Classi�cation Tasks

To make useful statements about why a particular learning methods should work well
for text classi�cation, it is necessary to identify key properties of text-classi�cation tasks.
These properties should hold over a large range of text-classi�cation tasks, should be in-
tuitive and observable for a given collection of documents, and should imply good learn-
ability using an appropriate measure for success. The following properties are meant to
motivate the model that is developed in Section 4.2.2. Since they mainly serve as the
motivation, their description and veri�cation is kept on an intuitive level. Their formal-
ization and stringent veri�cation is part of building and validating the model in sections
4.2 and 4.3.

4.1.1 High-Dimensional Feature Space

Independent of the particular choice of terms, text-classi�cation problems involve high-
dimensional feature spaces. If each word occurring in the training documents is used as
a feature, text-classi�cation problems with a few thousand training examples can lead
to 10,000 and more dimensions. Consider the three document collections described in
Section 2.7.1. For the Reuters data, 27,658 distinct words occur within the 9,603 training
documents at least once. Similarly, the 3,957 WebKB documents lead to 38,359 features
and the 10,000 Ohsumed documents contain 38,679 distinct words. The dimensionality
can be reduced using stopword removal and stemming. Nevertheless, the resulting feature
set will still have a size of the same order of magnitude.

These feature-set sizes are not exceptional artifacts of the particular test collections
considered here. Independent of the type of text, there is a stable connection between
the size of a document and the number of distinct words that occur in it. It is commonly
called Heaps's law [Heaps, 1978]. It states that the number of distinct words V is related
to the total number of words in the documents s by

V = k s�; (4.1)

where k and � depend on the particular text and s is suÆciently large. Typically, k is
between 10 and 100 [Baeza-Yates and Ribeiro-Neto, 1999]. Common values for � are
between 0.4 and 0.6 [Ara�ujo et al., 1997, Baeza-Yates and Navarro, 1997]. Treating a
collection of documents as its concatenation into one large body of text makes it possible
to analyze the feature-set size for text classi�cation. For k = 15 and � = 0:5, it is easy to
calculate that the feature-set size for a collection of 10,000 documents having an average
length of 50 words is approximately 35,000. This accurately re
ects the experimental
�ndings.

4.1.2 Heterogenous Use of Terms

One way to avoid these high-dimensional input spaces is to assume that only a few features
are relevant and necessary for the task. Feature selection tries to exclude all irrelevant
features. However, in text categorization this can easily lead to a loss of information, since
there are often many relevant features. Consider the 4 documents shown in Figure 4.1. All
documents are Reuters articles from the category \corporate acquisitions". Nevertheless,
the overlap between their document vectors is very small. In this extreme case, the
documents do not share any content words. The only words that occur in at least two
documents are \it", \the", \and", \of", \for", \an", \a", \not", \that", and \in". All these
words are stopwords and it is unlikely that they help discriminate between documents
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MODULAIRE BUYS BOISE HOMES
PROPERTY

Modulaire Industries said it acquired
the design library and manufacturing
rights of privately-owned Boise Homes
for an undisclosed amount of cash.
Boise Homes sold commercial and res-
idential prefabricated structures, Mod-
ulaire said.

USX, CONSOLIDATED NATURAL
END TALKS

USX Corp's Texas Oil and Gas Corp
subsidiary and Consolidated Natural
Gas Co have mutually agreed not to
pursue further their talks on Consoli-
dated's possible purchase of Apollo Gas
Co from Texas Oil. No details were
given.

JUSTICE ASKS U.S. DISMISSAL OF
TWA FILING

The Justice Department told the
Transportation Department it sup-
ported a request by USAir Group that
the DOT dismiss an application by
Trans World Airlines Inc for approval
to take control of USAir. \Our ratio-
nale is that we reviewed the application
for control �led by TWA with the DOT
and ascertained that it did not con-
tain suÆcient information upon which
to base a competitive review," James
Weiss, an oÆcial in Justice's Antitrust
Division, told Reuters.

E.D. And F. MAN TO BUY INTO
HONG KONG FIRM

The U.K. Based commodity house E.D.
And F. Man Ltd and Singapore's Yeo
Hiap Seng Ltd jointly announced that
Man will buy a substantial stake in
Yeo's 71.1 pct held unit, Yeo Hiap Seng
Enterprises Ltd. Man will develop the
locally listed soft drinks manufacturer
into a securities and commodities bro-
kerage arm and will rename the �rm
Man Paci�c (Holdings) Ltd.

Figure 4.1: Four documents from the Reuters \corporate acquisitions" category that do
not share any content words.

about corporate acquisitions and other documents. This implies that it is necessary to
consider at least four other words as features to at least somewhat describe the content
of each document.

The sample of documents in Figure 4.1 was selected to be rather extreme. However,
even a random sample of documents is unlikely to contain a single feature discriminating
positive from negative examples. There is generally not a small set of words or even a
single word that suÆciently describes all documents with respect to the classi�cation task.
However, a weaker relationship holds that can be described by what Wittgenstein calls
\family resemblance" [Wittgenstein, 1967, aphorism 67]. Imagine three brothers Al, Jack,
and Elmer. Al and Jack have the same eyebrows and the same hair, while Elmer and Bob
have the same ears, and Al and Bob have the same smile and nose. There is no common
feature among them yet they all resemble each other. Similarly, related documents share
keywords, but there is no term common to all related documents. Documents from the
same category can consist of di�erent words, since natural language allows the expression
of related content with di�erent formulations. In the most extreme case, two words can
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Figure 4.2: Learning without using the \best" features.

be synonyms { di�erent words with the same or similar meanings { that can substitute for
one another (e.g. \buy", \acquire", \purchase" ...). It is therefore necessary to consider a
fairly large set of words. Each word indicates to some extent which category a document
belongs to. In the example from Figure 4.1 such words are for example \acquired",
\purchase", \antitrust", \buy", and \stake", but also \undisclosed", \amount", \cash",
\justice", \department", and \rename". This is a motivation for considering a fairly large
set of features to suÆciently describe the content of all documents.

4.1.3 High Level of Redundancy

While there are generally many di�erent features relevant to the classi�cation task, often
several such cues occur in one document. These cues are partly redundant. Figure 4.2
shows the results of an experiment on the Reuters \corporate acquisitions" category. All
features (after stemming and stopword removal) are ranked according to their (binary)
empirical mutual information with the class label (cf. Section 2.3.1). The higher the
mutual information of a word, the better the simple classi�er that classi�es according
to whether that particular word occurs in a document perform. Then a naive Bayes
classi�er is trained using only those features ranked 1-200, 201-500, 501-1000, 1001-2000,
2001-4000, 4001-9947. The results in Figure 4.2 show that even features ranked lowest
still contain considerable information and are somewhat relevant. A classi�er using only
those \worst" features has a performance much better than random.

This behavior can be explained as follows. Most documents contain more than one
word indicating its class. Even after removing the best features, the remaining words
still describe the content of many documents to some extent. This means that document
vectors are redundant with respect to the classi�cation task. This is also supported by the
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success of distributional word clustering [Baker and McCallum, 1998]. Many words have
a similar distribution with respect to the learning task and can be treated like synonyms.

4.1.4 Sparse Document Vectors

While there is a large space of potential features, each document contains only a small
number of distinct words. The Reuters documents are on average 152 words long and
contain 74 distinct words. Similarly, WebKB documents are on average 277 words long
and contain 130 distinct words, and Ohsumed articles are 209 words long and contain 100
distinct words. This implies that document vectors are very sparse. Only a few words
occur with non-zero frequency.

4.1.5 Frequency Distribution of Words and Zipf's Law

The occurrence frequencies of words in natural-language text behave in a very stable way.
A �rst approximation modeling the distribution of term frequencies is Zipf's law [Zipf,
1949]. Zipf's law states that if one ranks words by their term frequency, the r-th most
frequent words occurs 1

r times the term frequency of the most frequent words. This implies
that there is a small number of words that occurs very frequently, while most words occur
very infrequently. For example, with a vocabulary of 10,000 words, the 100 most frequent
words account for approximately 50 percent of all occurrences. While Zipf's law does
capture the basic behavior of term frequencies based on their rank, experimental data
[Ara�ujo et al., 1997] suggests that Mandelbrot distributions [Mandelbrot, 1959, Miller
et al., 1958]

TFi =
c

(k + r)�
(4.2)

with parameters c, k, and � provide a better �t. This kind of connection between fre-
quency rank r and term frequency TFr will be called (generalized) Zipf's law in what
follows. Figure 4.3 plots term frequency vs. frequency rank for the Reuters, the WebKB,
and the Ohsumed collection. The dashed lines are approximations TFr = 800000

(r+5)1:3 for

Reuters, TFr =
470000

(r+5)1:25 for WebKB, and TFr =
1100000
(r+5)1:3 for the Ohsumed collection. The

approximations model the true behavior of the word frequencies accurately. Note that
besides the constant factor re
ecting the size of the document collection, the approxi-
mations are very similar across all three collections. Furthermore, if one assumes that
the document collection is homogeneous, it is easy to verify that every suÆciently large
subset of the collection will also follow the same generalized Zipf's law with the constant
factor scaled according to the size of the subset. So it is reasonable to assume that the
frequency distribution of words in each individual document also follows the respective
Zipf's law approximately.

4.1.6 Linear Separability and Large Margin

All Ohsumed categories, all WebKB tasks, and most Reuters categories are linearly sepa-
rable. This means that there is a hyperplane so that all positive examples are on one side
of the hyperplane, while all negative examples are on the other. Inseparability on some
Reuters categories is often due to dubious documents (consisting only of a headline) or
obvious misclassi�cations of the human indexers.

Even more important is the observation that separability is possible with a large
margin. Table 4.1 shows the size of the normalized inverse margin R2

Æ2
for the ten most

frequent Reuters categories, the WebKB categories, and the �ve most frequent Ohsumed
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Figure 4.3: Distribution of term frequencies in the Reuters, WebKB, and Ohsumed col-
lection. The dashed line is an approximation of the observed curve using a Mandelbrot
distribution.
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Reuters R2

Æ2

nP
i=1

�i

earn 1143 0

acq 1848 0

money-fx 1489 27

grain 585 0

crude 810 4

trade 869 9

interest 2082 33

ship 458 0

wheat 405 2

corn 378 0

WebKB R2

Æ2

nP
i=1

�i

course 519 0

faculty 1636 0

project 741 0

student 1588 0

Ohsumed R2

Æ2

nP
i=1

�i

Pathology 11614 0

Cardiovascular 4387 0

Neoplasms 2868 0

Nervous System 3303 0

Immunologic 2556 0

Table 4.1: Normalized inverse margin and training loss for the Reuters, the WebKB, and
the Ohsumed data for C = 50. As determined by the model-selection experiments in
Chapter 6, TFIDF-weighting is used for Reuters and Ohsumed, while the representation
for WebKB is binary. No stemming is performed and stopword removal is used only on
the Ohsumed data.

categories. R is the radius of the ball containing the training examples. Since all document
vectors are normalized to unit length, R is bounded by 1. Note that a small normalized
inverse margin R2

Æ2 corresponds to a large margin Æ. The tables also include the training
loss

Pn
i=1 �i. For those categories that are not separable, the training loss is greater than

zero. Nevertheless, the training loss is small, indicating that only a few documents hinder
linear separation. The training loss is an upper bound for the number of documents that
need to be removed so that the data is separable.

The following section will show that a large expected margin and a small expected
training loss are suÆcient conditions for learnability. These two quantities will be the
proxies for connecting the other properties of text-classi�cation tasks with the general-
ization performance of the support vector machine.

4.2 A Discriminative Model of Text Classi�cation

The goal of this section is a statistical learning model of text-classi�cation tasks. Using a
two step approach, it provides the relationship between the properties of text-classi�cation
tasks identi�ed above and the expected error rate of an SVM.

The �rst step shows that large margin combined with low training error is a suÆcient
condition for good generalization accuracy. While large margin and low training error
can be observed over a variety of di�erent text-classi�cation tasks, this property is not
observable or accessible before training is performed. Furthermore, the large margin
property is less intuitive than the other properties identi�ed in the previous section.
Therefore, the second step shows how the other properties of text-classi�cation tasks {
namely sparse document vectors, Zipf's law, and redundancy in a large relevant feature
space { necessarily lead to large-margin separation. The overall structure of the argument
is illustrated in Figure 4.4.
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Figure 4.4: Structure of the argument.

4.2.1 Step 1: Bounding the Expected Error Based on the Margin

This section shows that large margin combined with low training error leads to high
generalization accuracy. It uses the bound on the number of leave-one-out errors from
Chapter 5. This bound can not only be used to design eÆcient estimators, but also leads
to a bound on the expected error.

Vapnik has already presented two bounds on the expected error [Vapnik, 1998, page
414]. His �rst bound connects the expected error with the expected margin. But this
bound is restricted in two ways: it applies only to unbiased hyperplanes (i. e. hyperplanes
passing through the origin), and it assumes that the training data is always perfectly
separable. Both restrictions are removed by the bound below. It applies to all stable
soft-margin SVMs. Vapnik's second bound connects the expected error with the expected
number of support vectors. While that bound applies to biased optimal hyperplanes, it
is less tight than the bound below.

Theorem 1 (Bound on Expected Error of Soft-Margin SVMs) The expected er-
ror rate E(Errn(hSVM )) of a soft-margin SVM based on n training examples with c �
K(~xi; ~xj) � c+R2 for some constant c, is bounded by

C � 1

� R2
: E(Errn(hSVM )) �

� E
�
R2

Æ2

�
+ C � R2E

�
n+1P
i=1

�i

�
n+ 1

(4.3)

C <
1

� R2
: E(Errn(hSVM )) �

� E
�
R2

Æ2

�
+ � (CR2 + 1)E

�
n+1P
i=1

�i

�
n+ 1

(4.4)

For unbiased hyperplanes � equals 1, and for stable hyperplanes � equals 2. The expecta-
tions on the right are over training sets of size n+ 1.

Proof Lemma 4 establishes a bound on the leave-one-out error of soft-margin SVMs.

Errn+1
loo (S) � 1

n+ 1
jfi : (� �iR2 + �i) � 1gj (4.5)

Depending on the value of C it is possible to relate this bound to a sum of the soft margin
and the training loss.

Case C � 1
� R2 : Since �i can only be non-zero if the corresponding �i = C, the upper

bound reduces to

Errn+1
loo (S) � 1

n+ 1
jfi : (� �iR2) � 1gj (4.6)

� 1

n+ 1
� R2

n+1X
i=1

�i (4.7)
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At the solution of the soft-margin optimization problem, the value of the primal objective
(3.15) and the dual objective (3.18) are equal.

1

2
~w � ~w + C

n+1X
i=1

�i =
n+1X
i=1

�i � 1

2
~w � ~w (4.8)

Rearranging the previous equation and using ~w � ~w = 1
Æ2 shows that the leave-out-out error

is bounded by

Errn+1
loo (S) � 1

n+ 1

"
�
R2

Æ2
+ C � R2

n+1X
i=1

�i

#
(4.9)

The application of Theorem 5 about the bias of the leave-one-out estimate completes the
proof for this case.

Case C < 1
� R2 : Similarly, there is also a bound on the leave-one-out error in case

C < 1
� R2 , although it is looser.

Errn+1
loo (S) � 1

n+ 1
jfi : (� �iR2 + �i) � 1gj (4.10)

� 1

n+ 1

"
� R2

n+1X
i=1

�i +
n+1X
i=1

�i

#
(4.11)

Using again the equality of the primal and the dual objective at the solution, it is easy to
see that

~w � ~w + (C +
1

�R2
)
n+1X
i=1

�i =
n+1X
i=1

�i +
1

�R2

n+1X
i=1

�i (4.12)

Multiplying with � R2, we can upper bound the leave-one-out error with

Errn+1
loo (S) � 1

n+ 1

"
�
R2

Æ2
+ � (CR2 + 1)

n+1X
i=1

�i

#
(4.13)

Again, the application of Theorem 5 completes the proof.

This bound is the �rst step towards learnability results for text classi�cation with
SVMs. It shows that the key quantities are the margin Æ, the length of the document
vectors R, and the training loss �.

4.2.2 Step 2: TCat-Concepts as a Model of Text-Classi�cation Tasks

Unfortunately, it is not possible to simply look at a new text-classi�cation task and
immediately have a good idea of whether it has a large margin. The margin property is
observable only after training data becomes available and requires training the SVM. To
overcome this problem, this second step connects the large-margin property with more
intuitive and more observable properties of text-classi�cation tasks. It will show how
the properties identi�ed in Section 4.1 necessarily lead to a large margin. This explains
why and when SVMs give good performance on text-classi�cation task despite the high-
dimensional feature space.
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Figure 4.5: A simple example of a TCat-concept.

4.2.2.1 Homogeneous TCat-Concepts

Figure 4.5 depicts a stereotypical text classi�cation task that I will use to motivate the
model developed in the following. More sophisticated versions of this kind of concept will
later be shown to model real text-classi�cation tasks. Figure 4.5 illustrates the \word-
frequency histogram" of a binary classi�cation problem with the two classes POS and
NEG. Documents from the two classes di�er by the frequency with which certain words
occur in them.

� Independently of whether a document is from the positive or the negative class,
each document contains 20 stopwords from a set of 100 such words.

� There are 1,000 medium-frequency words. From a subset of 600 such words, again
both positive and negative documents contain 5 occurrences. But there are also two
groups of 200 words each that occur primarily in positive or negative documents,
respectively. In particular, from one group there are 4 in each positive document
and only 1 in each negative document. Respectively, from the other group there are
4 occurrences in each negative document while there is only one in each positive
document.

� Similarly, for the set of 10,000 low-frequency words, there is a subset of 4,000 words
of which there are 10 occurences in both positive and negative documents. But
there are two sets of 3,000 words each that occur primarily in positive or negative
documents with a frequency of 9 versus 1.
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In how far does this example resemble the properties of text-classi�cation tasks identi�ed
in Section 4.1?

High-Dimensional Input Space: There are 11,100 features, which is on the same order
of magnitude as real text-classi�cation tasks.

Sparse Document Vectors: Each document is only 50 words long, which means there
are at least 11,050 zero entries in each document vector.

High Level of Redundancy: In each document there are 4 medium-frequency words
and 9 low-frequency words that indicate the class of the document. Considering the
document length of 50 words, this is a fairly high level of redundancy.

Heterogenous Use of Terms: For both positive and negative documents there are a
group of 200 medium-frequency words and a group of 3,000 low-frequency words.
From each group there can be an arbitrary subset of 4 for the medium-frequency
words and 9 for the low-frequency words in each document. Considering only the
medium-frequency words, this implies that there can be 50 documents in the same
class that do not share a single medium-frequency term from this group. This
mimics the property of text classi�cation tasks identi�ed in Section 4.1.2.

Zipf's Law: There is a small number of words (100 stopwords) that occur very frequently,
a set of 1,000 words of medium frequency, and a large set of 10,000 low-frequency
words. This does resemble Zipf's law.

Justifying the validity of this type of target concept as a model of text-classi�cation tasks
in more detail is subject of the next section.

The key observation for the example in Figure 4.5 is that it is linearly separable with
a lower-bounded margin. Let documents be represented by term-frequency vectors and
de�ne a hyperplane classi�er

h(~x) = ~w � ~x+ b =
11100X
i=1

wixi + b (4.14)

with b = 0 and

wi =

8>>>>><
>>>>>:

+0.23 for the 200 medium-frequency words indicating POS
�0.23 for the 200 medium-frequency words indicating NEG
+0.04 for the 3000 low-frequency words indicating POS
�0.04 for the 3000 low-frequency words indicating NEG
0 for all other words

(4.15)

It is easy to verify that the hyperplane de�ned this way has a margin Æ of at least
p
1=30:15

for the example in Figure 4.5. This example gives a �rst hint towards how the bound from
Theorem 1 leads to learnability results for text-classi�cation with SVMs. Before we can
analyze this in detail, we need to abstract from this particular example to a parameterized
model that can describe text-classi�cation tasks more generally.

De�nition 8 (Homogenous TCat-Concepts) The TCat-concept

TCat([p1 : n1 : f1]; :::; [ps : ns : fs]) (4.16)

describes a binary classi�cation task with s disjoint sets of features. The i-th set includes
fi features. Each positive example contains pi occurrences of features from the respective
set, and each negative example contains ni occurrences. The same feature can occur
multiple times in one document.
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high frequency medium frequency low frequency
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52 words

aaai academy accesses accurate
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alberta album alumni amanda
america amherst annual
...
victoria virginia visiting vis-
itors visualization vita vitae
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341 words
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...
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...
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24276 words

high frequency medium frequency low frequency

Figure 4.6: Indicative words for the WebKB category \course" partitioned by occurrence
frequency.

While this de�nition does not include noise (e.g. on the number of features from each
set), Section 4.5 shows how this assumption can be relaxed in a straightforward way.
Applying this de�nition to the example in Figure 4.5, it is easy to verify that the example
can be described as a

TCat( [20 : 20 : 100]; # high frequency
[4 : 1 : 200]; [1 : 4 : 200]; [5 : 5 : 600]; # medium frequency
[9 : 1 : 3000]; [1 : 9 : 3000]; [10 : 10 : 4000] # low frequency

)

(4.17)

concept. While this is an arti�cial example, is it possible to model real text-classi�cation
tasks as TCat-concepts?

4.2.2.2 Experimental Validation

This section analyzes text-classi�cation tasks from the Reuters, the WebKB, and the
Ohsumed collection (see Section 2.7.1). It shows that they can be modeled as TCat-
concepts.

Let us start with the category \course" from the WebKB collection. First, we need
to partition the feature space into disjoint sets of positive indicators, negative indicators,
and irrelevant features. Using the simple strategy of selecting features by their odds ratio,
there are 98 high-frequency words that indicate positive documents (odds ratio greater
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high frequency medium frequency low frequency
98 pos. 52 neg. 431 pos. 341 neg. 5,045 pos. 24,276 neg. 8116 rest

pos. doc. 27.7% 1.5% 5.9% 0.3% 3.2% 0.2% 61.2%

neg. doc. 10.4% 7.7% 0.7% 4.4% 0.2% 7.7% 68.9%

Table 4.2: Composition of an \average" positive and an \average" negative document
with respect to the WebKB category \course". The numbers give the percentage of
occurrences that are due to words from the groups identi�ed in Figure 4.6.

than 2) and 52 high-frequency words indicating negative documents (odds ratio less than
0.5). An excerpt of these words is given in Figure 4.6. Similarly, there are 431 (341)
medium-frequency words that indicate positive (negative) documents with an odds ratio
greater than 5 (less than 0.2). In the low-frequency spectrum there are 5,045 positive
indicators (odds ratio greater than 10) and 24,276 negative indicators (odds ratio less
than 0.1). All other words in the vocabulary are assumed to carry no information.

To abstract from the details of particular documents, it is useful to de�ne what a
typical document for this task looks like. In some sense, an \average" document captures
what's typical. An average WebKB document is 277 words long. For positive examples
of the category "course", on average 27.7% of the 277 occurrences come from the set
of 98 high-frequency positive indicators while these words account for only 10.4% of the
occurrences in an average negative document. The relative occurrence frequencies for
the other word groups are given in Table 4.2. Applying these percentages to the average
document length, this table can be directly translated into the following TCat-concept.

TCatcourse( [77 : 29 : 98]; [4 : 21 : 52]; # high frequency
[16 : 2 : 431]; [1 : 12 : 341]; # medium frequency
[9 : 1 : 5045]; [1 : 21 : 24276]; # low frequency
[169 : 191 : 8116] # rest

)

(4.18)

This shows that the text-classi�cation task connected with the WebKB category \course"
can be modeled as a TCat-concept, if one assumes that documents are of homogeneous
length and composition. Section 4.5 will show how this assumption of homogeneity can
be relaxed.

Similar TCat-concepts can also be found for other tasks. For the Reuters category
\earn" the same procedure leads to the TCat-concept

TCatearn( [33 : 2 : 65]; [32 : 65 : 152]; # high frequency
[2 : 1 : 171]; [3 : 21 : 974]; # medium frequency
[3 : 1 : 3455]; [1 : 10 : 17020]; # low frequency
[78 : 52 : 5821] # rest

)

(4.19)

as an average case model. The model for the Ohsumed category \pathology" is

TCatpathology( [2 : 1 : 10]; [1 : 4 : 22]; # high frequency
[2 : 1 : 92]; [1 : 2 : 94]; # medium frequency
[5 : 1 : 4080]; [1 : 10 : 20922]; # low frequency
[197 : 190 : 13459] # rest

):

(4.20)

For these formal models it is now possible to prove learnability properties.
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4.2.2.3 Learnability

This section provides the connection between the properties of TCat-concepts and the
bound for the generalization performance of a support vector machine. The �rst lemma
shows that homogenous TCat-concepts are generally separable with a certain margin.
Using the fact that term frequencies obey Zipf's law, a second lemma shows that the
Euclidian length of document vectors is small for text-classi�cation tasks. These two
results lead to the main learnability result for TCat-concepts.

Lemma 2 (Lower Bound on the Margin of Noise-Free TCat-Concepts)
For TCat([p1 : n1 : f1]; :::; [ps : ns : fs])-concepts, there is always a hyperplane passing
through the origin that has a margin Æ bounded by

Æ2 � ac� b2

a+ 2b+ c
with

a =
sP

i=1

p2
i

fi

b =
sP

i=1

pini
fi

c =
sP

i=1

n2
i

fi

(4.21)

Proof De�ne ~pT = (p1; : : : ; ps)
T and ~nT = (n1; : : : ; ns)

T , as well as the diagonal matrix
F with f1; : : : ; fs on the diagonal.

The margin of the maximum-margin hyperplane that separates a given training sample
(~x1; y1); : : : ; (~xn; yn) and passes through the origin can be derived from the solution of
following optimization problem.

W (~w) = min
1

2
~wT ~w (4.22)

s:t: y1[~x
T
1 ~w] � 1

... (4.23)

yn[~x
T
n ~w] � 1

The hyperplane corresponding to the solution vector ~w� has a margin Æ = 1p
2W (~w�)

. By

adding constraints to this optimization problem, it is possible to simplify its solution and
get a lower bound on the margin. Let us add the additional constraint that within each
group of fi features the weights are required to be identical. Then ~wT ~w = ~vTF~v for a
vector ~v of dimensionality s. The constraints (4.23) can also be simpli�ed. By de�nition,
each example contains a certain number of features from each group. This means that all
constraints for positive examples are equivalent to ~pT~v � 1 and, respectively, ~nT~v � �1
for the negative examples. This leads to the following simpli�ed optimization problem.

W 0(~v) = min
1

2
~vTF~v (4.24)

s:t: ~pT~v � 1 (4.25)

~nT~v � �1 (4.26)

Let ~v� be the solution. Since W 0(~v�) � W (~w�), Æ � 1p
2W 0(~v�)

is a lower bound for the

margin. It remains to �nd an upper bound for W 0(~v�) that can be computed in closed form.
Introducing Lagrange multipliers, the solution W 0(~v�) equals the value L(~v; �+; ��)� of

L(~v; �+; ��) =
1

2
~vTF~v � �+(~p

T~v � 1) + ��(~nT~v + 1) (4.27)
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at its saddle-point. �+ � 0 and �� � 0 are the Lagrange multipliers for the two constraints
(4.25) and (4.26). Using the fact that

dL(~v; �+; ��)
d~v

= 0 (4.28)

at the saddle point one gets a closed form solution for ~v.

~v = F�1 [�+~p� ��~n] (4.29)

For ease of notation one can equivalently write

~v = F�1XY ~� (4.30)

with X = (~p; ~n), Y = diag(1;�1), and ~�T = (�+; ��) appropriately de�ned. Substituting
into the Lagrangian results in

L(~�) = 1T ~�� 1

2
~�TY XTF�1XY ~� (4.31)

To �nd the saddle points one has to maximize this function over ~�T = (�+; ��)T subject
to �+ � 0 and �� � 0. Since only a lower bound on the margin is needed, it is possible
to drop the constraints �+ � 0 and �� � 0. Removing the constraints can only increase
the objective function at the solution. So the unconstrained maximum L0(~�)� is greater
or equal to L(~�)�. Setting the derivative of (4.31) to 0

dL0(~�)
d~�

= 0 , ~� = (Y XTF�1XY )�11 (4.32)

and substituting into (4.31) yields the unconstrained maximum:

L0(~v; ~�)� =
1

2
1T (Y XTF�1XY )�11 (4.33)

The special form of (Y XTF�1XY ) makes it possible to compute its inverse in closed
form.

(Y XTF�1XY )�1 =

 
~pTF�1~p �~pTF�1~n
�~nTF�1~p ~nTF�1~n

!�1
(4.34)

=

 
a �b
�b c

!�1
(4.35)

=
1

ac� b2

 
a b
b c

!
(4.36)

Substituting into (4.33) completes the proof.

Separability implies that the training loss is zero. So we only still need to bound the
maximum Euclidian length R of document vectors before it is possible to apply Theorem
1. Clearly, the document vector of a document with l words cannot have a Euclidian
length greater than l. Nevertheless, this bound is very loose for real document vectors.
To bound the quantity R more tighly it is possible to make use of Zipf's law.

Assume that the term frequencies in every document follow the generalized Zipf's law

TFr =
c

(r + k)�
(4.37)
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This assumption about Zipf's law does not imply that a particular word occurs with a
certain frequency in every document. It is much weaker; it merely implies that the r-th
most frequent word occurs with a particular frequency. This r-th most frequent word can
be di�erent in di�erent documents, in particular depending on the class the document
comes from. The following lemma connects the length of the document vectors to Zipf's
law.

Lemma 3 (Euclidian Length of Document Vectors) If the ranked term frequencies
TFr in a document with l terms have the form of the generalized Zipf's law

TFr =
c

(r + k)�
(4.38)

based on their frequency rank r, then the squared Euclidian length of the document vector
~x of term frequencies is bounded by

jj~xjj �
vuut dX

r=1

�
c

(r + k)�

�2
with d such that

dX
r=1

c

(r + k)�
= l (4.39)

Proof From the connection between the frequency rank of a term and its absolute fre-
quency it follows that the r-th most frequent term occurs

TFr =
c

(r + k)�
(4.40)

times. The document vector ~x has d non-zero entries which are the values TF1; :::; TFd.
Therefore, the Euclidian length of the document vector ~x is

~xT~x =
dX

r=1

�
c

(r + k)�

�2
(4.41)

The fact that the term frequencies follow some form of Zipf's law has a strong impact
on the learnability of text-classi�cation tasks. Zipf's law implies that most terms do not
repeat often and that the number of distinct terms d is high. If Zipf's law did not hold,
a single word could repeat l times, leading to a document vector with Euclidian length l.
Instead, Zipf's law leads to comparably short document vectors and implies a small value
of R2 in the bound on the expected generalization performance.

Combining Lemma 2 and Lemma 3 with Theorem 1 leads to the following main result.

Theorem 2 (Learnability of TCat-Concepts) For TCat([p1 : n1 : f1]; :::; [ps : ns :
fs])-concepts and documents with l terms distributed according to the generalized Zipf's
law TFr =

c
(r+k)�

, the expected generalization error of an (unbiased) SVM after training

on n examples is bounded by

E(Errn(hSVM )) � �
R2

n+ 1

a+ 2b+ c

ac� b2
with

a =
sP
i=1

p2i
fi

b =
sP
i=1

pini
fi

c =
sP

i=1

n2i
fi

R2 =
dP

r=1

�
c

(r+k)�

�2
(4.42)

unless 8si=1 : pi = ni. d is chosen so that
dP

r=1

c
(r+k)�

= l. For unbiased SVMs � equals 1,

and for biased SVMs � equals 2.
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Proof Using the fact that TCat-concepts are separable (and therefore stable), if at least
for one i the value of pi is di�erent from ni, the result from Theorem 1 reduces to

E(Errn(hSVM )) � 1

n+ 1
� E

 
R2

Æ2

!
(4.43)

since all �i are zero for a suÆciently large value of C. Lemma 2 gives a lower bound for
Æ2 which can be used to bound the expectation

E

 
R2

Æ2

!
� �

a+ 2b+ c

ac� b2
E
�
R2
�

(4.44)

It remains for us to give an upper bound for E
�
R2
�
. R2 is the maximum Euclidian length

of any feature vector in the training data. Since the term frequencies in each example
follow the generalized Zipf's law TFr =

c
(r+k)�

, it is possible to use Lemma 3 to bound R2

and therefore E
�
R2
�
.

4.3 Comparing the Theoretical Model with Experimental

Results

The previous sections formally prove that a large expected margin with low training
error leads to a low expected prediction error. Furthermore, they prove how margin
is related to the properties of TCat-concepts, and experimentally verify that real text-
classi�cation tasks can be modeled with TCat-concepts. This section veri�es not only that
the individual steps are well justi�ed, but also that their conjunction produces meaningful
results. To show this, this section compares the generalization performance as predicted
by the model with the generalization performance found in experiments.

In Section 4.2.2.2 a TCat-model for the WebKB category \course" was estimated to
be

TCatcourse( [77 : 29 : 98]; [4 : 21 : 52]; # high frequency
[16 : 2 : 431]; [1 : 12 : 341]; # medium frequency
[9 : 1 : 5045]; [1 : 21 : 24276]; # low frequency
[169 : 191 : 8116] # rest

):

(4.45)

An average document in the WebKB collection is 277 words long and contains 130 distinct
terms. Making the assumption that documents are suÆciently homogeneous, the gener-
alized Zipf's law estimated for the full WebKB collection in Section 4.1.5 also applies
to individual documents after rescaling the multiplicative constant appropriately. The
resulting bound for R2 is

130X
i=1

TF 2
i = 1899:7 � R2 (4.46)

Substituting the values into the bound from Theorem 2 leads to the following bound on
the expected error.

E(Errn(hSVM )) � 0:2331 � 1899:7
n+ 1

� 443

n+ 1
(4.47)



56 CHAPTER 4. STATISTICAL LEARNING MODEL OF TEXT CLASSIFICATION

model experiment
E(Errn(hSVM )) Errntest(hSVM ) PRBEP

WebKB \course" 11.2% 4.4% 92.4

Reuters \earn" 1.5% 1.3% 98.1

Ohsumed \pathology" 94.5% 23.1% 49.0

Table 4.3: Comparing the expected error predicted by the model with the error rate and
the precision/recall breakeven point on the test set for the WebKB category \course",
the Reuters category \earn", and the Ohsumed category \pathology" with TF weighting
and C = 1000. No stopword removal and no stemming are used.

n denotes the number of training examples. Consequently, after training on 3957 examples
the model predicts an expected generalization error of less than 11.2%.

An analog procedure for the Reuters category \earn" leads to the bound

E(Errn(hSVM )) � 0:1802 � 762:9
n+ 1

� 138

n+ 1
(4.48)

so that the expected generalization error after 9603 training examples is less than 1.5%.
Similarly, the bound for the Ohsumed category \pathology" is

E(Errn(hSVM )) � 7:4123 � 1275:8
n+ 1

� 9457

n+ 1
; (4.49)

leading to an expected generalization error of less than 94.5% after 10,000 training exam-
ples.

Table 4.3 compares the expected generalization error predicted by the model with
the generalization performance observed in experiments. While it is unreasonable to
expect that the model precisely predicts the exact performance observed on the test set,
Table 4.3 shows that the model captures which classi�cation tasks are more diÆcult than
others. In particular, it does correctly predict that \earn" is the easiest task, \course" is
the second easiest task, and that \pathology" is the most diÆcult one. This shows that
TCat-concepts can suÆciently formalize the key properties of text-classi�cation tasks that
are responsible for learnability with support vector machines.

4.4 Sensitivity Analysis: DiÆcult and Easy Learning Tasks

The previous section revealed that the bound on the expected generalization error can be
large for some TCat-concepts while it is small for others. The following shows that the
occurrence frequency, the level of redundancy, and the discriminatory power of term sets
are primary in
uence factors.

4.4.1 In
uence of Occurrence Frequency

The following TCat-concept has all discriminative features in the high-frequency range,
while the medium and low-frequency words do not help distinguish between classes.

TCathf( [16 : 4 : 10]; [4 : 16 : 10]; [20 : 20 : 30]; # high frequency
[30 : 30 : 2000]; # medium frequency
[30 : 30 : 30000] # low frequency

)

(4.50)
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Errntest(hSVM ) PRBEP
tf t�df tf t�df

WebKB \course" 4.4% 7.5% 92.4 84.1

Reuters \earn" 1.3% 1.3% 98.1 98.1

Ohsumed \pathology" 23.1% 21.1% 49.0 52.0

Table 4.4: Precision/recall breakeven point and error rate on the test set for the WebKB
category \course", the Reuters category \earn", and the Ohsumed category \pathology"
with and without TFIDF weighting. No stopword removal and no stemming are used.

Analogously, the TCat-concept

TCatmf ( [40 : 40 : 50]; # high frequency
[12 : 3 : 500]; [3 : 12 : 500]; [15 : 15 : 1000]; # medium frequency
[30 : 30 : 30000] # low frequency

)

(4.51)

has discriminative features only in the medium-frequency range, and the concept

TCatlf( [40 : 40 : 50]; # high frequency
[30 : 30 : 2000]; # medium frequency
[12 : 3 : 7500]; [3 : 12 : 7500]; [15 : 15 : 15000] # low frequency

)

(4.52)

has discriminative features only in the low-frequency range. Assuming that the frequency
distribution of words for all three tasks follows the same generalized Zipf's law, then
Theorem 2 ensures the lowest generalization error for the task TCathf with discriminative
features in the high-frequency range. The margin Æ for TCathf is always greater than 2.68,
while the margin of TCatmf and TCatlf are only greater than 0.28 and 0.07 respectively.
This suggests that discriminative features particularly in the high-frequency range can
lead to a low generalization error.

For tasks with discriminative features mostly in the low-frequency range, TFIDF
weighting can improve performance compared to a plain TF representation as above. The
e�ect of TFIDF weighting is an increase of the relative weight of low-frequency terms.
The term frequencies are multiplied by a factor that is largest for low-frequency terms
and smallest for high-frequency terms. A simpli�ed approximation to TFIDF weighting
is the following. The term frequencies of low-frequency words are multiplied by a factor
of 2 while all other term frequencies remain unscaled. Applying this weighting to TCatlf
leads to

TCatlf�tfidf ( [40 : 40 : 50]; # high frequency
[30 : 30 : 2000]; # medium frequency
[24 : 6 : 7500]; [6 : 24 : 7500]; [30 : 30 : 15000] # low frequency

):

(4.53)

After correcting for an increased length of the document vector R2 by a factor of 1.9, the
margin of TCatlf�tfidf with TFIDF weighting is larger than 0.09 compared to only 0.07
for TCatlf without TFIDF weighting. On the other hand, applying the same weighting
scheme to TCathf leads to a decreased bound on the margin. Here, the margin of 2.67
for TCathf compares to only 1.94 for TCathf�tfidf . This suggests that TFIDF weight-
ing is bene�cial for those learning tasks with discriminative features primarily in the
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low-frequency region. Such a task is the Ohsumed category \pathology", while \earn"
and \course" have many discriminative features also in the high and medium-frequency
range. Table 4.4 shows that the predicted e�ect of TFIDF weighting can be observed in
experiments. The table compares error rate and precision/recall breakeven points for rep-
resentations with and without TFIDF weighting. While TFIDF weighting does improve
performance for the Ohsumed category, it does not help or even hurts performance for
the other two tasks. This again provides evidence for the validity of the model and gives
insight into when the use of TFIDF weighting is appropriate.

4.4.2 Discriminative Power of Term Sets

Intuitively, the extent to which vocabulary di�ers between classes should make a di�erence
for learnability. Is there a set of words that occurs only in positive documents or only in
negative documents? Or, more weakly, is it that certain groups of words merely occur
more or less frequently with respect to the class? The following three tasks di�er in
this respect, which can be interpreted as the discriminative power of term sets. The
TCat-concept

TCatld( [40 : 40 : 50]; # high frequency
[9 : 6 : 500]; [6 : 9 : 500]; [15 : 15 : 1000]; # medium frequency
[9 : 6 : 7500]; [6 : 9 : 7500]; [15 : 15 : 15000] # low frequency

)

(4.54)

has term sets with low discriminative power, since the occurrence ratios are only 9 vs. 6.
The discriminative power is higher for the concept

TCatmd( [40 : 40 : 50]; # high frequency
[12 : 3 : 500]; [3 : 12 : 500]; [15 : 15 : 1000]; # medium frequency
[12 : 3 : 7500]; [3 : 12 : 7500]; [15 : 15 : 15000] # low frequency

)

(4.55)

and it is highest for

TCathd( [40 : 40 : 50]; # high frequency
[15 : 0 : 500]; [0 : 15 : 500]; [15 : 15 : 1000]; # medium frequency
[15 : 0 : 7500]; [0 : 15 : 7500]; [15 : 15 : 15000] # low frequency

):

(4.56)

The discriminative power is re
ected in the bound for the margin from Lemma 2. The
bound is 0.48 for the margin of TCathd, while it is only 0.29 for TCatmd, and 0.09 for
TCatld. With an R2 constant over all tasks, Theorem 2 ensures the best generalization
performance for the task with highly discriminative term sets.

4.4.3 Level of Redundancy

The �nal important factor for ensuring a low expected generalization error is the level of
redundancy in the TCat-concept. The following three TCat-concepts have discriminative
features only in the medium-frequency range, but di�er in how many cues there are in
each document. For

TCatlr( [40 : 40 : 50]; # high frequency
[3 : 0 : 100]; [0 : 3 : 100]; [27 : 27 : 1800]; # medium frequency
[30 : 30 : 30000] # low frequency

)

(4.57)
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most medium-frequency terms do not help di�erentiate between the classes. Each docu-
ment contains only three words that indicate the positive or the negative class respectively.
This can be interpreted as a low level of redundancy. Similarly, the task

TCatmr( [40 : 40 : 50]; # high frequency
[15 : 0 : 500]; [0 : 15 : 500]; [15 : 15 : 1000]; # medium frequency
[30 : 30 : 30000] # low frequency

)

(4.58)

provides a medium level of redundancy, and the concept

TCathr( [40 : 40 : 50]; # high frequency
[30 : 0 : 1000]; [0 : 30 : 1000]; # medium frequency
[30 : 30 : 30000] # low frequency

)

(4.59)

provides a high level of redundancy. Using the result from Lemma 2 the largest margin
is assured for the highly redundant TCat-concept TCathr with Æ greater than 0:67, while
for TCatmr the margin is only greater than 0:47, and for TCatlr it is greater than 0:21.
Assuming again that R2 is the same for all three tasks, Theorem 2 ensures the best
generalization performance for the high redundancy task. This suggests that a high level
of redundancy is a desirable property of text-classi�cation tasks.

4.5 Noisy TCat-Concepts

While the homogenous TCat-concepts considered so far allow for large variability within
feature sets, they strictly prescribe the relative word frequencies between feature sets.
Clearly, the constraint that each document contains an exact number of occurrences
from each word set of the TCat-concept is very restrictive. In practice, the occurrence
frequencies will vary among documents to some extent. In the example task from Figure
4.5, for some positive example there may occur only three medium-frequency positive
indicators instead of the four indicators described in the model. This type of noise will be
called attribute noise. A second form of noise present in almost every text-classi�cation
task is classi�cation noise. A positive document could be mislabeled as a negative example
or vice versa.

Both types of noise can be incorporated into the model. The following argument shows
that the learning bounds scale smoothly with the amount of noise. For both attribute
noise and classi�cation noise, the increase of the error bound from Theorem 2 is limited.

In the case of attribute noise, two kinds of deviations move positive and negative
examples closer together:

� a positive (negative) document di can contain �j;i fewer positive (negative) indica-
tors from a word set sj than prescribed by the model

� a positive (negative) document di can contain �j;i more negative (positive) indica-
tors from a word set sj than prescribed by the model

In the �rst case the distance to the hyperplane will decrease proportional to �j � wj, if
wj is the value in the weight vector for the words in the set sj . Intuitively, the document
lacks �j words to push the document vector further to the \correct" side of the margin.
Similarly in the second case, the distance will decrease proportional to �j �wj , if again wj is
the value in the weight vector for the set sj. Here, the additional counter-indicative words
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pull the document vector to the \wrong" side of the margin. Knowing the expectation
of ~�T = (�1; : : : ;�s)

T with �j =
Pn+1

i=1 �j;i for training sets of size n+ 1 is suÆcient to
limit the e�ect of noise on the expected error bound compared to the noise-free case.

Theorem 3 (Learnability of TCat-Concepts with Attribute Noise) Denote with
< ~wsep > the unbiased maximum margin hyperplane that separates the noise-free TCat-
concept according to Lemma 2. If this TCat-concept is distorted by attribute noise ac-
cording to E(~�), then the expected error of this noisy TCat-concept does not exceed the
expected error bound of the noise-free TCat-concept by more than

2 ~wT
sep E(~�) (4.60)

for C = 1
�R2 and R2 �xed.

Proof Denote with < ~wnoise; ~�noise > the solution of the primal optimization problem
for some training set S of size n + 1 drawn according to the noisy TCat-concept. Let
~�i be the noise vectors for the examples in the current training set. Starting from the
solution of the noise-free separator < ~wsep > it is possible to construct a feasible point of
the primal optimization problem for the noisy training set.

1

2
~wT
sep ~wsep + C

n+1X
i=1

~�T
i ~wsep � 1

2
~wT
noise ~wnoise + C

n+1X
i=1

�i;noise (4.61)

It follows from the proof of Lemma 1 that

Errn+1
loo (S) � �R2

n+ 1

"
~wT
noise ~wnoise + C

nX
i=1

�i;noise

#
(4.62)

This quantity can be upper bounded as follows.

Errn+1
loo (S) � �R2

n+ 1

"
~wT
noise ~wnoise + C

nX
i=1

�i;noise

#
(4.63)

� �R2

n+ 1

"
~wT
noise ~wnoise + 2C

nX
i=1

�i;noise

#
(4.64)

� �R2

n+ 1

"
~wT
sep ~wsep + 2C

nX
i=1

~�T
i ~wsep

#
(4.65)

� �R2

n+ 1

"
~wT
sep ~wsep + 2C ~wT

sep

nX
i=1

~�i

#
(4.66)

Note that ~wsep has zero variance according to the construction in Lemma 2. Taking the
expectation gives an upper bound on the expected error

E(Errn(hSVM )) � �R2

n+ 1

h
~wT
sep ~wsep + 2C(n+ 1)~wT

sepE(�)
i

(4.67)

which di�ers from the bound for the noise-free TCat-concept

E(Errn(hSVM )) � �R2

n+ 1
~wT
sep ~wsep (4.68)

by

2�R2C ~wT
sepE(�) (4.69)
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Similarly, classi�cation noise also leads to a smooth increase of the bound on the
expected error rate. It can be integrated in the following way.

Theorem 4 (Learnability of TCat-Concepts with Classi�cation Noise) Denote
with < ~wsep > the unbiased maximum margin hyperplane that separates the noise-free
TCat-concept according to Lemma 2. If this TCat-concept is distorted by classi�cation
noise with a rate of �, then the expected error of this noisy TCat-concept does not exceed
the expected error bound of the noise-free TCat-concept by more than

4� (4.70)

for C = 1
�R2 and R2 �xed.

Proof Mislabeled documents lie exactly at the margin boundary on the wrong side of
the hyperplane given the construction used in the proof of Lemma 2. This implies that
their value of �i is 2. Following the proof of Theorem 3 and denoting the fraction of noisy
examples in the current training set S by �S yields

1

2
~wT
sep ~wsep + C(n+ 1)2�S � 1

2
~wT
noise ~wnoise + C

nX
i=1

�i;noise (4.71)

Similar to Theorem 3

Errn+1
loo (S) � �R2

n+ 1
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noise ~wnoise + C
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�i;noise
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(4.72)
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� �R2

n+ 1

h
~wT
sep ~wsep + 4C(n+ 1)�S

i
(4.74)

Taking the expectation gives an upper bound on the expected error

E(Errn(hSV M )) � �R2

n+ 1

h
~wT
sep ~wsep + 4C(n+ 1)�

i
(4.75)

which di�ers from the bound for the noise-free TCat-concept by

�R24C� (4.76)

While the factor of 4 makes this bound somewhat lose, it can easily be tightened and it
nevertheless demonstrates that classi�cation noise can be integrated into TCat-concepts.

4.6 Limitations of the Model and Open Questions

Every model abstracts from reality in some sense. While the abstractions used in the
model presented here are justi�ed using empirical evidence, it is important to clearly
point them out.

First, each document is assumed to exactly follow the same generalized Zipf's law,
neglecting variance and discretization inaccuracies that occur especially for short docu-
ments. In particular, this implies that all documents are of equal length.
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Second, the model �xes the number of occurrences from each word set in the TCat-
model. The degree of violation of this assumption is captured in terms of attribute
noise. Nevertheless, it might be useful and possible not to specify the exact number of
occurrences per word set, but only upper and lower bounds. This could make the model
more accurate. However, it comes with the cost of an increased number of parameters,
making the model less understandable. While the formal analysis of noise from above
demonstrates that the model does not break in the presence of noise, the bounds could
be tightened. Along the same lines, parametric noise models could be incorporated to
model the types of noise in text-classi�cation problems.

Finally, the general approach taken in this chapter is to model only upper bounds on
the error rate. While these are important to derive suÆcient conditions for the learnability
of text-classi�cation tasks, lower bounds may be of interest as well. They could answer
the question of which text-classi�cation tasks cannot be learned with support vector
machines.

4.7 Related Work

There is no other model that connects the generalization performance of a learner with
the statistical properties of text-classi�cation tasks in a justi�ed way. While some learning
algorithms can be analyzed in terms of formal models, these models are inappropriate for
text.

The most popular such algorithm is naive Bayes. It is strongly related to probabilistic
retrieval models used in information retrieval [Fuhr and Buckley, 1991]. Naive Bayes is
commonly justi�ed using assumptions of conditional independence or linked dependence
[Cooper, 1991]. For the naive Bayes classi�er a suÆcient condition for good generalization
performance is conditional independence (in terms of a multivariate Bernoulli or multi-
nomial model [McCallum and Nigam, 1998]) of word occurrences given the class label.
Unfortunately, this property does not hold for text (e.g. [van Rijsbergen, 1979] [Church,
1995] [Lewis, 1998]). Already when Maron introduced the multivariate Bernoulli model
for text, he noted [Maron, 1961, page 410]:

Clearly this independence assumption is false ...; nevertheless, to facilitate
(although degrading) the computations, we can make the independence as-
sumption.

While more complex dependence models can somewhat remove the degree of violation
[Sahami, 1998], a principal problem with using generative models for text remains. Find-
ing a generative models for natural language appears much more diÆcult than solving
a text classi�cation task. Therefore, this chapter presented a discriminative model of
text classi�cation. It does not model language, but merely constrains the distribution
of words enough to ensure good classi�cation accuracy. This way it is possible to avoid
unreasonable independence assumptions.

Surprisingly, naive Bayes does provide reasonable classi�cation performance on many
tasks despite the violation of independence. A reason might be found based on the ideas
in [Domingos and Pazzani, 1997]. They show that sometimes weaker conditions imply
good performance of naive Bayes. While this is probably true also for text classi�cation,
naive Bayes cannot learn TCat-concepts. It is easy to construct a resonable Pr(X) so that
a naive Bayes classi�er, both with the multivariate Bernoulli and the multinomial model,
cannot learn the simple TCat([2 : 1 : 4]; [1 : 2 : 4])-concept optimally. However, it does
�nd a suboptimal approximation that is still reasonably accurate in many cases. This
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gives some intuition about the suboptimal, yet surprisingly good performance of naive
Bayes on many tasks.

Another model used to describe the properties of text is the 2-Poisson model [Book-
stein and Swanson, 1974]. However, like the Bernoulli model it is rejected by tests [Har-
ter, 1975a, Harter, 1975b]. Description oriented approaches [G�overt et al., 1999] [Fuhr
and Knorz, 1984] [Fuhr et al., 1991] provide powerful modelling tool and can avoid high-
dimensional feature spaces, but require implicit assumptions in the way description vectors
are generated.

While di�erent in its motivation and its goal, the work of Papadimitriou et. al is most
similar in spirit to the approach presented here [Papadimitriou et al., 1998]. They show
that latent semantic indexing leads to a suitable low-dimensional representation, given
assumptions about the distribution of words. These assumptions are similar in how they
exploit the di�erence of word distributions. However, they do not show how their assump-
tions relate to the statistical properties of text and they do not derive generalization-error
bounds.

4.8 Summary and Conclusions

This chapter develops the �rst model of learning text classi�ers from examples that makes
it possible to connect the statistical properties of text with the generalization performance
of the learner. For the �rst time, it is possible to formalize text classi�cation tasks in
a justi�ed way, making them accessible to theoretical analysis. The model is the result
of taking a discriminative approach. Unlike conventional generative models, it does not
involve unreasonable parametric or independence assumptions. The discriminative model
focuses on those properties of the text classi�cation tasks that are suÆcient for good
generalization performance, avoiding much of the complexity of natural language.

Based on this discriminative model, the chapter proves how support vector machines
can achieve good classi�cation performance despite the high-dimensional feature spaces in
text classi�cation. This makes SVMs the �rst learning method with a theoretical justi�ca-
tion for its use in text classi�cation. The resulting bounds on the expected generalization
error gives a formal understanding of what kind of text-classi�cation task can be solved
with support vector machines. This makes it possible to characterize the text classi�ca-
tion tasks for which SVMs are appropriate. The chapter identi�es that high redundancy,
high discriminative power of term sets, and discriminative features in the high-frequency
range are suÆcient conditions for good generalization.

Beyond text classi�cation, the chapter presents a new bound for the expected error of
the support vector machine. Unlike previous bounds of its type, it applies also to biased
SVMs and incorporates training error.

While this chapter mainly discusses support vector machines, other learning algo-
rithms can also be analyzed in this model. For example, it should be possible to char-
acterize Boosting in a similar way. Given previous results for Winnow and Perceptron,
my conjecture is that maximum-margin methods with respect to L1-margin will be most
e�ective on tasks with a small set of \strong" features. Such a theoretical understanding
of learning algorithms provides the basis for selecting between algorithms based on prior
knowledge. It identi�es how methods and tasks di�er, so that it guides the development
of new methods.
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Chapter 5

Estimating the Generalization

Performance of an SVM

EÆciently

Predicting the generalization performance of a learner is one of the central goals of learning
theory. The previous chapter approached this question based on an intensional descrip-
tion of the learning task. However, such a model is necessarily coarse, since it operates
on a high level of abstraction. Training data can give more details about a learning task
than an intensional model with only a few parameters. This chapter explores the prob-
lem of predicting the generalization performance of an SVM after training data becomes
available.

From a practical perspective, we need accurate and eÆcient predictions for how well
a learner can handle the particular task at hand. Given a particular learning task, a
practitioner will ask:

� How well will the learner generalize, given the training examples available?

� Given two parameter settings for the learner, which one leads to better predictions?

� From a set of available hypothesis spaces, which one is best for the task at hand?

The results presented in this section lay the theoretical basis for answering these questions
in the context of text classi�cation with SVMs. The aim is to develop operational per-
formance estimators that are of actual use when applying SVMs. This requires that the
estimators be both e�ective and computationally eÆcient. While the results presented
in the following apply to arbitrary learning tasks, special emphasis is put on evaluation
measures commonly used in text classi�cation. In particular, the approach is not limited
to estimating the error rate. It also covers precision and recall, as well as combined mea-
sures like F1. These measures are far more important for learning useful text classi�ers
than error rate alone.

This chapter is structured as follows. First, methods for predicting the generalization
performance of a learner are reviewed in Section 5.1. While some of these (e.g. uni-
form convergence bounds) are powerful tools for theory, they are of little use in practical
applications. Others (e.g. cross-validation, bootstrap) give good predictions, but are com-
putationally ineÆcient. Section 5.2 decribes new estimators that exploit special properties
of SVMs to overcome these problems, extending results of [Vapnik, 1998, Chapter 10] and
[Jaakkola and Haussler, 1999] to general SVMs. The new estimators are both accurate

65
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and eÆciently computable. After their theoretical justi�cation, the estimators are exper-
imentally tested on three text-classi�cation tasks in Section 5.4. The experiments show
that they accurately re
ect the actual behavior of SVMs on text-classi�cation tasks.

5.1 Generic Performance Estimators

This section reviews the most common methods for estimating the generalization error

Errn(hL) =
Z
L0=1(hL(~x); y)dPr(~x; y) = Pr(hL(~x) 6= yjSn) (5.1)

of a learner L based on a sample Sn of size n, with L0=1 being the 0=1-loss function. In
particular, these methods are uniform convergence bounds for the training error (Sec-
tion 5.1.1), Hold-Out Testing (Section 5.1.2), Bootstrapping (Section 5.1.3), and Cross-
Validation (Section 5.1.4).

5.1.1 Training Error

The most obvious estimate of the error rate Errn(hL) is the training error (a.k.a. empirical
error, apparent error, resubstitution error)

Errnemp(hL) =
1

n

nX
i=1

L0=1(hL(~xi); yi) (5.2)

on the training sample S = ((~x1; y1); � � � ; (~xn; yn)). For almost all learners, this estimate
is readily available after training. The problem with using Errnemp(hL) as an estimate for
Errn(hL) is its typically strongly optimistic bias.

E(Errnemp(hL)) << E(Errn(hL)) (5.3)

Especially for learners that minimize training error, Errnemp(hL) is usually much lower
than the true error Errn(hL), since it is measured on the same data which the learner
used to �nd the hypothesis. For SVMs this e�ect is most extreme when kernels of high
capacity are used. They �t the data perfectly and so have a training error of zero, while
the true error rate can be high.

VC-theory identi�es the situations for which Errnemp(hL) is suÆciently close to
Errn(hL) and places an upper bound on the di�erence. The bound depends only on the
VC-dimension dH of the hypothesis space H that the learner considers and the number
of training examples n, but it is independent of the learner. One bound on the di�erence
jErrn(hL)�Errnemp(hL)j can be derived from the bound in [Wapnik and Tscherwonenkis,
1979], page 161:

Pr(jErrn(hL)�Errnemp(hL)j > �) � 6

�
e n

dH

�dH
exp

 
��

2(n� 1)

4

!
(5.4)

Using this bound can help quantify, the amount by which Errnemp(hL) underestimates the
true error. This leads to an upper bound on the error rate, as is desirable in practice.
Solving (5.4) for Errn(hL) gives such an upper bound. With probability 1� �

Errn(hL) � Errnemp(hL) + 2

s
dH(ln2 n

dH
+ 1)� ln�

4

n
(5.5)
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Unfortunately, for most practical applications this bound is of little use. For the amount
of data usually available, it is too loose to make reasonable predictions about Errn(hL).
To a large extent this is due to the fact that the bound is independent of the learning
task Pr(~x; y). While this remarkable property makes the bound a very universal tool, it
is \worst-case" with respect to all Pr(~x; y). The methods discussed in the following use
the training sample as an approximation to Pr(~x; y).

Let us �nally look at the expected di�erence between training error and true error for
n > dH. Using a result from [Devroye et al., 1996, page 208], it is easy to translate bound
(5.4) into:

E(jErrn(hL)�Errnemp(hL)j2) � O

 
dH ln( n

dH
)

n

!
(5.6)

5.1.2 Hold-Out Testing

In hold-out testing (see e.g. [Devroye et al., 1996]) the sample Sn is divided randomly
into two parts Strainl [ Svalk = Sn of size l and k. The learner uses the training sample
Strainl for training, while the validation sample Svalk serves as an independent test set for

estimating the true error of the classi�cation rule. The hold-out estimate Errl;kho (hL) is
as follows:

Errl;kho (hL) =
1

k

X
(~xi;yi)2Sval

k

L0=1(hL(~xi); yi) (5.7)

While Errl;kho (hL) is an unbiased estimate of Errl(hL), it is not unbiased with respect to
Errn(hL). The learner is trained with only l training examples instead of the full sample
Sn containing n examples. Since we typically expect the performance of the learner to
increase with more training data, the hold-out estimate Errl;kho (hL) is negatively biased.

E(Errl;kho (hL)) > E(Errn(hL)) (5.8)

The expected deviation E((Errl(hL)� Errl;kho (hL))
2) can easily be calculated, since each

test on an example from the validation set is an independent Bernoulli trial.

E(jErrl(hL)�Errl;kho (hL)j2) �
1

4 k
(5.9)

Equation (5.8) and (5.9) exhibit a trade-o� in selecting l and k. The larger l, the smaller
the bias. At the same time, the variance increases with decreasing k = n�l . The optimal
choice of l and k depend on the learner L, the hypothesis space H, and the learning task
Pr(~x; y) [Kearns, 1996]. Nevertheless, there are good heuristics for selecting reasonable
values for l and k [Kearns, 1996].

Let us �nally also look at worst-case bounds for the deviation. Using Hoe�ding bounds
[Hoe�ding, 1963] it holds that

Pr(jErrl(hL)�Errl;kho (hL)j > �) � 2 exp(�2 k �2) (5.10)

Experimental results for hold-out estimates are given in [Kearns et al., 1997].

The hold-out estimate is eÆciently computable. It involves one training run on l
training examples and the classi�cation of k test examples.
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5.1.3 Bootstrap and Jackknife

The methods based on bootstrap [Efron, 1983][Efron, 1982][Shao and Tu, 1995] or jack-
knife [Efron, 1982] statistics aim to estimate the bias of the training error Errnemp(hL).
All bootstrap methods make use of bootstrap samples Sbm = ((~xb1; y

b
1); � � � ; (~xbm; ybm)), each

generated by independently drawing m examples from the training sample Sn with re-
placement. Usually, the size of the bootstrap samples is chosen to be the same as the size
of the training sample (i.e. m = n). The learner is trained on each bootstrap sample and
outputs a corresponding hypothesis hiL. For the k-th bootstrap sample the estimate of
the bias is

biasnk =
nX
i=1

0
@ 1

n
� 1

n

mX
j=1

L0=1(~x
b
j ; ~xi)

1
AL0=1(h

i
L(~xi); yi) (5.11)

The individual estimates biasnk are averaged over B bootstrap samples to remove the
randomness introduced by the sampling.

biasn =
BX
k=1

biasnk (5.12)

The bootstrap estimate Errnb (hL) of the true error Errn(hL) is the training error
Errnemp(hL) minus the bootstrap estimate biasn of the bias.

Errnboot(hL) = Errnemp(hL)� biasn (5.13)

A jackknife approximation to the bootstrap estimate is described in [Efron, 1982].
Other version of the bootstrap estimator can be found in [Efron, 1983] and [Efron and
Tibshirani, 1993].

Little is known about the bias and the variance of the bootstrap estimate Rn
b (hL).

Experimental evidence suggests that its bias is comparatively large, while the variance
is small [Breiman et al., 1984][Bailey and Elkan, 1993][Kohavi, 1995]. Davison and Hall
[Davison and Hall, 1992] provide some theoretical results for a particular small example
that supports this observation.

The computational costs for computing the bootstrap estimate are high. The learner
is invoked B times, once for each bootstrap sample. In addition, the training set of n
examples needs to be classi�ed each time. Typical values for B are between 10 and 100.

5.1.4 Cross-Validation and Leave-One-Out

The most popular method for estimating the generalization error of a classi�cation rule
is cross-validation (a.k.a. delete-d method, rotation estimate) [Lunts and Brailovskiy,
1967][Stone, 1974][Lachenbruch and Mickey, 1968]. While there are several versions of the
cross-validation estimator, most theoretical results concern the leave-one-out estimator
described in the following. From the training sample S = ((~x1; y1); � � � ; (~xn; yn)) the �rst
example (~x1; y1) is removed. The resulting sample Sn1 = ((~x2; y2); � � � ; (~xn; yn)) is used
for training, leading to a classi�cation rule h

n1
L . This classi�cation rule is tested on the

held-out example (~x1; y1). This process is repeated for all training examples. The number
of misclassi�cations divided by n is the leave-one-out estimate of the generalization error.

Errnloo(hL) =
1

n

nX
i=1

L0=1(h
ni
L (~xi); yi) (5.14)

Lunts and Brailovskiy showed that this estimate is almost unbiased in the following sense
[Lunts and Brailovskiy, 1967].
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Theorem 5 ([Lunts and Brailovskiy, 1967] Bias of Leave-One-Out Estimator)
The leave-one-out estimator is almost unbiased; that is

E(Rn
loo(hL)) = E(Rn�1(hL)) (5.15)

The expectation on the left-hand side is over training sets of size n, the one on the right-
hand side is over training sets of size n� 1.

Proof Abbreviating Zi for (~xi; yi), the theorem follows from the following chain of trans-
formations for all bounded loss functions:

E(Rn
loo(hL))=

Z
1

n

nX
i=1

L(h
ni
L (~xi); yi)dPr(Z1):::dPr(Zn) (5.16)

=
1

n

nX
i=1

Z
L(h

ni
L (~xi); yi)dPr(Z1):::dPr(Zn) (5.17)

=
1

n

nX
i=1

Z �Z
L(h

ni
L (~xi); yi)dPr(Zi)

�
dPr(Z1):::dPr(Zi�1)dPr(Zi+1):::dPr(Zn)(5.18)

=
1

n

nX
i=1

Z
Rn�1(hL)dPr(Z1):::dPr(Zi�1)dPr(Zi+1):::dPr(Zn) (5.19)

=
1

n
n

Z
Rn�1(hL)dPr(Z1):::dPr(Zn�1) (5.20)

= E(Rn�1(hL)) (5.21)

The theorem identi�es that the bias depends on how much a single training example
changes the performance of the learner. On most practical problems this is negligibly
small.

The variability of the leave-one-out estimator depends on both the learning algorithms
as well as the learning task. The dependence is captured in the following bound [Rogers
and Wagner, 1978][Devroye and Wagner, 1976]. The bound holds for all classi�ers that
are independent of the ordering of the training examples.

Theorem 6 ([Rogers and Wagner, 1978][Devroye and Wagner, 1976] Variabil-
ity of the Leave-One-Out Estimator) It holds that

E(jErrnloo(hL)�Errn(hL)j2) � 1

n
+ 6 Pr(hnL(~x) 6= hn�1L (~x)) (5.22)

Pr(hnL(~x) 6= hn�1L (~x)) is the probability that a classi�cation rule hnL(~x) (trained using all n
examples) will disagree on a randomly drawn example with a classi�cation rule hn�1L (~x))
(trained on the same sample with one example removed). The proof of the theorem is
given in [Devroye et al., 1996, pages 411-413]. Theorem 6 can be used to upper bound
the variability of the leave-one-out estimator for the special case of local classi�cation
rules [Devroye and Wagner, 1979b][Devroye and Wagner, 1979a]. Somewhat surprising
results about the asymptotic behavior of the leave-one-out estimate in the general case
are given in [Stone, 1977]. Shao and Tu give a summary of the discussion about using
cross-validation for model selection in linear models [Shao and Tu, 1995]. A similar bound
on the variability of the leave-one-out estimator is given in [Lunts and Brailovskiy, 1967].
A more general bound [Kearns and Ron, 1997] based on uniform convergence arguments
is discussed in Section 5.2.1.
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The computational demands of the leave-one-out estimator are high. The learner is
invoked n times on training sets of n� 1 examples. This is prohibitively expensive for all
but small n. To reduce running time it is common practice to combine cross-validation
with hold-out testing [Toussaint and Donaldson, 1970][Mitchell, 1997]. Instead of training
on n � 1 examples and testing on only one, the training set is partitioned into k folds.
Assuming that n

k is an integer, each fold contains n
k examples. The learner now repeatedly

trains on k� 1 folds and each resulting classi�cation rule is tested on the remaining fold.
The average performance is the k-fold cross-validation estimate Errnkcv(hL) (a.k.a. delete-�
n
k

�
estimate, rotation estimate). Note that k-fold cross-validation has a larger bias than

leave-one-out.

E(Errnkcv(hL)) = E(Errn�n
k (hL)) (5.23)

Experimental results show that cross-validation is a good estimator of the generaliza-
tion performance. It is repeatedly reported to have lower bias than the bootstrap estimate
[Efron, 1983][Breiman et al., 1984][Kohavi, 1995][Bailey and Elkan, 1993], but typically
has higher variability. The variability of 10-fold cross-validation tends to be lower than
that of leave-one-out [Kohavi, 1995][Bailey and Elkan, 1993][Efron, 1983][Devroye et al.,
1996].

5.2 ��-Estimators

While the estimation methods in the previous section are applicable to arbitrary learning
algorithms, this section develops special estimators for support vector machines. The
estimators proposed in the following are based on the leave-one-out method, but require
an order of magnitude less computation time due to particular properties of the SVM. In
particular, they do not require actually performing resampling and retraining, but can be
applied directly after training the learner. The inputs to the estimators are the vector ~�
solving the dual SVM training problem (Optimization Problem 4) and the vector ~� from
the solution of the primal SVM training problem(Optimization Problem 3). Due to this
dependence, they will be called ��-estimators in the following.

As already argued above, in text classi�cation error rate alone is not necessarily a good
performance measure. Instead, scores based on precision and recall are of widespread use.
To get useful tools for text classi�cation, I will propose and explore ��-estimators not
only for the error rate (Section 5.2.1), but also for the recall (Section 5.2.2), the precision
(Section 5.2.3), and the F1-measure (Section 5.2.4).

5.2.1 Error Rate

This section starts with the de�nition of the ��-estimator of the error rate. Based on
the solution ~� of the dual SVM training problem and the vector of training losses ~�, the
��-estimator of the error rate Errn��(hL) is de�ned as follows.

De�nition 9 (��-Estimator of the Error Rate) For stable soft-margin SVMs, the
��-estimator of the error rate is

Errn��(hL) =
d

n
with d = jfi : (��iR2

� + �i) � 1gj (5.24)

with � equals 2. ~� and ~� are the solution of optimization problems 4 and 3 (or 6 and 5)
on the training set Sn. R

2
� is an upper bound on c � K(~x; ~x0) � c+ R2

� for all ~x; ~x0 and
some constant c.
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The de�nition introduces the parameter �. While the theoretical results that are
derived below assume � = 2, we will see that � = 1 is a good choice for text classi�cation1.
The key quantity in de�nition 9 is d. d counts the number of training examples for which
the inequality (��iR

2
�+ �i) � 1 holds. But how does one come to this de�nition of d and

what exactly does d count?
The key idea to the ��-estimator of the error rate is a connection between the training

examples for which the inequality (��iR
2
� + �i) � 1 holds and those training examples

that can produce an error in leave-one-out testing. In particular, if an example (~xi; yi) is

classi�ed incorrectly by a SVM trained on the subsample S
ni
n , then example (~xi; yi) must

ful�ll the inequality (��iR
2
� + �i) � 1 for a SVM trained on the full sample Sn. This

implies that d is an upper bound on the number of leave-one-out errors. The following
lemma establish this result formally.

Lemma 4 (Bound on Leave-One-Out Error of Stable Soft-Margin SVMs) The

number of leave-one-out errors
Pn

i=1 L0=1(h
ni
L (~xi); yi) of stable soft-margin SVMs on a

training set Sn is bounded by

nX
i=1

L0=1(h
ni
L (~xi); yi) � jfi : (2 �iR2 + �i) � 1gj (5.25)

~� and ~� are the solution of optimization problems 4 and 3 (or 6 and 5) on the training
set Sn. R

2 is an upper bound on K(~x; ~x) and K(~x; ~x0) � 0.

Proof An error on a left out example (~xt; yt) occurs when at the solution of

Wt(~�
t) = max~0�~�t� ~C1

T ~�t � 1

2
~�tTQt~�t ^ ~ytT ~�t = 0 (5.26)

where ~�t, ~yt, and Qt have the t-th example removed, the expression

yt

2
4X
i6=t

�tiyiK(~xt; ~xi) + bt

3
5 > 0 (5.27)

is false. What follows in this proof are conditions for when this expression must be true
based on the soft-margin SVM solution

W (~�) = max~0�~�� ~C1
T ~�� 1

2
~�TQ~� ^ ~yT ~� = 0 (5.28)

that involves all n training examples. Three cases can occur based on the optimal value
of �t:

Case �t = 0: Example (~xt; yt) is not a support vector. Then Wt(~�
t) = W (~�) and

yt
P

i6=t yi�tiK(~xt; ~xi) = yt
P

i6=t yi�iK(~xt; ~xi). Since the t-th example is not a support
vector, we know that yt

P
i6=t yi�iK(~xt; ~xi) � 1 and so (5.27) must be true. So the t-th

example cannot produce a leave-one-out error. Finally, it is not counted as a leave-one-out
error, since �i + �i = 0 for non-support vectors.

Case 0 < �t < C: Example (~xt; yt) is a support vector. From the solution ~�t of Wt(:),
the following construction produces a feasible point ~� for W (:).

�i =

8><
>:

�ti if �ti = 0 _ �ti = C
�ti � yiyt�i if i 2 SV t

�i if i = t
(5.29)

1Although it is not proven here, it is straightforward to verify that all theoretical results presented in
the following also hold for unbiased soft-margin SVMs with � = 1.
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�i has to ful�ll the following constraints. Let SV t be the set of indices corresponding
to support vectors of the solution Wt(~�

t) that are not at the upper bound C (that is
0 < �ti < C). Then �i = 0 for all i 62 SV t. For i 2 SV t the �i are chosen to be
non-negative and so that

P
i2SV t �i = �t and 0 � �i � C. Finding such �i is always

possible, if there are at least two support vectors not at the upper bound C. The existence
of such two vectors follows from the assumption that the SVMs solution is stable. From
the construction of the �i it follows that ~y

T ~� = 0 and 0 � �i � C. So ~� is a feasible point
of W (:). After a series of transformations, W (~�) can be written as

W (~�) = Wt(~�
t)� 1

2
�2
tK(~xt; ~xt) + �t (5.30)

��tyt
X
i6=t

�tiyiK(~xt; ~xi)� yt

2
4 X
i2SV t

�i

0
@yi �X

j 6=t
�tjyjK(~xi; ~xj)

1
A
3
5 (5.31)

�1

2

X
i2SV t

X
j2SV t

�i�jK(~xi; ~xj) + �t
X

i2SV t

�iK(~xi; ~xt) (5.32)

For support vectors not at the upper bound the expression in the round brackets (line 5.31)
equals the threshold bt of the classi�cation rule (compare equation (3.21)). Exploiting also
that

P
i2SV t �i = �t by construction, it is possible to write:

�tyt

2
4X
i6=t

�tiyiK(~xt; ~xi) + bt

3
5 = �W (~�) +Wt(~�

t)� 1

2
�2
tK(~xt; ~xt) + �t (5.33)

�1

2

X
i2SV t

X
j2SV t

�i�jK(~xi; ~xj) + �t
X

i2SV t

�iK(~xi; ~xt) (5.34)

Let us now do a similar construction for producing a feasible point ~
 of Wt(:) based
on the solution ~� of W (:).


i =

(
�i if �i = 0 _ �i = C

�i + yiyt�i if i 2 SV nt (5.35)

SV is the set of indices corresponding to support vectors not at the upper bound for the
solution ~� (that is 0 < �i < C). SV nt excludes the index t corresponding to the left-
out example. �i is chosen non-negative for all i 2 SV nt such that

P
i2SV nt �i = �t and

0 � 
i � C. From the construction of the �i it follows that ~y
T~
 = 0 and so ~
 is a feasible

point of Wt(:). After a series of transformations, Wt(~
) can be written as

W t(~
) = W (~�) +
1

2
�2
tK(~xt; ~xt)� �t (5.36)

+�tyt
X
i6=t

�iyiK(~xt; ~xi) + yt

2
4 X
i2SV nt

�i

0
@yi �X

j 6=t
�jyjK(~xi; ~xj)

1
A
3
5 (5.37)

�1

2

X
i2SV nt

X
j2SV nt

�i�jK(~xi; ~xj) (5.38)

Now, the expression in the round parentheses equals the threshold b of the classi�cation
rule based on all examples plus �tytK(~xi; ~xt) . Substituting and rearraging leads to the
equation

�W (~�) = �W t(~
) +
1

2
�2
tK(~xt; ~xt)� �t (5.39)
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+�tyt

2
4X
i 6=t

�iyiK(~xt; ~xi) + b

3
5 (5.40)

�1

2

X
i2SV nt

X
j2SV nt

�i�jK(~xi; ~xj) + �t
X

i2SV nt

�iK(~xi; ~xt) (5.41)

It is now possible to substitute W (~�) for W (~�) in equation (5.33). Since W (~�) is larger
than W (~�) by de�nition, this results in the inequality

�tyt

2
4X
i6=t

�tiyiK(~xt; ~xi) + bt

3
5 � Wt(~�

t)�W t(~
) (5.42)

+�tyt

2
4X
i6=t

�iyiK(~xt; ~xi) + b

3
5 (5.43)

�1

2

X
i2SV nt

X
j2SV nt

�i�jK(~xi; ~xj) + �t
X

i2SV nt

�iK(~xi; ~xt) (5.44)

�1

2

X
i2SV t

X
j2SV t

�i�jK(~xi; ~xj) + �t
X

i2SV t

�iK(~xi; ~xt) (5.45)

Similarly, Wt(~�
t) �W t(~
) so that

�tyt

2
4X
i6=t

�tiyiK(~xt; ~xi) + bt

3
5 � �tyt

2
4X
i6=t

�iyiK(~xt; ~xi) + b

3
5 (5.46)

�1

2

X
i2SV nt

X
j2SV nt

�i�jK(~xi; ~xj) + �t
X

i2SV nt

�iK(~xi; ~xt) (5.47)

�1

2

X
i2SV t

X
j2SV t

�i�jK(~xi; ~xj) + �t
X

i2SV t

�iK(~xi; ~xt) (5.48)

The term �t
P

i2SV t �iK(~xi; ~xt) is non-negative, since all �i and K(~xi; ~xt) are non-negative.
The same holds for �t

P
i2SV nt �iK(~xi; ~xt). Furthermore, 1

2

P
i2SV nt

P
j2SV nt �i�jK(~xi; ~xj)

� 1
2�

2
tR

2 and 1
2

P
i2SV t

P
j2SV t �i�jK(~xi; ~xj) � 1

2�
2
tR

2, since the K(~xi; ~xj) form a pos-
itive semi-de�nite matrix with the diagonal elements bounded from above by R2. For a
positive semi-de�nite matrix, the o�-diagonal elements must be less than or equal to R2.
Using these inequalities and dividing by �t, it is possible to write

yt

2
4X
i6=t

�tiyiK(~xt; ~xi) + bt

3
5 � yt

2
4X
i6=t

�iyiK(~xt; ~xi) + b

3
5� �tR

2 (5.49)

This means a leave-one-out error can occur only when

yt

2
4X
i6=t

�iyiK(~xt; ~xi) + b

3
5� �tR

2 � 0 (5.50)

Or equivalently, after adding yt�tytK(~xt; ~xt) and exploiting the fact that for support vectors
yt [
Pn

i=1 �iyiK(~xt; ~xi) + b] = 1

1 � �tK(~xt; ~xt) + �tR
2 (5.51)

) 1 � 2�tR
2 (5.52)
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Since �i = 0 for support vectors, the condition (2�tR
2+�t) � 1 is always ful�lled if (~xt; yt)

produces a leave-one-out error.
Case �t = C: Example (~xt; yt) is a bounded support vector. The argumentation follows

that in the case of regular support vectors up to the point where it is shown that a leave-
one-out error can occur only, if

yt

2
4X
i6=t

�iyiK(~xt; ~xi) + b

3
5� �tR

2 � 0 (5.53)

Adding yt�tytK(~xt; ~xt) and exploiting the fact that yt [
Pn

i=1 �iyiK(~xt; ~xi) + b] = 1� �t for
bounded support vectors

1� �t � �tK(~xt; ~xt) + �tR
2 (5.54)

) 1 � 2�tR
2 + �t (5.55)

This shows that also in the case of a bounded support vector the condition (2�tR
2+�t) � 1

is always ful�lled if (~xt; yt) produces a leave-one-out error.

The idea of connecting the leave-one-out error with properties of the solution vector
~� goes back to Vapnik ([Vapnik, 1998], pages 418-421). Unlike the work presented here,
Vapnik's result is limited in three ways: (a) the training data must be separable, (b)
it only holds for the special case of hyperplanes passing through the origin, and (c) it
is used to derive bounds on the expected error, not estimators. Jaakola and Haussler
[Jaakkola and Haussler, 1999] present a generalized bound for inseparable data that is
similar to that of Lemma 4. Nevertheless, like Vapnik's bound it is restricted to hyper-
planes passing through the origin and does not apply to regular SVMs. Approximations
to the leave-one-out error of SVMs without guaranteeing an upper bound were recently
proposed in [Wahba, 1999] and [Opper and Winther, 2000]. An additional di�erence is
that their approach requires computing the inverse for part of the Hessian, making it
computationally more expensive.

While Lemma 4 is valid for all kernel functions that return positive values, it is tightest
when the minimum value is zero. The following lemma shows that this can always be
achieved.

Lemma 5 (Invariance of Soft-Margin SVM) The soft-margin SVM is invariant un-
der addition of a real value c to the kernel function.

Proof Let K0 be a kernel function derived from a positive semi-de�nite kernel K by adding
a constant c 2 < to K. Then the soft-margin SVM solution involving K is also a solution
to the soft-margin SVM problem involving K0. The following series of transformations
shows this. Subject to

Pn
i=1 yi�i = 0 it holds for all ~� that

W (~�) = �
nX
i=1

�i +
1

2

nX
i=1

nX
j=1

yiyj�i�j(K(~xi; ~xj) + c) (5.56)

= �
nX
i=1

�i +
1

2

nX
i=1

nX
j=1

yiyj�i�jK(~xi; ~xj) + c

2

nX
i=1

nX
j=1

yiyj�i�j (5.57)

= �
nX
i=1

�i +
1

2

nX
i=1

nX
j=1

yiyj�i�jK(~xi; ~xj) + c

2

nX
i=1

yi�i

nX
j=1

yj�j (5.58)

= �
nX
i=1

�i +
1

2

nX
i=1

nX
j=1

yiyj�i�jK(~xi; ~xj) (5.59)
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Similarly, the resulting classi�cation rules can be shown to be equivalent. For the solution
vector ~�

~w�~x =
nX
i=1

�iyi(K(~xi; ~xj) + c) (5.60)

=
nX
i=1

�iyiK(~xi; ~xj) + c
nX
i=1

�iyi (5.61)

=
nX
i=1

�iyiK(~xi; ~xj) (5.62)

The previous two lemmas and Theorem 5 complete the tools needed to characterize
the bias of the ��-estimator of the error rate.

Theorem 7 (Bias of ��-Estimator of the Error Rate) The ��-estimator of the er-
ror rate is conservatively biased in the following sense

E(Errn��(hL)) � E(Errn�1(hL)) (5.63)

Proof Theorem 5 shows that the leave-one-out estimator Errnloo(hL) of the error rate on
training sets of size n gives an unbiased estimate of the error rate after training on n�1 ex-
amples. After adding a constant c to the kernel function so that minK(~xi; ~x) = 0, the the-
orem follows directly from the bound in Lemma 4 using Lemma 5. The lemma establishes
that Errn��(hL) � Errnloo(hL) with R2 = c +maxK(~x; ~x) and therefore E(Errn��(hL)) �
E(Errn�1(hL)).

In other words, the theorem states that the ��-estimator tends to overestimate the true
error rate. This means that \on average" the estimate is higher than the true error. Given
a low variance of the estimate, it is now possible to guarantee with a certain probability
that the true error is lower than the estimate. Nevertheless, known bounds on the variance
depend on further assumptions about the learner and/or the learning task. Theorem 6
requires that the probability Pr(hnL(~x) 6= hn�1L (~x)) is small. For SVMs this quantity
depends on the learning task. Bounds on the variability of the leave-one-out estimator
presented in [Kearns and Ron, 1997] are independent of the learning task. Assuming that
the learner returns a classi�cation rule with minimum training error, Kearns and Ron
bound the variability based on the VC-dimension of the hypothesis space.

Theorem 8 ([Kearns and Ron, 1997] Bound on the Variability of Errnloo(hL))
Let A be any algorithm performing training error minimization over a hypothesis space h
of VC-dimension d. Then for every � > 0, with probability 1� �,

jErrnloo(hL)�Errn(hL)j �
8
q

(d+1)(ln(9 n=d)+2)
n

�
(5.64)

This bound can easily be used to upper-bound the probability that the ��-estimator un-
derestimates the true error. Nevertheless, the bound would be too loose to be of practical
importance. Therefore, the variability of the ��-estimator will be assessed empirically in
Section 5.4.
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5.2.2 Recall

The presentation of the ��-estimator of the recall follows the structure of the previous
section. First, the estimator is de�ned and then characterized in the following.

De�nition 10 (��-Estimator of the Recall) For stable soft-margin SVMs, the ��-
estimator of the recall is

Recn��(hL) = 1� d+�
n+

with d+� = jfi : yi = 1 ^ (��iR
2
� + �i) � 1gj (5.65)

n+ = jfi : yi = 1gj (5.66)

with � equals 2. ~� and ~� are the solution of optimization problems 4 and 3 (or 6 and 5)
on the training set Sn. R

2
� is an upper bound on c � K(~x; ~x0) � c+ R2

� for all ~x; ~x0 and
some constant c.

d+� is the number of positive training examples for which the inequality (��iR
2
�+�i) �

1 holds. n+ is the number of positive examples in the training sample. The following
lemma states that d+� is an upper bound on the number loo+ of positive examples that
produce a leave-one-out error.

Lemma 6 (Bound on l+� for Stable Soft-Margin SVMs) The number l+� of
leave-one-out errors on positive examples for stable soft-margin SVMs on the training
set Sn, is bounded by

l+� � jfi : yi = 1 ^ (2 �iR
2 + �i) � 1gj (5.67)

~� and ~� are the solution of optimization problems 4 and 3 (or 6 and 5) on the training
set Sn. R

2 is an upper bound on K(~x; ~x) and K(~x; ~x0) � 0.

Proof The proof of Lemma 4 is easily specialized to this case.

l+� can be used to design an almost unbiased estimator of the false positive rate.

Corollary 1 (Leave-One-Out Estimator of the False Positive Rate)
The leave-one-out estimator

Errn+loo(hL) =
l+�
n

(5.68)

gives an almost unbiased estimate of the false positive rate Errn�1+ (hL) = E(Pr(hL(~x) =
�1; y = 1jhL)) in the following sense.

E(Errn+loo(hL)) = E(Errn�1+ (hL)) (5.69)

Proof For the loss function

L+(h(~x); y) =

�
1 y = 1 ^ h(x) = �1
0 else

(5.70)

the risk correspond to the false positive rates. Since Theorem 5 also holds for L+, the
result follows immediately.

Using the common de�nition of bias to characterize the ��-estimator of the recall is
diÆcult. The recall estimate depends on the number of positive training examples in a
non-linear way. The situation is even worse for the precision. Given a classi�cation rule
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that classi�es all examples into the negative class with probability one, the precision is not
de�ned at all. Researchers in information retrieval have worked around this problem by
di�erentiating between micro-averaging and macro-averaging (cf. Section 2.6.4). Macro-
expectation, the analog of macro-averaging, corresponds to the conventional expected
value. In micro-averaging the arguments are averaged before the function is applied.
This removes the artifacts discussed above. The following de�nition generalizes micro-
averaging to the expectation of a function.

De�nition 11 (Micro-Expected Value of a Function) The micro-expected value
Emicro(f(X)) of a function f(x) is de�ned as

Emicro(f(X)) = f(E(X)) (5.71)

The random variable X can be a vector.

It is possible to de�ne micro-expected recall and micro-expected Recn��(hL) now. The
micro-expected recall Emicro(Rec(H)) is

Emicro(Rec(H)) =
E(Pr(h(~x) = 1; y = 1jh))

E(Pr(h(~x) = 1; y = 1jh)) + E(Pr(h(~x) = �1; y = 1jh)) (5.72)

Note that the expectation is over H, the random variable representing the hypotheses.
Similarly, the micro-expected ��-estimate of the recall Emicro(Rec

n
��(hL)) is

Emicro(Rec
n
��(hL)) = 1� E(d+�)

E(n+) (5.73)

The expectation is over training sets of size n. The bias of the ��-estimator in terms of
a micro-expectation is characterized by the following theorem.

Theorem 9 (Bias of the ��-Estimator of the Recall) The ��-estimator of the re-
call Recn��(hL) is conservatively biased in the following sense:

Emicro(Rec
n
��(hL)) � Emicro(Rec

n�1(hL)) (5.74)

Proof Starting with the de�nition of micro expected recall, the following transformations
lead to a more suitable form.

Emicro(Rec(H)) =
E(Pr(h(~x) = 1; y = 1jh))

E(Pr(h(~x) = 1; y = 1jh)) + E(Pr(h(~x) = �1; y = 1jh)) (5.75)

=
E(Pr(h(~x) = 1; y = 1jh))

E(Pr(h(~x) = 1; y = 1jh) + Pr(h(~x) = �1; y = 1jh)) (5.76)

=
E(Pr(h(~x) = 1; y = 1jh))

E(Pr(y = 1jh)) (5.77)

The probability of drawing a positive example is independent of h and the training set,
so Pr(y = 1) = E(Pr(y = 1jh)). Since Pr(h(~x) = 1; y = 1jh) = Pr(y = 1) � Pr(h(~x) =
�1; y = 1jh), it holds that

E(Pr(h(~x) = 1; y = 1jh)) = E(Pr(y = 1)� Pr(h(~x) = �1; y = 1jh)) (5.78)

= E(Pr(y = 1jh)) � E(Pr(h(~x) = �1; y = 1jh)) (5.79)

= Pr(y = 1)� E(Pr(h(~x) = �1; y = 1jh)) (5.80)



78 CHAPTER 5. EFFICIENT PERFORMANCE ESTIMATION

It follows that the micro-expected recall (the expectation is taken over training sets of size
n� 1) is bounded from below by

Emicro(Rec
n�1(hL)) =

E(Pr(hL(~x) = 1; y = 1jhL))
E(Pr(y = 1))

(5.81)

=
Pr(y = 1)� E(Pr(hL(~x) = �1; y = 1jhL))

Pr(y = 1)
(5.82)

= 1� E(Pr(hL(~x) = �1; y = 1jhL))
Pr(y = 1)

(5.83)

� 1�
E(d+�)

n

Pr(y = 1)
(5.84)

= 1� E(d+�)
E(n+) (5.85)

= Emicro(Rec
n
��(hL)) (5.86)

The inequality holds since d+� is an upper bound on l+� (shown in Lemma 6, possibly after
invariant transformation of the kernel function according to Lemma 5), and E(l+�) =
Pr(hL(~x) = �1; y = 1jhL) (shown in Corollary 1).

The theorem shows that the ��-estimate of the recall is \on average" lower than the
true recall in terms of a micro-average. Assuming that the variance of the estimate is low,
Recn��(hL) can be used as a lower bound on the true recall. The variance will be analyzed
empirically in Section 5.4.

5.2.3 Precision

The ��-estimator of the precision is de�ned as follows.

De�nition 12 (��-Estimator of the Precision) For stable soft-margin SVMs, the ��-
estimator of the precision is

Precn��(hL) =
n+ � d+�

n+ � d+� + d�+
with d+� = jfi : yi = 1 ^ (��iR

2
� + �i) � 1gj (5.87)

d�+ = jfi : yi = �1 ^ (��iR
2
� + �i) � 1g (5.88)

n+ = jfi : yi = 1gj (5.89)

with � equals 2. ~� and ~� are the solution of optimization problems 4 and 3 (or 6 and 5)
on the training set Sn. R

2
� is an upper bound on c � K(~x; ~x0) � c+ R2

� for all ~x; ~x0 and
some constant c.

In analogy to d+� the value of d�+ is an upper bound on the number l�+ of leave-
one-out errors on negative training examples.

Lemma 7 (Bound on l�+ for Stable Soft-Margin SVMs) The number l�+ of leave-
one-out errors on negative examples for stable soft-margin SVM on the training sample
Sn, is bounded by

l�+ � jfi : yi = �1 ^ (� �iR
2 + �i) � 1gj (5.90)

~� and ~� are the solution of optimization problems 4 and 3 (or 6 and 5) on the training
set Sn. R

2 is an upper bound on K(~x; ~x) and K(~xi; ~xj) � 0.
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Proof The proof of Lemma 4 is easily specialized to this case.

Like the false positive rate, it is possible to get a leave-one-out estimate of the false
negative rate.

Corollary 2 (Leave-One-Out Estimator for the False Negative Rate) The leave-
one-out estimator

Errn�loo(hL) =
l�+
n

(5.91)

gives an almost unbiased estimate of the false positive rate Errn�1� (hL) = Pr(hL(~x) =
1; y = �1jhL) in the following sense.

E(Errn�loo(hL)) = E(Errn�1� (hL)) (5.92)

Proof For the loss function

L�(h(~x); y) =
�

1 y = �1 ^ h(x) = 1
0 else

(5.93)

the risk correspond to the false negative rates. Since Theorem 5 also holds for L�, the
result follows immediately.

Again, micro-expectation is used to characterize the bias of the estimator. The micro-
expected precision Emicro(Prec(H)) is

Emicro(Rec(H)) =
E(Pr(h(~x) = 1; y = 1jh))

E(Pr(h(~x) = 1; y = 1jh)) + E(Pr(h(~x) = 1; y = �1jh)) (5.94)

and the micro-expected ��-estimate of the precision Emicro(Prec
n
��(hL)) is

Emicro(Prec
n
��(hL)) =

E(n+)� E(d+�)
E(n+)� E(d+�) + E(d�+) (5.95)

Again, the ��-estimator underestimates the true value \on average".

Theorem 10 (Bias of the ��-Estimator of the Precision) The ��-estimator of the
precision Precn��(hL) is conservatively biased in the following sense:

Emicro(Prec
n
��(hL)) � Emicro(Prec

n�1(hL)) (5.96)

Proof Recall from the proof of Theorem 9 that

E(Pr(hL(~x) = 1; y = 1jhL)) = Pr(y = 1)� E(Pr(hL(~x) = �1; y = 1jhL)) (5.97)

� Pr(y = 1)� E(d+�)
n

(5.98)

The following chain of transformations proves the theorem:

Emicro(Prec
n�1(hL)) =

E(Pr(hL(~x) = 1; y = 1jhL))
E(Pr(hL(~x)=1; y=1jhL)) + E(Pr(hL(~x)=1; y=�1jhL)) (5.99)

� Pr(y = 1)� E(d+�)
n

Pr(y = 1)� E(d+�)
n + E(Pr(hL(~x) = 1; y = �1jhL))

(5.100)

� Pr(y = 1)� E(d+�)
n

Pr(y = 1)� E(d+�)
n + E(d�+)

n

(5.101)

=
E(n+)� E(d+�)

E(n+)� E(d+�) + E(d�+) (5.102)

= Emicro(Prec
n
��(hL)) (5.103)
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The �rst inequality holds since d+� is an upper bound on l+� (shown in Lemma 6,
possibly after invariant transformation of the kernel function according to Lemma 5),
and E(l+�) = E(Pr(hL(~x) = �1; y = 1jhL)) (shown in Corollary 1). The second in-
equality holds since d�+ is an upper bound on l�+ (shown in Lemma 7), and E(l�+) =
E(Pr(hL(~x) = 1; y = �1jhL)) (shown in Corollary 2).

5.2.4 F1-Measure

The following de�nes an estimator of the F1-measure.

De�nition 13 (��-Estimator of the F1-Measure) For stable soft-margin SVMs, the
��-estimator of the F1-measure is

F1n��(hL) =
2 n+ � 2 d+�

2 n+ � d+� + d�+
with d+� = jfi : yi = 1 ^ (��iR2

� + �i) � 1gj (5.104)

d�+ = jfi : yi = �1 ^ (��iR
2
� + �i) � 1g (5.105)

n+ = jfi : yi = 1gj (5.106)

with � equals 2. ~� and ~� are the solution of optimization problems 4 and 3 (or 6 and 5)
on the training set Sn. R

2
� is an upper bound on c � K(~x; ~x0) � c+ R2

� for all ~x; ~x0 and
some constant c.

De�ning micro-expected F1 in analogy with precision and recall, it is again possible
to show that the ��-estimator is \on average" below the true value.

Theorem 11 (Bias of the ��-Estimator of the F1-Measure) The ��-estimator of
the F1-measure F1n��(hL) is conservatively biased in the following sense:

Emicro(F1
n
��(hL)) � Emicro(F1

n�1(hL)) (5.107)

Proof The following chain of transformations proves the theorem. It starts with the
micro-expectation of F1, and then uses corollaries 2 and 1 in combination with lemmas
6, 7, and 5.

Emicro(F1
n�1(hL))

=
2E(Pr(hL(~x)=1; y=1jhL))

2E(Pr(hL(~x)=1; y=1jhL))+E(Pr(hL(~x)=�1; y=1jhL))+E(Pr(hL(~x)=1; y=�1jhL))

� 2 (Pr(y=1)� E(d+�)
n )

2 (Pr(y=1)� E(d+�)
n ) + E(Pr(hL(~x)=�1; y=1jhL)) + E(Pr(hL(~x)=1; y=�1jhL))

� 2 Pr(y = 1)� 2 E(d+�)
n

2 Pr(y = 1)� E(d+�)
n + E(d�+)

n

=
2 E(n+)� 2 E(d+�)

2 E(n+)� E(d+�) + E(d�+)
=Emicro(F1

n
��(hL))
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5.3 Fast Leave-One-Out Estimation

The eÆciency of the ��-estimators is bought at the expense of a conservative bias. At the
other end of the spectrum, conventional leave-one-out estimators are essentially unbiased,
but computationally very ineÆcient. Is it possible to remove the conservative bias of ��-
estimators at only a small increase of computational expense?

Lemma 4 direcly implies the following relationship:

(��iR
2
� + �i) < 1)

h
hnt(~xt) = yt

i
(5.108)

If (��iR
2
� + �i) < 1 holds, then the example (~xi; yi) does not produce a leave-one-out

error. It is not necessary to perform actual leave-one-out testing for such examples. The
observation of (��iR

2
� + �i) < 1 after training on the complete sample is suÆcient to

deduce that the corresponding example will not produce a leave-one-out error.
Similarly, examples corresponding to training errors are a priori determined. The

following lemma shows that each training error will also produce a leave-one-out error.

Lemma 8 For any soft-margin SVM on a training set Sn it holds that training errors
also produce leave-one-out errors.

(�t > 1) =)
h
hnt(~xt) 6= yt

i
(5.109)

Proof Let ~w; b; �1; : : : ; �n be the solution of the primal SVM training problem on the
whole sample Sn. Similarly, let ~wt; bt; �t1; : : : ; �

t
t�1; : : : ; �tt+1; : : : ; �

t
n be the solution on the

sample S
nt
n with the t-th example held out. The following chain of inequalities holds.

1

2
~w � ~w + C

X
i6=t

�i + C�t � 1

2
~wt � ~wt +C

X
i6=t

�ti + C
j
1� yt

h
~wt � ~xt + bt

ik
(5.110)

� 1

2
~w � ~w + C

X
i6=t

�i + C
j
1� yt

h
~wt � ~xt + bt

ik
(5.111)

Note that hnt(~xt) makes a leave-one-out error on example t exactly when yt
�
~wt � ~xt + bt

�
<

0. Using basic algebraic transformations and exploiting that �t > 1 for training errors it
follows:

1

2
~w � ~w + C

X
i6=t

�i + C�t � 1

2
~w � ~w + C

X
i 6=t

�i + C
j
1� yt

h
~wt � ~xt + bt

ik
(5.112)

, �t �
j
1� yt

h
~wt � ~xt + bt

ik
(5.113)

) 1 < 1� yt
h
~wt � ~xt + bt

i
(5.114)

) 0 < yt
h
~wt � ~xt + bt

i
(5.115)

The lemma shows that it is not necessary to perform actual leave-one-out testing for
training errors. Both condition (5.108) and condition (5.109) can potentially identify
many examples where re-training the SVM can be avoided. This puts computing the
exact leave-one-out quantities l++, l+�, l�+, and l�� of the leave-one-out contingency
table corresponding to De�nition 1 into the range of practical tractability. By how much
these conditions speed up exact leave-one-out estimation is evaluated experimentally in
the following section.
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5.4 Experiments

The following experiments explore how well the ��-estimators work in practice and by
how much exact leave-one-out estimation can be sped up. The evaluation is done on the
three text-classi�cation tasks Reuters, WebKB, and Ohsumed. Unless noted otherwise,
the setup described in Section 2.7 is used. The results for Reuters are discussed in detail.
The �ndings are validated on the other two collections.

Two values for the parameter � are evaluated in the following, namely � = 2 and
� = 1. The setting � = 2 is a direct consequence of Lemma 4, while the setting � = 1 is
suggested as a better choice for text classi�cation by the following argument. The factor
� = 2 in the ��-estimates was introduced to upper bound the expressions

1

2

X
i2SV nt

X
j2SV nt

�i�jK(~xi; ~xj) (5.116)

and

1

2

X
i2SV t

X
j2SV t

�i�jK(~xi; ~xj) (5.117)

in the proof of Lemma 4. In the worst case, each expression can be 1
2�

2
tR

2 as argued above.
For this worst case to happen, it is necessary that the number of support vectors is very
small or that all support vectors have identical feature vectors ~xi. For text-classi�cation
problems the opposite is true. There are many support vectors and many of them are
almost orthogonal. This means that most entries in the corresponding part of the Hesse-
matrix are small or zero for the linear kernel. Consequently (5.116) and (5.117) are close
to zero, leading to a ��-estimate with � � 1 instead of � = 2. Similar arguments can be
made also for non-linear kernels that are based on the dot-product. In the following, the
validity of � = 1 is also veri�ed experimentally.

Unless noted otherwise, the following results are averages over 10 random test/training
splits and the variance around each average is estimated. Training and test set are
designed to be of equal size, in order to be able to compare variance estimates. The
��-estimators are applied to the SVM trained on the training set. The test set is used
to get a hold-out estimate as an approximation to the true parameter. For simplicity
reasons, all results in this section are for linear SVMs with C = 0:5. This value of C
was selected by the ��-estimates in model-selection experiments (see Chapter 6). Clearly,
this is the setting of prime interest, since it produces the �nal classi�cation rule. No
preprocessing like stemming or stopword removal is performed and all words that occur
in at least 3 training documents are used as features. These features are TFIDF weighted
[Salton and Buckley, 1988]. The resulting document vectors are normalized to unit length.
This implies R� = 1. Experiments with non-linear SVMs can be found in Chapter 6.

5.4.1 How Large are Bias and Variance of the ��-Estimators?

Figure 5.1 illustrates the results for the Reuters dataset with � = 1. The �ndings are
as expected. The ��-estimators overestimate the true error and underestimate precision,
recall, and F1 as predicted. For the 100 experiments (10 splits for 10 classes) the estimate
of the error was lower than the error measured on the hold-out set in 3 cases. The
estimated recall was higher in only 1, precision in 15, and F1 in 2 experiments. Since the
average ��-estimates are generally close to the average hold-out estimates, this indicates
a small variance of the ��-estimate, in particular, since the hold-out estimate is subject
to variance, too.
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Figure 5.1: Diagrams comparing average ��-estimate (� = 1) of the error, the recall, the
precision, and the F1-measure with the average true error, true recall, true precision, and
true F1 measured on a hold-out set for the ten most frequent Reuters categories.
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Err��(h) F1��(h)
Errtest(h) Errloo(h) � = 1 � = 2 F1test(h) F1loo(h) � = 1 � = 2

earn 1.87 � 0.15 2.14 � 0.08 2.68 � 0.08 6.79 � 0.21 96.9 � 0.2 96.4 � 0.1 95.4 � 0.1 88.3 � 0.4
acq 2.53 � 0.20 2.54 � 0.14 3.54 � 0.16 12.99 � 0.28 93.1 � 0.4 92.9 � 0.4 90.0 � 0.5 62.5 � 1.2
money-fx 1.92 � 0.14 2.05 � 0.10 2.67 � 0.12 5.38 � 0.22 80.9 � 1.4 79.6 � 1.3 73.0 � 1.4 44.2 � 1.8
grain 0.82 � 0.11 0.95 � 0.10 1.23 � 0.09 3.20 � 0.19 89.9 � 1.2 88.5 � 1.5 84.7 � 1.2 57.9 � 2.0
crude 1.30 � 0.10 1.22 � 0.04 1.58 � 0.08 3.69 � 0.20 83.9 � 1.3 84.9 � 0.8 80.6 � 1.0 52.6 � 2.1
trade 1.42 � 0.10 1.58 � 0.13 1.99 � 0.11 3.80 � 0.15 78.3 � 1.6 76.7 � 1.9 70.0 � 1.7 41.4 � 1.9
interest 1.67 � 0.20 1.76 � 0.17 2.20 � 0.18 4.19 � 0.26 73.6 � 3.4 72.2 � 3.7 64.5 � 4.4 32.8 � 4.6
ship 0.96 � 0.13 1.06 � 0.10 1.23 � 0.10 2.21 � 0.08 74.0 � 2.9 68.8 � 4.0 62.7 � 5.0 26.6 � 3.5
wheat 0.65 � 0.08 0.71 � 0.08 0.91 � 0.07 1.79 � 0.14 82.3 � 1.4 81.7 � 1.4 75.6 � 1.2 52.2 � 1.9
corn 0.71 � 0.06 0.73 � 0.05 0.90 � 0.05 1.72 � 0.12 76.1 � 1.3 75.6 � 1.5 68.1 � 3.6 37.6 � 2.2

Rec��(h) Prec��(h)
Rectest(h) Recloo(h) � = 1 � = 2 Prectest(h) Precloo(h) � = 1 � = 2

earn 94.8 � 0.5 93.7 � 0.3 92.3 � 0.3 84.4 � 0.4 99.1 � 0.1 99.2 � 0.1 98.8 � 0.1 92.7 � 0.5
acq 92.5 � 0.5 91.3 � 0.7 88.1 � 0.8 59.3 � 1.4 93.6 � 0.7 94.6 � 0.4 92.1 � 0.4 66.0 � 1.2
money-fx 73.6 � 2.4 71.9 � 1.8 64.9 � 2.0 38.4 � 2.0 89.8 � 1.9 89.1 � 1.6 83.4 � 1.4 52.1 � 1.8
grain 82.7 � 2.1 79.9 � 2.4 74.4 � 1.7 48.1 � 2.0 98.5 � 0.5 99.1 � 0.5 98.2 � 0.8 72.8 � 1.8
crude 76.6 � 2.6 76.9 � 1.6 72.5 � 1.7 45.3 � 2.1 92.7 � 1.2 94.8 � 0.8 90.9 � 1.0 62.8 � 2.4
trade 70.0 � 2.4 67.6 � 2.8 60.4 � 2.1 34.7 � 1.8 89.0 � 1.5 88.8 � 0.9 83.5 � 1.3 51.2 � 2.2
interest 63.8 � 4.3 61.8 � 5.1 54.0 � 5.2 27.5 � 4.2 87.2 � 2.8 87.2 � 2.3 80.2 � 2.9 40.8 � 5.0
ship 61.2 � 3.9 54.0 � 5.3 47.5 � 5.6 18.2 � 2.6 93.8 � 2.5 95.6 � 1.5 93.3 � 1.9 49.4 � 5.2
wheat 71.1 � 2.3 70.4 � 1.6 62.8 � 1.8 43.2 � 1.8 97.8 � 1.0 97.5 � 1.3 95.0 � 1.5 65.8 � 2.7
corn 61.8 � 1.7 61.3 � 2.3 52.4 � 4.1 28.1 � 2.1 99.1 � 0.6 98.7 � 0.8 97.3 � 1.8 57.1 � 3.2

Table 5.1: Table comparing average ��-estimate and leave-one-out estimate of the error,
the recall, the precision, and the F1 with the average true error, true recall, true precision,
and true F1 for the ten most frequent Reuters categories. The \true" values are estimated
from a hold-out set of the same size as the training set (6451 examples each). All values
are averaged over 10 random test/training splits exhibiting the standard deviation printed
after each average.

This is also supported by Table 5.1, which gives additional details on the results. The
table contains the ��-estimates with � = 1 and with � = 2, as well as the exact leave-
one-out estimates. For � = 2 the ��-estimates are substantially more biased than for
� = 1. Yet, for � = 1 the criterion is still exact. Comparing to an exact leave-one-out via
repeated retraining, over all 90 categories and 10 di�erent test/training splits the � = 1
criterion never missed a true leave-one-out error.

The conservative bias is not entirely due to the properties of the ��-estimators. Table
5.1 shows that, surprisingly, the exact leave-one-out estimates appear to be biased as
well. My conjecture is that this bias is due to the experimental setup of selecting the
attributes of the feature vector based on the training data. This implies that training and
test vectors are not strictly i.i.d.

After each average, the table includes an estimate of the standard deviation. The
standard deviation of the ��-estimates is very similar to that of the leave-one-out esti-
mates, especially for � = 1. This shows that, in terms of variance, the ��-estimates are
as good as exact leave-one-out.

To make sure that the ��-estimators are not tailored to the properties of the Reuters
dataset, but apply to a wide range of text-classi�cation tasks, similar experiments were
conducted also for the WebKB dataset (Table 5.2) and the Ohsumed data (Table 5.3).
For both collections, the results are qualitatively the same as for Reuters.

The conclusion from this experiment is that for text classi�cation the ��-estimates
with � = 1 are preferable over those with � = 2. The ��-estimates with � = 1 exhibit a
moderate conservative bias and a variance equivalent to the exact leave-one-out estimate.
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Err��(h) F1��(h)
Errtest(h) Errloo(h) � = 1 � = 2 F1test(h) F1loo(h) � = 1 � = 2

course 2.43 � 0.34 2.75 � 0.26 3.48 � 0.30 11.93 � 0.47 94.2 � 0.8 93.4 � 0.7 91.6 � 0.7 68.9 � 1.4
faculty 9.80 � 0.33 11.19 � 0.51 13.40 � 0.64 31.98 � 0.78 79.0 � 0.7 74.7 � 1.4 68.9 � 1.8 28.4 � 1.9
project 7.75 � 0.34 8.69 � 0.40 9.56 � 0.46 14.80 � 0.23 53.3 � 3.1 44.4 � 3.8 35.9 � 4.8 3.6 � 1.4
student 7.64 � 0.36 7.95 � 0.42 10.14 � 0.59 32.42 � 0.50 89.9 � 0.4 89.5 � 0.6 86.4 � 0.8 55.9 � 0.8

Rec��(h) Prec��(h)
Rectest(h) Recloo(h) � = 1 � = 2 Prectest(h) Precloo(h) � = 1 � = 2

course 90.7 � 1.2 88.7 � 1.0 85.9 � 1.2 60.0 � 1.8 98.0 � 0.5 98.7 � 0.4 98.0 � 0.3 81.0 � 1.2
faculty 69.2 � 1.0 61.8 � 1.7 55.7 � 2.2 23.8 � 1.7 92.2 � 1.3 94.5 � 1.3 90.5 � 1.2 35.3 � 2.2
project 37.0 � 3.1 29 � 3.1 22.4 � 3.6 2.3 � 0.9 95.9 � 1.2 95.2 � 1.5 91.3 � 2.5 8.2 � 3.0
student 87.0 � 0.4 86.1 � 1.0 82.3 � 0.9 52.5 � 1.1 93.0 � 0.6 93.2 � 0.8 90.9 � 0.7 59.8 � 0.6

Table 5.2: Same as Table 5.1, but for the WebKB dataset. The training/test sets contain
2092 examples.

Err��(h) F1��(h)
Errtest(h) Errloo(h) � = 1 � = 2 F1test(h) F1loo(h) � = 1 � = 2

Pathology 18.56 � 0.36 18.79 � 0.24 20.96 � 0.22 33.33 � 0.50 39.1 � 1.4 37.5 � 1.7 29.5 � 1.6 9.3 � 0.7
Cardiovascular 7.13 � 0.15 7.23 � 0.21 8.73 � 0.24 15.41 � 0.25 74.1 � 0.7 73.0 � 1.3 66.7 � 1.3 41.7 � 1.1
Neoplasms 5.42 � 0.14 5.56 � 0.13 6.51 � 0.15 11.77 � 0.21 78.8 � 0.6 78.2 � 0.7 73.8 � 0.7 52.1 � 0.9
Nervous System 7.31 � 0.15 7.42 � 0.22 8.41 � 0.21 13.22 � 0.19 53.6 � 1.2 51.2 � 2.3 42.8 � 2.5 15.5 � 1.3
Immunologic 5.28 � 0.22 5.33 � 0.14 6.04 � 0.19 9.37 � 0.29 60.5 � 1.0 59.4 � 1.0 52.3 � 1.1 27.3 � 1.3

Rec��(h) Prec��(h)
Rectest(h) Recloo(h) � = 1 � = 2 Prectest(h) Precloo(h) � = 1 � = 2

Pathology 25.8 � 1.3 24.3 � 1.5 18.9 � 1.2 7.4 � 0.6 81.2 � 2.1 82.0 � 0.9 67.0 � 1.0 12.6 � 0.9
Cardiovascular 64.0 � 0.8 62.0 � 1.7 55.3 � 1.5 34.9 � 1.1 88.0 � 0.8 88.9 � 0.6 84 � 1.0 51.8 � 1.1
Neoplasms 67.3 � 0.8 66.0 � 1.0 60.7 � 1.0 42.4 � 1.0 95.2 � 0.6 95.8 � 0.4 94.0 � 0.4 67.6 � 1.0
Nervous System 38.3 � 1.3 36.0 � 2.4 29.0 � 2.3 11.2 � 1.0 89.6 � 1.5 89.4 � 0.8 82.0 � 1.1 25.4 � 1.8
Immunologic 45.4 � 1.2 44.0 � 1.0 37.5 � 1.1 19.8 � 1.1 90.8 � 1.0 91.3 � 0.8 86.8 � 1.2 43.6 � 1.6

Table 5.3: Same as Table 5.1, but for the Ohsumed dataset and a training/test set size
of 10000.

5.4.2 What is the In
uence of the Training Set Size?

All results presented so far were for large training sets containing more than 2000 exam-
ples. Do the estimators work for smaller training sets as well? Figures 5.2 to 5.4 show
learning curves for the Reuters categories \earn", \acq", and \money-fx". To save space,
only error rate and F1 are plotted, since precision and recall behave similarly to F1.
The top two curves of each graph show the average ��-estimate and the average hold-out
estimate on an additional test set of the same size as the training set. The averages are
over 20 random training/test splits. Except for very small training sets, the graphs show
no strong systematic connection between bias (i. e. the di�erence between the top two
curves of each graph) and the training set size. For small training sets, the SVM behaves
almost like the default classi�er for \acq" and \money-fx". In this situation the average
��-estimate and the hold-out estimate are almost equal. In terms of variance, the training
set size has a strong in
uence on both the hold-out estimate and the ��-estimate. The
bottom two curves of each graph show the empirical standard deviation of each estimator.
As expected, the variance increases with decreasing training set size. Nevertheless, when
moving to very small training sets, the variance decreases again. This is a consequence of
the SVM behaving more and more like the default classi�er. Interestingly, the variance
curves of the ��-estimator are very similar to those of the hold-out estimator.
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Figure 5.2: Learning curves for the Reuters category \earn" comparing the ��-estimator
of the error rate (left) and the F1 (right) with hold-out testing. The x-axis denotes
the size of the training set on a log-scale. Each test set for hold-out testing contains
as many examples as the corresponding training set. All values are averages over ten
random test/training splits. The upper curves show the average, the lower curves show
the standard deviation. Individual data points are connected to improve readability.
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Figure 5.3: Same as Figure 5.2, but for the Reuters category \acq".
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Figure 5.4: Same as Figure 5.2, but for the Reuters category \money-fx".
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cpu-time (sec) retraining steps (%)
� = 1 � = 2 � = 1 � = 2

Reuters 11.1 32.3 0.20% 0.58%

WebKB 78.5 235.4 6.78% 20.42%

Ohsumed 433.0 1132.3 1.07% 2.56%

Table 5.4: CPU-time and percentage of leave-one-out retraining steps that actually need
to be performed averaged over all categories. The training set size is 6451 for Reuter,
2092 for WebKB, and 10000 for Ohsumed. The value of C is 0:5 for a linear SVM.

5.4.3 How Large is the EÆciency Improvement for Exact Leave-One-
Out?

Section 5.3 proposed how exact leave-one-out estimation can be sped up for support
vector machines. The results in Table 5.4 show by how much eÆciency can be improved
compared to the standard brute-force method. The performance gain is largest for � = 1.
Averaged over all the Reuters categories, only 0.2% of the retraining steps need to be
computed (i.e. for 99.8% of the training examples the criteria from Section 5.3 imply
the result without retraining). For 6451 Reuters articles in the training set, the exact
leave-one-out quantities can now be computed in 11.1 CPU-seconds on average using a
Sun Ultra/400Mhz. The performance gains on the other collections are smaller, but still
substantial.

With � = 2 the criterion is more conservative about ruling out leave-one-out errors.
This is re
ected in a smaller speed-up. However, the criterion with � = 1 is suÆcient for
text. There was not a single case among all collections and all test/training splits, where
the criterion with � = 1 failed to identify a leave-one-out error. This veri�es that � = 1
is appropriate for text classi�cation.

5.5 Summary and Conclusions

This chapter explores two approaches to estimating the generalization performance of an
SVM with varying degree of computational eÆciency.

The �rst approach leads to estimators that do not require any computation inten-
sive resampling. These new ��-estimators are much more eÆcient than cross-validation
or bootstrap, since they can be computed immediately from the form of the hypothesis
returned by the SVM. Moreover, the ��-estimators developed here address the special
measures used to evaluate text-classi�cation performance. They can not only be used to
estimate the error rate, but also the recall, the precision, and the F1. A theoretical analy-
sis of the estimators shows that they tend to be conservative. This is a desirable property
for practical applications, since they are less likely to falsely predict a high generalization
performance. In addition to the theoretical analysis, the bias and the variance of the
estimates are evaluated experimentally on three text-classi�cation collections. As pre-
dicted by the theory, the empirical results show a conservative bias for all ��-estimators.
Typically, the bias is acceptably low and the variance of the ��-estimates is essentially as
low as that of a leave-one-out estimator.

While a conservative bias is tolerable for many tasks, this chapter also explores a
second approach that removes the bias at only a moderate computational expense. The
criteria that lead to the ��-estimators can also be used to speed up computing the exact
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leave-one-out quantities of the SVM. This makes it possible to perform exact leave-one-out
estimation even on large data sets. Depending on the application, this gives the option
of removing the bias when computational eÆciency is less important.

In Chapter 6 the ��-estimators and the exact leave-one-out estimators are success-
fully used to perform automatic model and parameter selection. In other work it was
shown that ��-estimators can be used to eÆciently and e�ectively detect concept drift
[Klinkenberg and Joachims, 2000].
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Chapter 6

Inductive Text Classi�cation

After giving the theoretical motivation and justi�cation for the maximum-margin ap-
proach to text classi�cation in the previous two chapters, this chapter evaluates its em-
pirical performance. It also addresses practical issues related to selecting a good repre-
sentation and an appropriate parameter setting.

In particular, the following explores the use of inductive SVMs for text classi�cation.
The alternative scenario of transduction is treated in Chapter 7. The goal in inductive
learning is to infer a general classi�cation rule from a sample of labeled training docu-
ments. This classi�cation rule should classify new examples with high accuracy. Inductive
text classi�cation is a two step process. In the �rst step the learner uses the training data
to induce a classi�cation rule. This step is commonly called the learning phase. In the
classi�cation phase, the second step, the classi�cation rule is repeatedly used to classify
new examples. Typical inductive text-classi�cation tasks are the following:

EMail Routing: At a service hotline there can be multiple experts specialized in di�er-
ent �elds. Each incoming email message should be routed to the appropriate expert
by content. This is a multi-class text-classi�cation task. As soon as a new mes-
sage arrives, it has to be classi�ed. The training data consists of previous messages
labeled by who gave a competent answer.

Call Center Support: Based on speech recognition or by transcript of the user's prob-
lem, text classi�cation can identify answers to commonly asked questions [Hammond
et al., 1995][Busemann et al., 2000]. Again, the classi�cation has to be done in real-
time and for each individual query. The classi�cation rule can be learned from
previous question/answer pairs.

Browsing Assistants: Web agents like Letizia [Lieberman, 1995] and WebWatcher
[Joachims et al., 1997][Mladeni�c, 1998][Joachims and Mladeni�c, 1998] assist users
browsing the web. When the user comes to a new page, the assistant may e.g.
highlight particularly interesting hyperlinks. This can again be cast as a text-
classi�cation problem based on the anchor texts. As soon as the user enters a new
page, the classi�cation rule must provide a decision. This rule can be learned by
observing which hyperlinks the user followed on previous pages.

In this chapter I will show that SVMs are an e�ective and robust method for learn-
ing text classi�ers from examples. The advantage of SVMs is twofold. First, they show
substantially improved generalization performance over conventional text-classi�cation
techniques. Second, the SVM is robust over a wide range of parameters and does not
require a statistical feature selection step. Furthermore, to select between parameters
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and design choices such as word-weighting scheme, use of stemming, and model param-
eters automatically, I will propose and evaluate model-selection methods that exploit
special properties of SVMs for increased eÆciency. This is particularly important if the
SVM has to works autonomously without manual expert interventions and with limited
computational resources.

This chapter is structured as follows. First, the formal de�nition of inductive text
classi�cation is reviewed. Based on the theoretical results of Chapter 5, Section 6.2
then proposes two methods for automatic model and parameter selection. They are
evaluated experimentally on three test collections in Section 6.3. The performance of the
resulting models is then compared to the results of conventional learning methods for text
classi�cation. The automatically selected models substantially outperforms conventional
methods, giving state-of-the-art performance.

6.1 Learning Task

The goal in inductive text classi�cation is to infer a general classi�cation rule from a
sample of labeled training documents. This classi�cation rule should classify new examples
with maximum accuracy. More formally, the learner L is given a training set S of n
examples

(~x1; y1); : : : ; (~xn; yn) (6.1)

drawn i.i.d. from an unknown distribution Pr(~x; y) describing the classi�cation task. Each
example consists of a feature vector ~x and a class label y. Here, the standard bag-of-words
representation (see Section 2.2) is used for ~x. For the label y, let us assume for simplicitly
that it takes only the values +1 and �1. Non-binary classi�cation tasks can be handled
as a series of binary classi�cations (see Section 2.1.2). Using the training sample S, the
learner L aims to �nd a classi�cation rule hL = L(S) that maximizes a given performance
measure. This measure typically depends on Pr(~x; y) and cannot be computed directly.
Commonly, (one minus) the probability of error on new examples is used as a performance
measure.

Err(hL) = Pr(hL(~x) 6= yjhL) =
Z
L0=1(hL(~x); y)dPr(~x; y) (6.2)

However, in text classi�cation, precision, recall, or F1 on unseen test data are often more
suitable and replace or augment the evaluation by error rate alone. In the following,
the precision/recall breakeven point (PRBEP) (see Section 2.6) is used as the evaluation
criterion.

6.2 Automatic Model and Parameter Selection

Designing the learning task is a crucial step in applying machine learning successfully. It
is necessary to e.g. select an appropriate representation, a matching hypothesis space,
and a good parameter setting of the learner. These design choices model essential prior
knowledge about the learning task.

For text classi�cation, there is already a fairly small set of design choices that were
proven useful across di�erent tasks. However, while text-classi�cation problems are a
somewhat restricted class of learning tasks, they still o�er some variability. It is not clear if
there is a single representation and parameterization that will work well in every situation.
Representational changes, like the use of term weighting, can make a substantial di�erence
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in generalization performance and learning speed. Furthermore, depending on the level of
noise in the data, it is necessary to set (pruning/regularization) parameters appropriately.
To successfully apply machine learning to text classi�cation in real-world applications, we
therefore need methods that select an appropriate model and good parameter settings for
the particular task at hand. The term model selection (see e.g. [Forster, 2000]) refers
to the problem of selecting good learning parameters from a small set of choices based
on training data. Such model-selection methods have to work under the following set of
constraints.

Autonomy: The model-selection method needs to be formalized to a level that allows
applying it without manual interventions. Especially with learning capabilities built
into desktop applications like email readers or word processors, parameter tuning
through a human expert is intractable.

Data Efficiency: Training data is expensive and the model-selection algorithm should
make eÆcient use of it.

Computational Efficiency: The model-selection algorithm must be able to work un-
der restricted computational resources and time constraints.

Model-selection methods are usually based on estimates or bounds on the generaliza-
tion performance. This chapter compares two model-selection strategies. The �rst one is
based on the leave-one-out method. Leave-one-out is known to provide good estimates at
high computational expense. The second model-selection strategy uses the ��-estimators
introduced in Chapter 5. These estimators can be computed at essentially no extra cost
besides training a single SVM. However, they are known to incur a conservative bias. The
following de�nes and evaluates the corresponding model-selection strategies.

6.2.1 Leave-One-Out Estimator of the PRBEP

The leave-one-out procedure [Stone, 1974][Lunts and Brailovskiy, 1967] can be used to
get an estimate

label y = +1 label y = �1
pediction h(~x) = +1 l++ l+�
pediction h(~x) = �1 l�+ l��

of the contingency table (see Section 2.6). Leave-one-out estimation proceeds as follows.
From the training sample S = ((~x1; y1); � � � ; (~xn; yn)) the �rst example (~x1; y1) is removed.
The resulting sample Sn1 = ((~x2; y2); � � � ; (~xn; yn)) is used for training, leading to a classi-
�cation rule h

n1
L . This classi�cation rule is tested on the held-out example (~x1; y1). If the

example is classi�ed incorrectly it is said to produce a leave-one-out error. This process
is repeated for all training examples. The frequencies of correct and false predictions are
recorded in the contingency table.

Based on this contingency table, the leave-one-out estimates of the precision and recall
are

Recnloo(hL) =
l++

l++ + l�+
(6.3)

Precnloo(hL) =
l++

l++ + l+�
(6.4)

It is also possible to design estimators for combined measures like F1 and the PRBEP .
While this is straightforward for F1 (see Chapter 5), the PRBEP requires interpolation.
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Following the common approach of approximating the PRBEP by the arithmetic mean
of precision and recall (i.e. PRAV G) [Dumais et al., 1998], one comes to the following
estimator

PRAV Gn
loo(hL) =

1

2
(Recnloo(hL) + Precnloo(hL)) (6.5)

This estimator is used in the following experiments. The estimates are computed using
the algorithm described in Section 5.3.

6.2.2 ��-Estimator of the PRBEP

While the leave-one-out estimates are usually very accurate, they are expensive to com-
pute. For a general learner and a training sample of size n, one must run the learner n
times. While the algorithm described in Section 5.3 exploits special properties of SVMs
to greatly speed up this process, computing the exact leave-one-out can still be too in-
eÆcient in many practical applications. ��-estimators overcome this problem by using
an upper bound on the number of leave-one-out errors instead of calculating them brute
force. Unlike the leave-one-out, ��-estimates can be computed after training a single
SVM at essentially no extra cost. However, the improved computational eÆciency is
traded against a bias.

��-estimators owe their name to the two arguments they are computed from. ~� is
the vector of training losses at the solution of the primal SVM training problem. ~� is
the solution of the dual SVM training problem. Based on these two vectors | both are
available after training the SVM at no extra cost | the ��-estimators are de�ned using
the following two counts. With R2

� being the maximum di�erence of any two elements of
the Hessian, (i.e. c � K(~x; ~x0) � c+R2

�),

d+� = jfi : yi = 1 ^ (�iR
2
� + �i) � 1gj (6.6)

counts the number of positive training examples, for which the quantity �iR
2
�+�i exceeds

one. Similarly,

d�+ = jfi : yi = �1 ^ (�iR2
� + �i) � 1gj (6.7)

counts the respective number of negative training examples. It is proven in Chapter 5
that d+� is an approximate upper bound on the number l�+ of leave-one-out errors on
positive examples. Analogously, d�+ is an approximate upper bound on the number l+�
of negative leave-one-out errors.

It is now possible to de�ne ��-estimators for precision and recall. With n as the total
number of training examples and n+ as the number of positive training examples, the
estimators are

Recn��(hL) = 1� d+�
n+

(6.8)

Precn��(hL) =
n+ � d+�

n+ � d+� + d�+
(6.9)

Like for the leave-one-out, the PRBEP is approximated by the arithmetic mean of pre-
cision and recall. The following summarizes the ��-estimator of the PRAV G.

PRAV Gn
��(hL) =

1

2

�
1� d+�

n+
+

n+ � d+�
n+ � d+� + d�+

�
(6.10)

The theoretical properties of the ��-estimators are discussed in Chapter 5.
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6.2.3 Model-Selection Algorithm

The resulting model-selection algorithm | used here for maximizing PRAV G as an
approximation to PRBEP | is straightforward and does not di�er from those using
other estimation methods. Input to the algorithm is a �nite set M of models (parameter
values, di�erent representations) and a training sample Sn.

� for each model mi 2M

{ train SVM on Sn using model mi

{ calculate PRAV Gn
��(hL) / PRAV Gn

loo(hL) and store as pi

� output model mi for which pi is highest.

The algorithm ouputs the model with the highest performance estimate pi. Note that
even if pi is unbiased for mi, maxfpig is not an unbiased estimate of the performance of
the model output by the selection algorithm.

6.3 Experiments

The experiments show the complete learning and model-selection process for three di�er-
ent test collections | namely Reuters, WebKB, and Ohsumed, using the setup described
in Section 2.7. To improve computational eÆciency, a two step approach is chosen.

In a �rst model-selection step, an appropriate representation is chosen. Design choices
are all combinations of word-weighting method (binary, raw term frequency, and TFIDF
weighting from Section 2.4), use of stemming, and use of stopword removal. In the second
step the representation remains �xed, while other parameters of the SVM are selected.

The following experiments are performed for systematic test/training splits. On the
Reuters task, this is the ModApte setup. It splits documents into those before and after a
certain date. On the WebKB data the split is done by source. All pages from Cornell Uni-
versity are used for testing, while the other pages are used for training. Please note that
this realistic setup makes model selection more diÆcult than with random subsampling.
The classi�cation task is likely to change over time and pages from di�erent universi-
ties underlie di�erent corporate design formats. Nevertheless, this setup is preferable to
random subsampling since it better re
ects the true challenges in real-world applications.

6.3.1 Word Weighting, Stemming and Stopword Removal

Table 6.1 compares ��-estimates and the leave-one-out for selecting the representation.
The choice is between all 12 combinations of of word-weighting method, stopword removal,
and stemming using a linear SVM with C = 1000. An individual representation is selected
for each category. The resulting test set performance is macro-averaged over all categories.

The column \random" provides a baseline. It shows the macro-averaged performance
over all categories and models for each collection. The ten most frequent categories for the
Reuters data sets are also evaluated separately. This is done to get some insight into the
relative behavior of the model-selection methods on high and low-frequency categories.
The columns PRAV G�� and PRAV Gloo show the macro-averaged performance of the
model selected by the respective model-selection criterion. On all collections, the model
selected by both leave-one-out and the ��-estimates achieve a higher macro-averaged
predictive performance on the test set than the random baseline. Using a paired t-test
on the mean shows that the di�erence is signi�cant for Reuters and Ohsumed. Avoiding
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selecting word weighting, macroavg. PRAVGtest of selection by
stemming, and stopword removal random PRAVG�� PRAVGloo optimum

Reuters (top 10) 81.2 82.0 82.9 84.6

Reuters (all 90) 50.5 54.7 55.2 62.9

WebKB 81.3 84.6 85.3 87.7

Ohsumed 61.2 65.3 65.8 66.5

Table 6.1: Relative performance of model-selection methods for selecting the word-
weighting scheme, the choice of stemming, and the use of stopword removal. All per-
formance scores are macro-averages of the precision/recall average. The table compares
random selection to the ��-estimate and the leave-one-out estimate. The column optimum
shows the average over the highest PRAV Gtest on the test set.

stemming no yes no yes
stoplist no no yes yes
weighting bin tf t�df bin tf t�df bin tf t�df bin tf t�df

Reuters macroavg. PRAVGtest 80.5 80.6 83.3 80.8 80.0 82.5 80.8 80.7 82.7 80.9 80.2 81.9
(top 10) selection by PRAVG�� 0 0 3 0 0 1 0 0 4 0 0 2

selection by PRAVGloo 0 0 3 0 0 2 0 0 3 0 1 1

Reuters macroavg. PRAVGtest 44.3 48.3 55.6 44.3 49.6 56.2 45.4 51.1 55.9 45.9 52.3 57.4
(all 90) selection by PRAVG�� 3 2 19 2 2 12 5 2 18 3 8 14

selection by PRAVGloo 3 4 11 3 5 15 3 9 10 4 10 13

WebKB macroavg. PRAVGtest 85.3 86.4 78.3 84.9 82.2 76.6 81.4 84.6 78.8 79.5 81.9 76.8
selection by PRAVG�� 2 0 0 0 0 0 2 0 0 0 0 0
selection by PRAVGloo 4 0 0 0 0 0 0 0 0 0 0 0

Ohsumed macroavg. PRAVGtest 56.5 60.8 65.9 55.9 60.7 65.6 57.2 61.4 66.1 56.9 60.9 65.8
selection by PRAVG�� 0 0 5 0 0 1 0 0 14 0 0 3
selection by PRAVGloo 0 1 8 0 0 0 0 0 12 0 0 2

Table 6.2: Selections of the model-selection criteria for the word-weighting scheme, the
choice of stemming, and the use of stopword removal. The counts indicate for how many
categories each model was selected. The macro-average of PRAV Gtest illustrates the
average model performance.

the parametric assumption, binomial tests1 also show that the estimators can select a
representation signi�cantly better than random. Note that the WebKB task involves
only four categories, resulting in a small sample for signi�cance testing.

The column \optimum" corresponds to an \unfair" model-selection criterion that uses
information from the test set. It shows the macro-averaged performance for the model that
gives the best results on the test set. This number is reported to give an upper bound on
the performance of any model-selection algorithm. The largest di�erence between leave-
one-out selection and the optimum occurs for the Reuters collection. Since the ten most
frequent categories do not exhibit this behavior, it appears that low-frequency categories
are particularly diÆcult. This behavior is plausible, since the low number of positive
examples leads to an increased variance of the PRAV G estimates.

Some insight into which representations are selected by the model-selection algorithms
gives Table 6.2. For each choice of representation the table shows the macro-averaged per-

1For each category, the test ranks the models by their performance on the test set. Then it compares
the rank of the selected model against random selection.
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selecting C macroavg. PRAVGtest of selection by
random PRAVG�� PRAVGloo optimum

Reuters (top 10) 75.3 83.7 85.0 85.8

Reuters (all 90) 38.6 52.4 55.5 58.2

WebKB 79.7 87.6 86.3 88.9

Ohsumed 52.3 60.4 64.9 67.1

Table 6.3: Relative performance of model-selection methods for selecting the value of C.
All performance scores are macro-averages of the precision/recall average. The table com-
pares random selection to the ��-estimate and the leave-one-out estimate. The column
optimum shows the average over the highest PRAV Gtest on the test set.

C 0.05 0.1 0.5 1.0 5 10 1000

Reuters macroavg. PRAVGtest 41.9 64.2 83.7 85.1 84.5 84.6 83.3
(top 10) selection by PRAVG�� 0 0 10 0 0 0 0

selection by PRAVGloo 0 0 0 6 3 0 1

Reuters macroavg. PRAVGtest 4.7 10.5 38.8 46.2 57.4 57.3 55.6
(all 90) selection by PRAVG�� 3 3 40 11 10 13 10

selection by PRAVGloo 3 3 4 22 20 19 19

WebKB macroavg. PRAVGtest 59.9 63.6 87.6 88.8 86.2 86.4 85.3
selection by PRAVG�� 0 0 4 0 0 0 0
selection by PRAVGloo 0 0 0 2 2 0 0

Ohsumed macroavg. PRAVGtest 9.2 34.7 59.6 64.0 66.2 66.1 66.1
selection by PRAVG�� 0 2 18 3 0 0 0
selection by PRAVGloo 0 0 0 12 7 2 2

Table 6.4: Selections of the model-selection criteria for the value of C. The counts indicate
for how many categories each model was selected. The macro-average of PRAV Gtest

illustrates the average model performance.

formance and for how many categories it is selected. If the maximum of the performance
estimates is not a unique, the frequency count is equally distributed over the respective
selections and their test set performance is averaged. For Reuters and Ohsumed, both
model-selection methods clearly prefer TFIDF weighting. For WebKB, they agree that
a binary representation is preferable. The selections appear reasonable considering their
average performance given in Table 6.2.

Regarding stemming and stopword removal, both methods most frequently select stop-
word removal, but no stemming for the Ohsumed corpus. The preference is less clear for
the other two collections. For WebKB, the ��-estimators tie between using a stop list or
not. On Reuters, stemming and stopword removal is selected with fairly equal frequency
by both estimators.

To keep the following evaluation simple, the representation most frequently selected
by the ��-estimators will be used for all categories of the collection. This means that
TFIDF-weighting without stemming and stopword removal is used for Reuters, a bi-
nary representation with no stemming and no stopword removal is used for WebKB, and
TFIDF-weighting with a stop-list is used for the Ohsumed categories.
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selecting RBF-kernel 
 macroavg. PRAVGtest of selection by
random PRAVG�� PRAVGloo optimum

Reuters (top 10) 79.2 84.1 84.1 84.7

Reuters (all 90) 48.5 54.4 53.5 57.3

WebKB 85.2 86.5 87.6 88.6

Ohsumed 59.1 65.9 66.3 67.2

Table 6.5: Relative performance of model-selection methods for selecting the parameter

 of the RBF-kernel. All performance scores are macro-averages of the precision/recall
average. The table compares random selection to the ��-estimate and the leave-one-out
estimate. The column optimum shows the average over the highest PRAV Gtest on the
test set.

6.3.2 Trading O� Training Error vs. Complexity

The parameter C in Optimization Problem 3 adjusts the amount of training error tolerated
by the SVM. Using the representations selected in the previous step, Table 6.3 shows
the results for selecting a good value of C for a linear SVM. Possible values are C 2
f0:05; 0:1; 0:5; 1:0; 5; 10; 1000g. Again, the macro-averaged PRAV G on the test set is
displayed for each selection strategy. Except for the WebKB data set, all di�erences
are signi�cant and the binomial test also indicates a performance better than random.
Again, the ��-estimator can e�ectively select a reasonable model. However, as expected,
the performance of the leave-one-out method is higher.

Table 6.4 shows how frequently each value of C is selected. Uniformly over almost
all categories of the three collections, the ��-estimator selects C = 0:5. While this is a
reasonable value, there appears to be a tendency to underestimate the optimal value of C.
C = 1 is a better choice in terms of the macro-average. This tendency can be explained
using the properties of the ��-estimators identi�ed in Chapter 5. The ��-estimators have
a conservative bias. Therefore they tend to underestimate the true PRAV G. The fact
that the bias decreases with C (vanishing for the extreme case of C = 0) explains the
tendency to select a smaller than optimal value of C.

Comparing the average performance of C �xed over all categories given in Table 6.4
with the optimal selection on a per-category basis given in Table 6.4 leads to an interesting
observation. A good value of C appears to be a property of the whole collection, rather
than of an individual category. For Reuters, keeping C = 5 �xed over all categories leads
to a near optimal performance. The same is true for WebKB (C = 1:0) and Ohsumed
(C = 5:0). In general, there is a large range of C that leads to good performance.

6.3.3 Non-Linear Classi�cation Rules

An alternative to using a linear SVM and selecting the value of C is capacity adjustment
by using non-linear kernels [Vapnik, 1998]. Table 6.5 compares the ��-estimator and leave-
one-out for selecting the kernel width 
 2 f0:01; 0:03; 0:1; 0:3; 1:0; 3:0g of the RBF-kernel
(3.34). Again, the ��-estimator signi�cantly (except WebKB) improves over the random
baseline. However, the leave-one-out estimates tend to select better models. While the
��-estimator leads to a better macro-average on the Reuters tasks, the di�erence is not
signi�cant.

The values of 
 selected by the model-selection method are given in Table 6.6. Again,
both methods make reasonable selections. However, the ��-estimator appears to be biased
towards smaller values of 
.
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RBF-kernel 
 0.01 0.03 0.1 0.3 1.0 3.0

Reuters macroavg. PRAVGtest 84.5 83.4 83.6 83.8 81.5 58.4
(top 10) selection by PRAVG�� 7 1 1 1 0 0

selection by PRAVGloo 2 3 1 4 0 0

Reuters macroavg. PRAVGtest 56.7 56.2 56.3 52.6 43.9 25.3
(all 90) selection by PRAVG�� 30 20 16 12 6 6

selection by PRAVGloo 22 20 17 15 10 6

WebKB macroavg. PRAVGtest 85.9 85.6 86.2 88.2 87.1 75.8
selection by PRAVG�� 2 0 0 2 0 0
selection by PRAVGloo 0 0 1 2 1 0

Ohsumed macroavg. PRAVGtest 66.1 66.2 66.6 66.9 60.9 27.9
selection by PRAVG�� 7 8 5 3 0 0
selection by PRAVGloo 2 2 6 12 1 0

Table 6.6: Selections of the model-selection criteria for the value of 
 in the RBF-kernel.
The counts indicate for how many categories each model was selected. The macro-average
of PRAV Gtest illustrates the average model performance.

In general, the average performance is rather insensitive to 
 over a large range.
Any �xed value of 
 2 f0:01; 0:03; 0:1; 0:3g leads to an average performance close to the
optimum given in Table 6.5.

6.3.4 Comparison with Conventional Methods

To get a feel for the relative performance of SVMs and the automatically selected models,
the SVM is now compared to four conventional learning methods. These methods are a
representative selection from the most popular approaches to learning text classi�ers in
the inductive setting:

� generative modelling using a naive Bayes classi�er with a multinomial mixture model
(see Section 2.5.1)

� an adaptation of the Rocchio algorithm as the most popular learning method from
information retrieval (see Section 2.5.2)

� C4.5 as the standard decision tree/rule learner (see Section 2.5.4)

� the k-nearest neighbor classi�er as a representative of instance-based approaches
(see Section 2.5.3)

Each conventional method has shown good results on text-categorization problems in
previous studies.

To make sure that the results are not biased in favor of the SVM through an inappro-
priate experiment design, the conventional methods are given an \unfair advantage". For
the conventional methods tables 6.7 to 6.9 show the PRBEP of the parameter setting that
achieves the best performance on the test set. This corresponds to the \optimal" model
selection. Therefore, the performance of the conventional methods is optimistically biased.
A large number of parameter settings was tried for the conventional methods, namely all
combinations of: selecting N 2 f500; 1000; 2000; 5000; 10000; allg features using mutual
information2, use of stemming, use of stopword removal, binary vs. TFIDF word weight-

2With more than 5000 features running C4.5 becomes intractable. The respective experiments are
excluded.
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linear SVM RBF-SVM
Bayes Rocchio C4.5 k-NN C = 0:5 C = 1:0 
 = 0:01

earn 96.0 96.1 96.1 97.8 98.0 98.2 98.1

acq 90.7 92.1 85.3 91.8 95.5 95.6 94.7

money-fx 59.6 67.6 69.4 75.4 78.8 78.5 74.3

grain 69.8 79.5 89.1 82.6 91.9 93.1 93.4

crude 81.2 81.5 75.5 85.8 89.4 89.4 88.7

trade 52.2 77.4 59.2 77.9 79.2 79.2 76.6

interest 57.6 72.5 49.1 76.7 75.6 74.8 69.1

ship 80.9 83.1 80.9 79.8 87.4 86.5 85.8

wheat 63.4 79.4 85.5 72.9 86.6 86.8 82.4

corn 45.2 62.2 87.7 71.4 87.5 87.8 84.6

microavg. (all 90) 72.3 79.9 79.4 82.6 86.7 87.5 86.4

Table 6.7: Precision/recall breakeven point for the Reuters categories comparing the con-
ventional methods with the SVM. The parameters C and 
 are chosen as suggested by the
model selection criteria. Naive Bayes achieves best performance without stemming and
stopword removal using all features. All other conventional methods perform best using
1000 features and stopword removal; C4.5 and Rocchio use also stemming. Furthermore,
� = 1:0 for Rocchio, C4.5 uses TFIDF weighting, and k = 15 for k-NN.

ing (only C4.5), � 2 f0; 0:1; 0:25; 0:5; 1:0g (only Rocchio), and k 2 f1; 15; 30; 45; 60g (only
k-NN).

Tables 6.7 to 6.9 show that all SVMs with automatic model selection substantially
outperforms all conventional methods. For the SVM, the tables give the performance
of the models most frequently selected by the ��-estimator and by leave-one-out. Not
only are the micro-averages of the SVM higher on all three collections, the SVM is also
uniformly better on almost all individual categories shown in the tables despite the \unfair
advantage" given to the conventional methods. Over all 90 Reuters categories, for example
the linear SVM with C = 0:5 is better than k-NN on 66 categories (16 ties, 8 worse). This
is a signi�cant improvement according to the binomial sign test. The advantage of the
SVM over the other conventional methods is even larger. Even more drastically, all SVMs
outperforms all conventional methods on all categories of the WebKB collection. Similarly
for the Ohsumed data, for example the linear SVM with C = 0:5 shows a performance
better than the maximum performance of k-NN on all 23 categories.

Finally, how do linear and non-linear SVMs compare among each other? Going beyond
the results given in the tables above, even with the optimal value of 
 and with an
optimally chosen value of C the RBF-SVM does not consistently outperform the linear
SVM (with C = 1:0). The same is true also for other standard kernels (e.g. polynomials
of varying degree). This leads to the conclusion that non-linear SVMs do not provide any
advantage for text classi�cation using the standard kernels. Furthermore, the non-linear
kernels take substantially longer to train. However, specially designed kernels introducing
new prior knowledge about the classi�cation task may provide bene�ts.

Recently, Yang and Liu [Yang and Liu, 1999] also compared SVMs to other text-
classi�cation methods on a modi�ed version of the Reuters collection. While in their
experiments SVMs also turned out to be the best performer with F1 = 85:99% (micro-
averaged), the advantage over k-NN with F1 = 85:67% (micro-averaged) was only marginal.
This outcome is due to several problems in Yang and Liu's experimental setup. Most im-
portantly, although the performance is measured in terms of F1, only k-NN is optimized
to maximize F1, while the SVM is optimized for error rate. This makes the SVM sacri�ce
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linear SVM RBF-SVM
Bayes Rocchio C4.5 k-NN C = 0:5 C = 1:0 
 = 0:01 
 = 0:3

course 93.2 95.5 83.0 90.9 96.1 95.9 95.5 96.1

faculty 74.5 80.0 73.8 62.4 90.1 88.2 85.3 85.3

project 55.0 42.0 47.0 55.0 69.3 75.0 80.0 76.8

student 90.6 85.2 85.1 90.6 93.0 93.0 92.2 92.5

microavg. 82.0 74.1 79.1 80.5 90.3 91.6 89.4 90.1

Errtest 13.7 23.9 19.9 21.2 7.5 8.0 9.7 9.3

Table 6.8: PRBEP and classi�cation accuracy for the WebKB categories comparing the
conventional methods with the SVM. All conventional methods do not use stemming.
Naive Bayes and Rocchio perform best using stopword removal and 500 features. C4.5
also prefers 500 (binary) features, but no stopword removal. k-NN uses 2000 features and
k = 60. The optimum � for Rocchio is 1:0.

linear SVM RBF-SVM
Bayes Rocchio C4.5 k-NN C = 0:5 C = 1:0 
 = 0:03 
 = 0:3

Pathology 53.6 52.3 48.7 54.4 59.6 58.6 52.1 55.2

Cardiovascular 74.7 67.2 69.1 75.1 80.2 80.2 75.3 77.8

Neoplasms 80.8 78.7 78.8 78.8 86.3 85.5 82.1 84.4

Nervous System 64.5 64.8 49.0 65.2 72.2 72.5 69.1 70.8

Immunologic 62.6 59.1 66.9 67.0 75.4 74.8 70.3 73.3

microavg. (all 23) 62.4 61.5 56.7 63.4 71.6 71.5 67.7 69.8

Table 6.9: PRBEP for the Ohsumed categories comparing the conventional methods with
the SVM. Naive Bayes and k-NN (k = 45) perform best using all features after stemming
and stopword removal. The peak performance of Rocchio is for 5000 features without
stemming and stopword removal for � = 1:0. For C4.5 the best performance is achieved
for 2000 features with TFIDF weighting and stemming. More than 2000 features are
computationally intractable for C4.5 on this task due to time and memory constraints.

recall for precision, leading to a lower F1 score. A more suitable approach is pursued in
the following. An SVM with cost model (see Section 3.4) and a cost ratio proportional
to the fraction of negative to positive examples is used to boost recall. For C = 0:5 on
the same variant of the Reuters collection as used in [Yang and Liu, 1999] this leads to
a micro-averaged F1 of 88:04%. This is again a substantial gain over the k-NN classi�er.
Previous comparisons [Joachims, 1997b][Dumais et al., 1998] came to similar conclusions.

In terms of computational eÆciency, linear SVMs are very fast both at training and
at classi�cation. In all experiments SVM light was used as the training algorithm. On
average, it took 1.3 seconds on a Pentium III/500Mhz (with 128MB of a RAM running
Linux) to train a single Reuters category for C = 0:5. Classifying a new document vector
is essentially equivalent to computing a single (sparse) dot product. SVMs with non-linear
kernels take substantially more time to train and to apply. The average training time for
an RBF-kernel with 
 = 0:1 is 38.1 seconds on the 90 Reuters categories. More details
are given in Chapter 8.
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6.4 Related Work

For the Reuters collection, the experimental results originally published in [Joachims,
1997b][Joachims, 1998b] were later veri�ed in [Dumais et al., 1998]. Dumais et al. used
a di�erent document representation, but came to a similar performance as reported here.
They used a binary representation with feature selection by empirical mutual information.
Further experimental results using SVMs for text classi�cation can be found in [Taira and
Haruno, 1999] [Drucker et al., 1999] [Yang and Liu, 1999] [Neumann and Schmeier, 1999]
[Busemann et al., 2000] [Kindermann et al., 2000].

As already noted, other margin-based methods like boosted decisions stumps show
excellent results for text classi�cation as well [Schapire et al., 1998] [Schapire and Singer,
2000]. Schapire et al. report a performance that is only slightly worse than for the SVM
on the Reuters collection. However, training is computationally less eÆcient. They report
that it took three days of CPU-time to train on the Reuters corpus. However, it is likely
that training can be sped up. An interesting open question is a theoretical analysis
according to Chapter 4.

The best result on the Reuters data reported in the literature is a precision/recall
breakeven point of 87:8 (compared to 87:5 here) [Weiss et al., 1999]. This result is
for boosting 100 decision trees per category. Weiss et al. do not discuss computational
eÆciency, but training such large models must take substantially longer than training
a linear SVM. Training a single C4.5 decision tree already takes an order of magnitude
longer than training a linear SVM. Furthermore, their approach involves feature selection.
This adds a processing step with additional parameters and implicit assumptions, which
makes training more complicated. From a theoretical perspective, such complex models
with greedy optimization steps in the learning phase are not well understood. There is
less guidance in how and when this approach is appropriate. In particular, eÆcient model
selection criteria, like they are discussed in this chapter for SVMs, are likely to not exist.

6.5 Summary and Conclusions

This chapter evaluated the performance and practicability of inductive SVMs for learning
text classi�ers. It recognized that solving a learning task is not restricted to simply train-
ing the learner, but that preprocessing steps like choosing an appropriate representation
are equally important.

Therefore, this chapter proposed and evaluated approaches to model selection for
support vector machines in the context of text classi�cation. It compared a new model-
selection strategy based on ��-estimates with leave-one-out estimation. The new method
is computationally much more eÆcient than cross-validation or bootstrap. After only a
single training run per model, it can e�ectively select a reasonable model. While the new
method provides a large advantage in terms of computational eÆciency, the quality of the
selected model is better for the exact leave-one-out estimate. This implies that the new
method is best suited in situations where response time or computational resources are
limited.

This chapter also provides experimental evidence regarding the generalization perfor-
mance of SVMs for text classi�cation compared to conventional methods. The exper-
imental results show that SVMs achieve excellent performance on three di�erent text-
classi�cation tasks, outperforming conventional methods substantially. SVMs eliminate
the need for feature selection, saving a complicated preprocessing step. In general, SVMs
are fairly insensitive to particular parameter settings over a large range. For all param-
eters like the use of stemming, stopword removal, or kernels, the new model-selection
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strategy can eÆciently avoid bad parameter values. This makes SVMs easy to use and
apply in real-world applications where expert interventions are not possible.
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Chapter 7

Transductive Text Classi�cation

For many practical uses of text classi�cation, it is crucial that the learner be able to
generalize well using little training data. A news-�ltering service, for example, requiring
a hundred days' worth of training data is unlikely to please even the most patient users.
The work presented in the following tackles the problem of learning from small training
samples by taking a transductive [Vapnik, 1998], instead of an inductive approach. In the
inductive setting the learner tries to induce a decision function which has a low error rate
on the whole distribution of examples for the particular learning task. Often, this setting
is unnecessarily complex. In many situations we do not care about the particular decision
function, but rather that we classify a given set of examples (i.e. a test set) with as few
errors as possible. This is the goal of transductive inference.

Some examples of transductive text-classi�cation tasks are the following. All have in
common that there is little training data, but a very large test set.

Relevance Feedback: This is a standard technique in free-text information retrieval.
The user marks some documents returned by an initial query as relevant or irrele-
vant. These compose the training set of a text-classi�cation task, while the remain-
ing document database is the test set. The user is interested in a good classi�cation
of the test set into those documents relevant or irrelevant to the query.

Netnews Filtering: Each day a large number of netnews articles is posted. Given the
few training examples the user labeled on previous days, he or she wants today's
most interesting articles.

Reorganizing a document collection: With the advance of paperless oÆces, com-
panies have started using document databases with classi�cation schemes. When
introducing new categories, they need text classi�ers which, given some training
examples, classify the rest of the database automatically.

This chapter introduces Transductive Support Vector Machines (TSVMs) to text clas-
si�cation. They substantially improve the already excellent performance of SVMs for text
classi�cation. Especially for very small training sets, TSVMs reduce the required amount
of labeled training data down to a twentieth for some tasks. A new algorithm that fa-
cilitates the large-scale transductive learning needed for text classi�cation is proposed in
Chapter 9. It can eÆciently train TSVMs with 10,000 examples and more.

7.1 Learning Task

The setting of transductive inference was introduced by Vapnik (see for example [Vapnik,
1998]). For a learning task Pr(~x; y) = Pr(yj~x) Pr(~x) the learner L is given a hypothesis

105



106 CHAPTER 7. TRANSDUCTIVE TEXT CLASSIFICATION

space H of functions h : X �! f�1; 1g and an i.i.d. sample Strain of n training examples

(~x1; y1); (~x2; y2); :::; (~xn; yn) (7.1)

Each training example consists of a document vector ~x 2 X and a binary label y 2
f�1;+1g. In contrast to the inductive setting, the learner is also given an i.i.d. sample
Stest of k test examples

~x�1; ~x
�
2; :::; ~x

�
k (7.2)

from the same distribution. The transductive learner L aims to selects a function hL =
L(Strain; Stest) from H using Strain and Stest so that the expected number of erroneous
predictions

Errn;k(L) =
Z
1

k

kX
i=1

L0=1(hL(~x�i ); y
�
i )dPr(~x1; y1) � � � dPr(~x�k; y�k)

on the test examples is minimized. L0=1(a; b) is zero if a = b, otherwise it is one. Vapnik
[Vapnik, 1998] gives bounds on the relative uniform deviation of training error

Erremp(h) =
1

n

nX
i=1

L0=1(h(~xi); yi) (7.3)

and test error

Errtest(h) =
1

k

kX
i=1

L0=1(h(~x
�
i ); y

true
i ): (7.4)

With probability 1� �

Errtest(h) � Erremp(h) + 
(n; k; d; �) (7.5)

where the con�dence interval 
(n; k; d; �) depends on the number of training examples
n, the number of test examples k, and the VC-dimension d of H (see [Vapnik, 1998] for
details).

This problem of transductive inference may not seem profoundly di�erent from the
usual inductive setting studied in machine learning. One could learn a classi�cation rule
based on the training data and then apply it to the test data afterwards. Nevertheless,
to solve the problem of estimating k binary values y�1 ; :::; y�k we need to solve the more
complex problem of estimating a function over a possibly continuous space. This may not
be the best solution when the size n of the training sample (7.1) is small.

What information do we get from studying the test sample (7.2) and how can we use
it? The training and the test sample split the hypothesis space H into a �nite number of
equivalence classes H0. Two functions from H belong to the same equivalence class if they
both classify the training and the test sample in the same way. This reduces the learning
problem from �nding a function in the possibly in�nite set H to �nding one of �nitely
many equivalence classes H0. Most importantly, we can use these equivalence classes to
build a structure of increasing VC-dimension for structural risk minimization [Vapnik,
1998].

H0
1 � H0

2 � � � � � H0 (7.6)

Unlike in the inductive setting, we can study the location of the test examples when
de�ning the structure. Using prior knowledge about the nature of Pr(~x; y) we can build a
more appropriate structure and learn more quickly. What this means for text classi�cation
is analyzed in Section 7.3.
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Figure 7.1: The maximum-margin hyperplanes. Positive/negative examples are marked
as +/�, test examples as dots. The dashed line is the solution of the inductive SVM.
The solid line shows the transductive classi�cation.

7.2 Transductive Support Vector Machines

For support vector machines, we can build the structure of increasing VC-dimension based
on the margin of separating hyperplanes on both the training and the test data. Vapnik
shows that with the size of the margin we can control the maximum number of equivalence
classes (i. e. the VC-dimension).

Theorem 12 ([Vapnik, 1998]) Consider hyperplanes h(~x) = signf~x � ~w+bg as hypoth-
esis space H. If the attribute vectors of a training sample (7.1) and a test sample (7.2)
are contained in a ball of diameter R, then there are at most

Nr < exp

�
d

�
n+ k

d
+ 1

��
; d = min

 
N;

"
R2

Æ2

#
+ 1

!

equivalence classes which contain a separating hyperplane with

8ni=1

���� ~w

k~wk � ~xi + b

���� � Æ 8kj=1

���� ~w

k~wk � ~x
�
j + b

���� � Æ

(i.e. margin larger or equal to Æ). N is the dimensionality of the space, and [c] is the
integer part of c.

Note that the VC-dimension does not necessarily depend on the number of features,
but can be much lower than the dimensionality of the space. Let us use this structure
based on the margin of separating hyperplanes. Structural risk minimization tells us that
we get the smallest bound on the test error if we select the equivalence class from the
structure element H0

i which minimizes (7.5). For linearly separable problems this leads
to the following optimization problem [Vapnik, 1998].

Optimization Problem 9 (Transductive SVM (linearly separable case))

minimize: V (y�1; :::; y
�
k; ~w; b) =

1

2
~w � ~w

subject to: 8ni=1 : yi[~w � ~xi + b] � 1

8kj=1 : y
�
j [~w � ~x�j + b] � 1

8kj=1 : y
�
j 2 f�1;+1g
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Solving this problem means �nding a labelling y�1 ; :::; y�k of the test data and a hyperplane
< ~w; b >, so that this hyperplane separates both training and test data with maximum
margin. Figure 7.1 illustrates this. To be able to handle non-separable data, we can
introduce slack variables �i similarly to the way we do with inductive SVMs.

Optimization Problem 10 (Transductive SVM (non-separable case))

minimize: W (y�1; :::; y
�
k; ~w; b; �1; :::; �n; �

�
1 ; :::; �

�
k) =

1

2
~w � ~w + C

nX
i=0

�i + C�
kX

j=0

��j

subject to: 8ni=1 : yi[~w � ~xi + b] � 1� �i

8kj=1 : y
�
j [~w � ~x�j + b] � 1� ��j

8ni=1 : �i > 0

8kj=1 : �
�
j > 0

8kj=1 : y
�
j 2 f�1;+1g

C and C� are parameters set by the user. They allow trading o� margin size against
misclassifying training examples or excluding test examples. C� can be used reduce
sensitivity towards outliers (i.e. single examples falsely reducing the margin on the test
data). How this optimization problem can be solved eÆciently is the subject of Chapter
9.

7.3 What Makes TSVMs Especially well Suited for Text

Classi�cation?

In Chapter 4 text-classi�cation tasks are characterized by a special set of properties. It is
shown how these properties lead to good learning results for an inductive SVM. TSVMs
inherit most properties of inductive SVMs. Since the argumentation was based on the
margin of text-classi�cation tasks, most arguments apply to TSVMs as well. But how
can TSVMs be any better?

7.3.1 An Intuitive Example

In the �eld of information retrieval it is well known that words in natural language occur
in strong co-occurrence patterns (see e.g. [van Rijsbergen, 1977]). Some words are likely
to occur together in one document, others are not. For examples, when asking the search
engine Altavista about all documents containing the words pepper and salt, it returns
327,180 web pages. When asking for the documents with the words pepper and physics,
we get only 4,220 hits, although physics is a more popular word on the web than salt.
Many approaches in information retrieval try to exploit this cluster structure of text (see
e.g. [Baeza-Yates and Ribeiro-Neto, 1999, Chapter 5]). And it is this co-occurrence
information that TSVMs exploit as prior knowledge about the learning task.

Consider the example in Figure 7.2. Imagine document D1 was given as a training
example for class A and document D6 was given as a training example for class B. How
should we classify documents D2 to D4 (the test set)? Even if we did not understand
the meaning of the words, we would classify D2 and D3 into class A, and D3 and D4
into class B. We would do so even though D1 and D3 do not share any informative
words. The reason we choose this classi�cation of the test data over the others stems
from our prior knowledge about the properties of text and common text-classi�cation
tasks. Often we want to classify documents by topic, source, or style. For these type of
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Figure 7.2: Example of a text-classi�cation problem with co-occurrence pattern. Rows
correspond to documents, columns to words. A table entry of 1 denotes the occurrence
of a word in a document.

classi�cation tasks we �nd stronger co-occurrence patterns within categories than between
di�erent categories. In our example we analyzed the co-occurrence information in the test
data and found two clusters. These clusters indicate di�erent topics of fD1;D2;D3g vs.
fD4;D5;D6g, and we choose the cluster separator as our classi�cation. Note again that
we got to this classi�cation by studying the location of the test examples, which is not
possible for an inductive learner.

The TSVM outputs the same classi�cation as we suggested above, although all 16
dichotomies of D2 to D5 can be achieved with linear separators. Assigning D2 and D3
to class A and D3 and D4 to class B is the maximum-margin solution (i.e. the solution
of Optimization Problem 9). We see that the maximum-margin bias re
ects our prior
knowledge about text classi�cation well. By analyzing the test set, we can exploit this
prior knowledge for learning.

In this example taking a transductive approach is obviously bene�cial. Is this just
an exceptional constellation or does the same e�ect occur on a more general class of
problems?

7.3.2 Transductive Learning of TCat-Concepts

The following simulation study analyzes TCat-concepts (see Chapter 4) for transductive
learning. It shows how a TSVM takes advantage of the test set and explains why TSVMs
can learn TCat-concepts more eÆciently than inductive SVMs, if suÆcient test data is
available.

For simplicity reasons, consider the small concept

TCat([1 : 0 : 1]; [0 : 1 : 1]; [4 : 4 : 8]): (7.7)

It includes 10 features of which 8 features have no connection with the class label. The
remaining two features indicate the positive and the negative class respectively. Each
document contains 5 words. The distribution Pr(X) of feature vectors is such that each
binary vector consistent with the TCat-concept is equally likely.
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Figure 7.3: Simulation of a transductive SVM on a TCat-concept.

Figure 7.3 contains the learning curve of a TSVM averaged over multiple training and
test sets. The vertical axis shows the generalization error depending on the size of the
training and the test set. Not suprisingly, the prediction error on the test set decreases
rapidly with more training examples. But the �gure also shows that the prediction error
goes down for an increasing test set size. Why does this happen?

Figure 7.4 illustrates how the TSVM behaves for various test set sizes. Plus signs
indicate positive examples, minus sign indicate negative examples, and dots stand for test
examples. In a) the test set is not used and the hyperplane indicated by the dashed line is
identical to that of an inductive SVM. After \adding" some test examples in b), it turns
out that the dashed line does not really have a large margin. It just happens to have a
large margin for the particular training sample.

In fact, the dashed line has a smaller margin than the correct labeling of the test
examples. Since the data is consistent with the TCat-concept from (7.7), it is possible
to compute that the correct labeling of the test examples induces a margin of at least
Æ � 1p

2
. This was shown in Lemma 2 from Chapter 4. Given the test data in b) only

two splits of the test examples have a suÆciently large margin. They are indicated by
the shaded regions in b). All other separations can be excluded from consideration, since
they violate the margin restriction and therefore cannot be the correct labeling of the test
data.

After adding even more test data in c), only one hyperplane is both consistent with the
training examples and has a suÆciently large margin. Clearly, this hyperplane represents
the labeling of the test examples produced by the TSVM. It makes fewer errors on the
test set than the labeling of an inductive SVM.

This machanism is not limited to small TCat-concepts like in (7.7). It applies also
to more complicated TCat-concepts. The bene�t of transductive over inductive learning
depends on two factors. While the size of the margin is important, even more important
is Pr(X). In the simulation Pr(X) was chosen to be uniform everywhere but within the
margin. Feature vectors lying inside the margin have probabilty zero. This is the \best
case". For suÆciently large test sets, there are test examples almost everywhere but within
the margin. So the test examples e�ectively rule out all separations but the correct one.
For other Pr(X) that have zero probability in some regions outside the margin or a small
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a) b) c)

Figure 7.4: Example of a transductive SVM exploiting the location of the test examples.

probability of examples within the margin, the bene�t of transductive learning can be
smaller.

This simulation study gives a qualitative explanation for the bene�t of transductive
SVMs over inductive SVMs. It should also be possible to prove quantitative bounds
connecting error and test set size. Nevertheless, these results will be of little practical use,
because such bounds must depend on Pr(X). Since it is not practical to estimate Pr(X) for
real-world tasks, �nding bounds for particular Pr(X) is left as an open question. Instead,
the quantitative bene�t of a transductive approach to text classi�cation is evaluated in
the following experiments.

7.4 Experiments

The empirical evaluation is done on three test collection (see Section 2.7.1). Unless noted
otherwise, the evaluation follows the setup described in Section 2.7.

The �rst collection is the Reuters-21578 dataset. The \ModApte" split is used, leading
to a corpus of 9,603 training documents and 3,299 test documents. Of the 135 potential
topic categories, only the most frequent 10 are used, while keeping all documents. Both
stemming and stopword removal are performed.

The second dataset is the WebKB collection. Following the setup in [Nigam et al.,
1998], only the classes course, faculty, project, and student are used. Documents
not in one of these classes are deleted. After removing documents which just contain the
relocation command for the browser, this leaves 4,183 examples. The pages from Cornell
University are used for training, while all other pages are used for testing. Like in [Nigam
et al., 1998], stemming and stopword removal are not used.

The third test collection is taken from the Ohsumed corpus. From the 50,216 docu-
ments in 1991 which have abstracts, the �rst 10,000 are used for training and the second
10,000 are used for testing. The task is to assign documents to one or multiple cate-
gories of the 5 most frequent MeSH \diseases" categories. Both stemming and stop-word
removal are performed.

The following experiments show the e�ect of using the transductive SVM instead of
inductive methods. To provide a baseline for comparison, the results of the inductive SVM
and a multinomial naive Bayes classi�er as described in Section 2.5.1 are added. Where
applicable, the results are averaged over a number of random training (test) samples.

Figure 7.5 gives the results for the Reuters dataset. For training sets of 17 documents
and test sets of 3,299 documents, the transductive SVM leads to an improved performance
on all categories, raising the macro-average of the precision/recall breakeven points from
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Bayes SVM TSVM

earn 78.8 91.3 95.4

acq 57.4 67.8 76.6

money-fx 43.9 41.3 60.0

grain 40.1 56.2 68.5

crude 24.8 40.9 83.6

trade 22.1 29.5 34.0

interest 24.5 35.6 50.8

ship 33.2 32.5 46.3

wheat 19.5 47.9 54.4

corn 14.5 41.3 43.7

macro-average 35.9 48.4 60.8

Figure 7.5: Average precision/recall breakeven points for the ten most frequent Reuters
categories using 17 training and 3,299 test examples. Naive Bayes uses feature selection
by empirical mutual information with dictionaries of size 1,000. No feature selection was
done for SVM and TSVM.
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Figure 7.6: Macro-averaged PRBEP on the Reuters dataset for di�erent training set sizes
and a test set size of 3,299.

48:4 for the inductive SVM to 60:8. These averages correspond to the left-most points
in Figure 7.6. This graph shows the e�ect of varying the size of the training set. The
advantage of using the transductive approach is largest for small training sets. For in-
creasing training set size, the performance of the SVM approaches that of the TSVM.
The in
uence of the test set size on the performance of the TSVM is displayed in Figure
7.7. The bigger the test set, the larger the performance gap between SVM and TSVM.
Adding more test examples beyond 3,299 is not likely to increase performance by much,
since the graph is already very 
at.

The results on the WebKB dataset are similar (Figure 7.8). The average of the
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Figure 7.7: Macro-averaged PRBEP on the Reuters dataset for 17 training documents
and varying test set size for the TSVM.

Bayes SVM TSVM

course 57.2 68.7 93.8

faculty 42.4 52.5 53.7

project 21.4 37.5 18.4

student 63.5 70.0 83.8

macro-average 46.1 57.2 62.4

Figure 7.8: Average precision/recall breakeven points for the WebKB categories using 9
training and 3957 test examples. Naive Bayes uses a dictionary with the 2,000 highest
mutual information words. No feature selection was done for the SVM. Due to the large
number of words, the TSVM used only those words which occur at least 5 times in the
whole sample.

P/R-breakeven points increases from 57:2 to 62:4 by using the transductive approach.
Nevertheless, for the category project the TSVM performs substantially worse, while
the gain on the category course is large. Let us look at this in more detail. Figures
7.9 and 7.10 show how the performance changes with increasing training set size for
course and project. While for course the TSVM nearly reaches its peak performance
immediately, it needs more training examples to surpass the inductive SVM for project.
Why does this happen?

First, project is the least populous class. Among 9 training examples, there is only
one from the project category. But more importantly, a look at the project pages reveals
that many of them give a description of the project topic. My conjecture is that the margin
along this \topic dimension" is large, and so the TSVM tries to separate the test data by
topic. Only when there are enough project pages with di�erent topics in the training set
is the generalization along the project topic ruled out. Most course pages at Cornell, on
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Figure 7.9: Average PRBEP on the WebKB category course for di�erent training set
sizes.
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Figure 7.10: Average PRBEP on the WebKB category project for di�erent training set
sizes.
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Bayes SVM TSVM

Pathology 39.6 41.8 43.4

Cardiovascular 49.0 58.0 69.1

Neoplasms 53.1 65.1 70.3

Nervous System 28.1 35.5 38.1

Immunologic 28.3 42.8 46.7

macro-average 39.6 48.6 53.5

Figure 7.11: Average PRBEP for the Ohsumed categories using 120 training and 10,000
test examples. Here, Naive Bayes uses dictionaries of 1,000 words selected by mutual
information. No feature selection was done for the SVM. The TSVM again uses all words
that occur at least 5 times in the whole sample.

the other hand, do not give much topic information besides the title, but rather link to
assignments, lecture notes etc. So the TSVM is not \distracted" by large margins along
the topics.

The results in Figure 7.11 for the Ohsumed collection complete the empirical evidence
given in this section, also supporting its point.

7.5 Constraints on the Transductive Hyperplane

While the transductive approach is bene�cial for most tasks, it can also lead to worse
performance like for the WebKB category project. Is it possible to detect when the
TSVM performs well and when it fails?

If additional labeled data is available, it can be used to get an estimate of the prediction
error using cross-validation or hold-out testing. Nevertheless, labeled data is usually very
scarce. The following presents a criterion that does not require labeled data. It can be
computed immediately after running the TSVM at essentially no additional computational
expense. It acts as an alarm signal for some cases in which the transductive SVMs fails.

The criterion is based on the observation that the following quantities have the same
expected value.

Corollary 3 (Characterization of Optimal TSVM Solution) Given that the trans-
ductive SVM splits the data according to the true decision surface, the following equalities
hold:

E
 
jfi : (�iR2

� + �i) � 1gj
n

!
= E

 
jfi : (�iR2

� + �i) � 1gj
k

!
(7.8)
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!
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The expectations are over training/test sets.

Proof Follows directly from the fact that the examples are i.i.d. However, it needs to be
ensured that ~� is selected at random, if the solution of the dual is not unique.
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What is the intuition behind this corollary? Given training sets (~x1; y1); :::; (~xn; yn)
and test sets ~x�1; :::; ~x�k, the TSVM outputs labelings y�1; :::; y�k as well as values �i (or
��i ) and �i (or �

�
i ) for each training (or test) example. The corollary shows that if the

TSVM labels the test data correctly, then the � and � will on average behave the same
for both training and test examples. In particular, it states that quantities related to the
��-estimators from Chapter 5 have the same expected values on both the training and
the test samples.

The corollary can be used as follows. If for the current training and test sample the
empirical average on the left-hand side is very di�erent from the empirical average on the
right-hand side, it is unlikely that the TSVM found the correct labeling of the test data.

For example, suppose that the TSVM �nds a labeling of the test examples with
�i = ��j = 0 and �-values

train:
�1 �2 �3 �4 �5 �6 �7 �8 �9 �10

10 12 8 3 100 22 0 134 14 2

test:
��1 ��2 ��3 ��4 ��5 ��6 ��7 ��8 ��9 ��10 ��11 ��12 ��13 ��14 ��15
0 0 17 0 0 0 340 0 0 0 143 0 0 0 0

Consider the criterion in (7.8). For R2
� = 1 this implies that there are ftrain = 9 out

of 10 training examples ful�lling (�iR
2
� + �i) � 1 while only ftest = 3 out of 15 test

examples ful�ll (��iR
2
� + �i) � 1. If the TSVM did �nd the correct labeling of the test

examples, then this outcome of �-values would be unlikely. A hypothesis test against the
hypergeometric distribution rejects (7.8) with con�dence

Pr

�����ftrain10
� ftest

15

���� � 7

10

�
� 0:01 (7.11)

This indicates that the TSVM probably did not �nd the correct labeling.

Furthermore, the �-values have an intuitive meaning in and of themselves. It is
related to the ��-estimators from Chapter 5. Keeping the labeling of the test examples
�xed, ftrain

n and ftest
k are the fractions of training and test examples that can produce

a leave-one-out error. So for the example above, most training examples are \outliers".
The training examples will likely lead to errors in leave-one-out testing for an inductive
SVM on the whole sample. While this indicates that the solution found by the TSVM
is rather strange, note that ��-estimators are valid estimators only for inductive SVMs.
However, this relationship points to an interesting view on transduction as labeling the
test examples to minimize leave-one-out error.

Figure 7.12 shows that the criterion in (7.8) can detect the failure of the TSVM on
the WebKB category project. The �gure plots ftrain

n and ftest
k for each WebKB category.

For course, faculty, and student both values are relatively close together. Only for
small training set sizes of the project-category the two values are substantially di�erent.
These are exactly the cases where the TSVM shows bad generalization performance.

7.6 Relation to Other Approaches Using Unlabeled Data

This section discusses how transductive learning compares to other approaches that make
use of unlabeled data. These are in particular expectation/maximization with the test
labels as latent variables, co-training, and other work on transduction.



7.6. RELATION TO OTHER APPROACHES USING UNLABELED DATA 117

9 16 29 57 113 226

0

2

4

6

8

10

12

course

E[train] E[test]

9 16 29 57 113 226

0

2

4

6

8

10

12

faculty

E[train] E[test]

9 16 29 57 113 226

0

2

4

6

8

10

12

project

E[train] E[test]

9 16 29 57 113 226

0

2

4

6

8

10

12

student

E[train] E[test]

Figure 7.12: Properties of the TSVM solution for the WebKB data set.

7.6.1 Probabilistic Approaches using EM

Previously, Nigam et al. [Nigam et al., 1998][Nigam et al., 2000] proposed another ap-
proach to using unlabeled data for text classi�cation. Their success has motivated the
work presented here. They use a multinomial Naive Bayes classi�er and incorporate un-
labeled data using the EM-algorithm. One problem with using Naive Bayes is that its
independence assumption is clearly violated for text. Nevertheless, using EM showed
substantial improvements over the performance of a regular Naive Bayes classi�er.

There are two di�erences between the approach of Nigam et al. and the work presented
here. First, unlabeled data is not expected to be the test set like in transduction. While
each approach can probably be extended to both cases, a more fundamental di�erence
lies in the proposed learning method. While Nigam et al. �t a generative model to
the unlabeled data, the TSVM takes a discriminative approach. It does not consider a
generative model for Pr(X), but uses the unlabeled data directly for �nding low density
regions in Pr(X). The advantage of not having to design a generative model for natural
language was already outlined in Chapter 4.
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2X1 X
+

-

Figure 7.13: This �gure is adapted from [Blum and Mitchell, 1998]. Left-hand nodes are
points in X1, right-hand nodes are points in X2. Solid edges represent examples in the
training or test sample. Training examples are labeled + or -, while test examples are
unlabeled. Dashed edges represent examples with non-zero probability. However, they
are not observed in the training or test sample.

The use of EM on labeled and unlabeled data was also explored in other domains and
for other types of mixture models [Miller and Uyar, 1997][Shahshahani and Landgrebe,
1994]. For a restricted class of Gaussian mixtures Ratsaby and Venkatesh showed theo-
retically that unlabeled data reduces the required amount of labeled data [Ratsaby and
Venkatesh, 1995].

7.6.2 Co-Training

Blum and Mitchell's work on co-training [Blum and Mitchell, 1998] uses unlabeled data
in a particular setting. They exploit the fact that, for some problems, each example can
be described by multiple representations. WWW-pages, for example, can be represented
as the text on the page and/or the anchor texts on the hyperlinks pointing to this page.
Blum and Mitchell develop a boosting scheme which exploits a conditional independence
between these representations. A similar setting of using multiple representations is also
explored in [de Sa, 1993].

The following argument shows that transductive learning to some extent subsumes
co-training. Consider the rote co-training setting as de�ned in [Blum and Mitchell, 1998].
Each example ~x = (~x(1); ~x(2)) is described by a pair of representations with points from
X1 andX2. Assume that the number of points inX1 and X2 is N (i. e. jX1j = jX2j = N).
X1 and X2 each have a matching concept class C1 and C2. In rote co-training learning
is reduced to a look-up table, so that all concepts C1 = 2X1 and C2 = 2X2 can be
represented. A target concept h is a pair (h1; h2) 2 C1 � C2. Blum and Mitchell require
that there is no noise and that the target concept is fully compatible with the distribution
of examples. This means that all examples with a probability of occurrence greater than
zero are classi�ed consistently and correctly by both parts of the target concept (i.e.
h1(~x

(1)) = h2(~x
(2))).

Blum and Mitchell present and analyze an algorithm that can handle rote co-training
e�ectively [Blum and Mitchell, 1998]. It is based on a representation of the training
sample as a bipartite graph. An example is given in Figure 7.13. Each (labeled and
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unlabeled) example ~x = (~x(1); ~x(2)) de�nes an edge in the graph. It is easy to see that
examples in the same connected component of the graph must have the same label. So
one labeled training example is suÆcient for labeling the whole connected component.

The following shows that their algorithm behaves identically to a transductive support
vector machine in this restricted setting. For any sample of labeled and unlabeled data, a
TSVM outputs the same classi�cation of the unlabeled data as the co-training algorithm
of Blum and Mitchell. Introduce a new feature space X 0 with one feature for each point
in X1 and X2. Each co-training example ~x = (~x(1); ~x(2)) is mapped into this new features
space by setting the feature values corresponding to ~x(1) and ~x(2) to 1, all other feature
values to 0.1 This means that every example ~x0 has exactly two 1's in it. Note that a
connected component now corresponds to a minimal set of vectors that are orthogonal to
all other vectors not in that set.

A �rst hint that TSVMs apply to rote co-training is given by the following observation.
InX 0 the co-training problem can be suÆciently modeled as a TCat-concept. Denote with
jf+1 j and jf+2 j the number of points ~x(1) and ~x(2) that occur only in positive examples.
Similarly, denote jf�1 j and jf�2 j for negative examples. Then

TCat( [1 : 0 : jf+1 j]; [1 : 0 : jf+2 j]; # positive examples
[0 : 1 : jf�1 j]; [0 : 1 : jf�2 j] # negative examples

)
(7.12)

describes the co-training problem in X 0. The following theorem elaborates on the con-
nection between rote co-training concepts and their margin.

Theorem 13 (Margin of Rote Co-Training Concepts) After the mapping, every
fully compatible co-training problem in the rote learning setting is linearly separable
through the origin with a margin ratio R2=Æ2 of at most

R2

Æ2
� N (7.13)

Proof The squared length of each weight vector is 2, since each training example in X 0

contains exactly two elements equal to 1. Therefore R2 = 2.

The margin Æ of a hyperplane passing through the origin is related to the solution of
the following optimization problem.

1

Æ2
= min ~w � ~w s. t. 8i 2 [1::n] : yi ~w � ~xi � 1 (7.14)

The following construction for ~w ensures that all constraints are ful�lled. For all points
~x(1) and ~x(2)) associated with positive examples, set the corresponding components of ~w to
0:5. Similarly set them to �0:5 for negative examples. Then for positive examples it holds
that ~w �~xi = 1. For negative examples ~w �~xi = �1. Therefore the conditions in (7.14) are
always ful�lled and the constructed ~w is a feasible point. The squared Euclidian norm of
~w is 2N(12 )

2, which is an upper bound on the solution of (7.14).

The following lemma is somewhat stronger. It establishes that the largest margin
separation is always between two connected components. This implies that a TSVM
never applies di�erent labels to examples from the same connected component.

1Note that this does not incur computational problems for an SVM. While X 0 is very high dimensional,
the feature vectors are sparse.
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Lemma 9 (Maximum-Margin Labeling of Connected Components) Given is a
set of vectors ~x1; :::; ~xn. Each ~x has exactly two features equal to one, all others are
zero. If none of these vectors is orthogonal to all others (i.e. ~x1; :::; ~xn form a connected
component in the rote co-training problem), then the unbiased hyperplane that has the
maximum margin always assigns the same label to all such examples.

Proof It is suÆcient to show that the objective function of

W (~�) = max0�~�1T ~�� 1

2
~�Tdiag(~y)Qdiag(~y)~� (7.15)

at the solution is smallest for a uniform labeling of the examples ~x1; :::; ~xn (i.e. ~y+T =
(+1; :::;+1)T or ~y�T = (�1; :::;�1)T ). Let ~�+ be the solution for the uniform labeling
~y+. Note that both uniform labelings have the same solution since diag(~y+)Qdiag(~y+) =
diag(~y�)Qdiag(~y�). So the same argument given below for ~y+ also holds for ~y�. Now
choose a di�erent labeling ~y0 by 
ipping 1 � f � n � 1 labels in ~y+. Denote the set of
indizes of 
ipped examples by F , all others by N .

Let us �rst show that no such labeling ~y0 can lead to a smaller objective than at the
solution ~�+ for ~y+. Since all elements in the Hessian Q are positive and ~� � 0, all
terms in ~�T diag(~y+)Qdiag(~y+)~� =

Pn
i=1

Pn
j=1 �i�jy

+
i y

+
j ~xi �~xj are positive for a uniform

labeling. Having a non-uniform labeling will 
ip the sign for some of these terms without
changing their absolute value. Then ~�+ is a feasible point for the labeling ~y0 that has at
least the same value of the objective. In the worst case the negative signs will occur exactly
for those elements of the Hessian which are zero.

It remains to show that there is a strict increase in the objective for non-uniform
labelings. Let SV + be the indices of the support vectors at the solution ~�+. The following
three cases can occur depending on how the labels ~y0 are 
ipped.

Case ~xi � ~xj > 0 for at least one i 2 SV + \ F and j 2 SV + \N , SV + \ F 6= ; and
SV + \ N 6= ;: This means there is at least one �i�jy

+
i y

+
j ~xi � ~xj > 0 leading to a strict

decrease if one of the labels is 
ipped.

Case ~xi �~xj = 0 for all i 2 SV +\F and j 2 SV +\N , SV +\F 6= ; and SV +\N 6= ;:
Then there exists a non-SV ~xk that is not orthogonal to at least one ~xi; i 2 SV + \ F .
Without loss of generality, let us assume k 2 N . Since ~xk contains only two non-zero
features, it must share one with a SV in F and one with a SV in N . This follows from
the observation that both

P
i2F �iy

+
i ~xi � ~xk < 1 and

P
i2N �iy

+
i ~xi � ~xk < 1. If one of them

was larger or equal to one, then there was a SV j with
P

i2SV �iy
+
i ~xi � ~xj > 1, which is

a contradiction. Using ~�+ as a feasible point for the new labeling ~y0, one can �nd the
optimal value of �0k while keeping all other ~�

+ konstant. Finding this �0k by di�erentiation
leads to

�0k =
1�Pn

i=1 �
+
i y

0
iy
0
k~xi � ~xk

~xk � ~xk (7.16)

�0k is always positive, since
Pn

i=1 �
+
i y

0
iy
0
k~xi � ~xk < 1. This inequality holds since there is

no (positive) contribution from the set F any more. This means �0k is a feasible point.
Substituing �0k into the optimization problem and substracting from the objective of the
uniform labeling solution, it follows that at the new feasible point the objective is

1

2

(1�Pn
i=1 �

+
i y

0
iy
0
k~xi � ~xk)2

~xk � ~xk (7.17)

larger than at the uniform labeling solution.
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Case SV + \ F = ; or SV + \ N = ;: This means that there is at least one non-
SV k that has a 
ipped label, while all SV are uniformly labeled. Again, we calculate
the optimal �0k while keeping all other �i �xed using (7.16). �0k is always positive and
therefore feasible, since

Pn
i=1 �

+
i y

0
iy
0
k~xi � ~xk < �1. As for the previous case, this �0k leads

to an increase in the objective function.

Using this lemma it is easy to show that the transductive SVM labels the unlabeled
examples exactly like the co-training algorithm of Blum and Mitchell.

Theorem 14 (Transductive SVMs for Rote Co-Training) For rote co-training
problems, the transductive SVM labels the test examples like the co-training algorithm
of Blum and Mitchell.

Proof The transductive SVM labels all test examples correctly, for which there is at least
one labeled training example in the same connected component. To show this, one can
decompose the optimization problem into the sum of independent optimization problems.
There is one such subproblem for each connected component a; b; c; :::.

W (~�) = max0�~�;~y2f�1;+1g1T ~��
1

2
~�T diag(~y)Qdiag(~y)~� (7.18)

= max0�~�a;~ya2f�1;+1g1T ~�a �
1

2
~�Ta diag(~ya)Qaadiag(~ya)~�a (7.19)

+max0�~�b;~yb2f�1;+1g1T ~�b �
1

2
~�Tb diag(~yb)Qbbdiag(~yb)~�b

+max0�~�c;~yc2f�1;+1g1T ~�c �
1

2
~�Tc diag(~yc)Qccdiag(~yc)~�c

...

The subproblems are independent, since the vectors of di�erent connected components are
orthogonal. Lemma 9 establishes that each such subproblem has a solution with uniform
labeling. Since the transductive SVM �ts the training data perfectly, all examples in a
connected component are classi�ed correctly. On all other test examples, the transductive
SVM assigns an unspeci�ed label. This is equivalent to the rote co-training algorithm in
[Blum and Mitchell, 1998].

The theorem shows that transductive SVMs can be suitable for co-training, since
the rote co-training setting formulates a suÆcient condition for large-margin separation.
While it describes only the rote learning case, a straightforward extension of the TSVM
to general co-training is the following. Simply concatenate both feature spaces X1 and
X2 into one large feature space X

0. Then use a TSVM on X 0. It is easy to see that linear
separability in X1 and X2 also leads to linear separability in X 0 given full compatibility.
Nevertheless, it is an open question whether the TSVM loses information through the
concatenation into one feature space that could be exploited by a \native" co-training
algorithm.

A clear advantage of co-training is that it is not restricted to a particular base learning
algorithm. So it is possible to plug in the learner most appropriate for each task. However,
TSVMs also provide some modeling freedom through specially designed kernels.

7.6.3 Other Work on Transduction

Early empirical results using transduction can be found in [Vapnik and Sterin, 1977].
They also introduces the general idea of transduction and its application to support
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vector machines. More recently, Bennett [Bennett, 1999] and Fung & Mangasarian [Fung
and Mangasarian, 1999] presented results for a modi�ed TSVM formulation. For ease
of computation, they conducted the experiments only for a linear-programming approach
which minimizes the L1 norm instead of L2 and prohibits the use of kernels. This approach
showed small improvements for some of the standard UCI data sets.

Wu et al. applied the idea of transduction to decision trees [Wu et al., 1999]. They
use the conventional top-down approach for growing decision trees. The algorithm di�ers
in its splitting criterion. In each node Wu et al. use a perceptron that maximizes margin
not only for the training but also for the test data. Again, they �nd small improvements
for some of the standard UCI data sets.

Connecting to concepts of algorithmic randomness, [Gammerman et al., 1998][Vovk
et al., 1999][Saunders et al., 1999] presented an approach to estimating the con�dence of
a prediction based on a transductive setting. A similar goal using a Bayesian approach is
pursued in [Graepel et al., 2000]. Since their primary aim is not a reduced error rate in
general, but a measure of con�dence for a particular prediction, they consider only test
sets with exactly one example.

The aspect of transduction can also be found in [Cataltepe and Magdon-Ismail, 1998].
They augment training error in linear regression with two additional terms. The �rst one
depends on the location of the training examples, while the second one is its analog for
the test examples. Both terms substract to zero when the hypothesis behaves similarly
on both the training and the test data. Otherwise, they penalize that hyperplane. In its
general spirit, this is similar to the approach presented in Section 7.5.

7.7 Summary and Conclusions

This chapter has introduced a transductive approach to text classi�cation. This frame-
work is fundamentally di�erent from the conventional inductive approach to learning text
classi�ers. While an inductive learner aims to �nd a classi�cation rule that has a low
error on the whole distribution of examples, a transductive learner minimizes prediction
error for a given set of test examples. For tasks like relevance feedback, where the test
set is known, a transductive framework is preferable over an inductive approach, since it
models the learning problem more closely.

Transductive support vector machines are the natural extension of SVMs to the trans-
ductive setting. The TSVM maximizes margin not only on the training, but also on the
test set. Exploiting the particular statistical properties of text, this chapter has identi�ed
the margin of separating hyperplanes as a natural way to encode prior knowledge for
learning text classi�ers. By taking a transductive instead of an inductive approach, the
test set can be used as an additional source of information about margins. Connecting to
the theoretical model of text classi�cation from Chapter 4, the analysis explains for the
�rst time why and how the TSVM can take advantage of the margin on the test set.

This work presents empirical results on three test collections. On all data sets the
transductive approach showed improvements over the currently best performing method,
most substantially for small training samples and large test sets.

This chapter has also introduced a new method for verifying the labeling of the test
data produced by the TSVM. It is based on a statistical hypothesis test against a necessary
condition that the TSVM solution has to ful�ll for the correct labeling of the test examples.
The criterion can be computed at essentially no extra cost and without additional data.
Experiments show that it can e�ectively verify the validity of the TSVM predictions.

There are still many open questions regarding transductive inference and SVMs. Par-
ticularly interesting is a PAC-style model for transductive inference. How does the sample
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complexity behave for both the training and the test set? What is the relationship be-
tween the concept and the instance distribution? What other concept classes bene�t from
transductive learning as well? Regarding text classi�cation in particular, is there a bet-
ter basic representation for text, aligning margin and learning bias even better? Finally,
the transductive classi�cation implicitly de�nes a classi�cation rule. Is it possible to use
this classi�cation rule in an inductive fashion and will it also perform well on new test
examples?
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Chapter 8

Training Inductive Support Vector

Machines

Training a support vector machine (SVM) leads to a quadratic optimization problem with
bound constraints and one linear equality constraint. Despite the fact that this type of
problem is well understood in principle, there are many issues to be considered in designing
an SVM learner. In particular, for large learning tasks with many training examples, o�-
the-shelf optimization techniques for general quadratic programs such as Newton, Quasi
Newton, etc., quickly become intractable in their memory and time requirements.

This chapter derives a training algorithm for support vector machines that addresses
the problem of large tasks. It is based on a decomposition that reduces the optimization
problem into a series of smaller tasks. Each small problem can be solved eÆciently. A
strategy for �nding a good decomposition and a method for reducing the size of the prob-
lem by excluding irrelevant variables are the key elements of the algorithm. The algorithm
is evaluated on several benchmark data sets. It is shown to be orders of magnitude faster
than the conventional \chunking" algorithm [Boser et al., 1992]. While it can be used
for any type of data, special emphasis is put on the discussion of learning text classi�ers.
In particular, the algorithm is designed so that its time complexity does not necessarily
depend on of the dimensionality of the input space for sparse feature vectors.

The training algorithm is implemented in the software SVM light (Version 3.10). Be-
ginning in 1997, SVM light has been available on the World Wide Web1. Since then it
has had more than 350 registered users. It has been used in commercial applications
and studies ranging from text classi�cation [Yang and Liu, 1999, Neumann and Schmeier,
1999, Busemann et al., 2000, Kindermann et al., 2000], to image recognition [Lerner and
Lawrence, 2000], bioinformatics [Moler et al., 2000], and intensive care monitoring [Morik
et al., 2000], to studies against benchmarks [Syed et al., 1999].

8.1 Problem and Approach

Vapnik (e.g. [Vapnik, 1998]) and Chapter 3 show that training a support vector machine
for the pattern recognition problem leads to the following quadratic optimization problem
(QP).

1SVM light is available at http://www-ai.cs.uni-dortmund.de/svm light
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Optimization Problem 11 (Soft-Margin SVM (dual))

minimize: W (~�) = �
nX
i=1

�i +
1

2

nX
i=1

nX
j=1

yiyj�i�jK(~xi; ~xj) (8.1)

subject to:
nX
i=1

yi�i = 0 (8.2)

8i : 0 � �i � C (8.3)

The number of training examples is denoted by n. ~� is a vector of n variables,
where each component �i corresponds to a training example (~xi; yi). The solution of
Optimization Problem 11 (OP11) is the vector ~�� for which (8.1) is minimized and the
constraints (8.2) and (8.3) are ful�lled. De�ning the matrix Q as (Q)ij = yiyjK(~xi; ~xj),
this can equivalently be written as

minimize: W (~�) = �~�T~1 + 1

2
~�TQ~� (8.4)

subject to: ~�T ~y = 0 (8.5)

~0 � ~� � C~1 (8.6)

The size of the optimization problem depends on the number of training examples n.
Since the size of the matrix Q is n2, for learning tasks with 10000 training examples and
more it becomes impossible to keep Q in memory. Many standard implementations of
QP solvers require explicit storage of Q which prohibits their application. An alternative
would be to recomputeQ every time it is needed. But this becomes prohibitively expensive
if Q is needed often. The following will show that even computing Q completely only once
should be avoided.

One approach to making the training of SVMs on problems with many training exam-
ples tractable is to decompose the problem into a series of smaller tasks. SVM light uses
the decomposition idea of [Osuna et al., 1997a]. This decomposition splits Optimization
Problem 11 into an inactive and an active part - the so called \working set". The main
advantage of this decomposition is that it suggests algorithms with memory requirements
linear in the number of training examples and linear in the number of SVs. One poten-
tial disadvantage is that these algorithms may need a long training time. To tackle this
problem, this chapter proposes an algorithm which incorporates the following ideas:

� An eÆcient and e�ective method for selecting the working set.

� Successive \shrinking" of the optimization problem. This exploits the property that
many SVM learning problems have

{ many fewer support vectors (SVs) than training examples.

{ many SVs which have an �i at the upper bound C.

� Computational improvements like caching and incremental updates of the gradient
and the termination criteria.

This chapter is structured as follows. First, a generalized version of the decompositon
algorithm of [Osuna et al., 1997a] is introduced. This identi�es the problem of selecting
the working set, which is addressed in the following section. In Section 8.4 a method for
\shrinking" OP11 is presented and Section 8.5 describes the computational and imple-
mentational approach of SVM light . Finally, experimental results on text-classi�cation
task and two benchmark data sets are discussed to evaluate the approach.
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8.2 General Decomposition Algorithm

This section presents a generalized version of the decomposition strategy proposed by
[Osuna et al., 1997a]. This strategy uses a decomposition similar to those used in active
set strategies (see [Gill et al., 1981]) for the case that all inequality constraints are simple
bounds. In each iteration the variables �i of OP11 are split into two categories:

� the set B of free variables

� the set N of �xed variables

Free variables are those which can be updated in the current iteration, whereas �xed
variables are temporarily �xed at a particular value. The set of free variables will also be
referred to as the working set. The working set has a constant size q much smaller than
n.

The algorithm works as follows:

� While the optimality conditions are violated

{ Select q variables for the working set B. The remaining

n� q variables are fixed at their current value.

{ Decompose problem and solve QP-subproblem: optimize W (~�) on B.

� Terminate and return ~�.

How can the algorithm detect that it has found the optimal value for ~�? Since OP11 is
guaranteed to have a positive semi-de�nite Hessian Q and all constraints are linear, OP11
is a convex optimization problem. For this class of problems the following Kuhn-Tucker
conditions are necessary and suÆcient conditions for optimality. Denoting the Lagrange
multiplier for the equality constraint 8.5 with �eq and the Lagrange multipliers for the
lower and upper bounds 8.6 with ~�lo and ~�up, ~� is optimal for OP11, if there exist �eq,
~�lo, and ~�up, so that (Karush-Kuhn-Tucker Conditions , see [Werner, 1984]):

g(~�) + (�eq~y � ~�lo + ~�up) = ~0 (8.7)

8i 2 [1::n] : �loi (��i) = 0 (8.8)

8i 2 [1::n] : �upi (�i � C) = 0 (8.9)

~�lo � ~0 (8.10)

~�up � ~0 (8.11)

~�T~y = 0 (8.12)

~0 � ~� � C~1 (8.13)

g(~�) is the vector of partial derivatives at ~�. For OP11 this is

g(~�) = �~1 +Q~� (8.14)

If the optimality conditions do not hold, the algorithm decomposes Optimization
Problem 11 and solves the smaller QP-problem arising from this. The decomposition
assures that this will lead to progress in the objective function W (~�), if the working set
B ful�lls some minimum requirements (see [Osuna et al., 1997b]). In particular, OP11 is
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decomposed by separating the variables in the working set B from those which are �xed
(N). Let us assume ~�, ~y, and Q are properly arranged with respect to B and N , so that

~� =

����� ~�B~�N
����� ~y =

����� ~yB~yN
����� Q =

����� QBB QBN

QNB QNN

����� (8.15)

Since Q is symmetric (in particular QBN = QT
NB), we can write the following:

Optimization Problem 12 (Soft-Margin SVM on Working Set B)

minimize: W (~�B) = �~�TB(~1�QBN~�N ) +
1

2
~�TBQBB~�B +

1

2
~�TNQNN~�N � ~�TN~1 (8.16)

subject to: ~�TB~yB + ~�TN~yN = 0 (8.17)

~0 � ~� � C~1 (8.18)

Since the variables in N are �xed, the terms 1
2~�

T
NQNN~�N and �~�TN~1 are constant.

They can be omitted without changing the solution of OP12. OP12 is a positive semi-
de�nite quadratic programming problem which is small enough be solved by most o�-the-
shelf methods. It is easy to see that changing the �i in the working set to the solution of
OP12 is the optimal step on B. So fast progress depends heavily on whether the algorithm
can select good working sets.

8.3 Selecting a Good Working Set

When selecting the working set, it is desirable to select a set of variables such that the
current iteration will make much progress towards the minimum of W (~�). The following
proposes a strategy based on Zoutendijk's method (see [Zoutendijk, 1970]), which uses a
�rst-order approximation to the target function. The idea is to �nd a steepest feasible
direction ~d of descent which has only q non-zero elements. The variables corresponding
to these elements will compose the current working set.

This approach leads to the following optimization problem. Its solution describes,
which variables enter the working set at each iteration.

Optimization Problem 13 (Working Set Selection)

minimize: V (~d) = g(~�(t))T ~d (8.19)

subject to: ~yT ~d = 0 (8.20)

di � 0 for i: �i = 0 (8.21)

di � 0 for i: �i = C (8.22)

�~1 � ~d � ~1 (8.23)

jfdi : di 6= 0gj = q (8.24)

The objective (8.19) states that a direction of descent is wanted. A direction of descent
has a negative dot-product with the vector of partial derivatives g(~�(t)) at the current
point ~�(t). Constraints (8.20), (8.21), and (8.22) ensure that the direction of descent
is projected along the equality constraint (8.5) and obeys the active bound constraints.
Constraint (8.23) normalizes the descent vector to make the optimization problem well-
posed. Finally, the last constraint (8.24) states that the direction of descent shall only
involve q variables. The variables with non-zero di are included into the working set B.
This way we select the working set with the steepest feasible direction of descent.
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8.3.1 Convergence

The selection strategy, the optimality conditions, and the decomposition together specify
the optimization algorithm. A minimum requirement this algorithm has to ful�ll is that
it

� terminates only when the optimal solution is found

� if not at the solution, takes a step towards the optimum

The �rst requirement can easily be ful�lled by checking the (necessary and suÆcient)
optimality conditions (8.7) to (8.13) in each iteration. For the second one, let us assume
the current ~�(t) is not optimal. Then the selection strategy for the working set returns an
optimization problem of type OP12. Since by construction for this optimization problem
there exists a ~d which is a feasible direction for descent, we know using the results of
[Zoutendijk, 1970] that the current OP12 is non-optimal. So optimizing OP12 will lead
to a lower value of the objective function of OP12. Since the solution of OP12 is also
feasible for OP11 and due to the decomposition (8.16), we also get a lower value for OP11.
This means we get a strict descent in the objective function in each iteration.

However, as elaborated in [Chang et al., 1999], even with a strict descent convergence
is not guaranteed. If the step towards the optimum can be arbitrarily small, the algorithm
does not necessarily reach the solution. In particular, using ~d as the search direction and
computing the maximum step size like prescribed by Zoutendijk does not necessarily lead
to a convergent algorithm on all problems [Wolfe, 1972]. However, in the previous section
~d is not directly used as the search direction, but merely for selecting the working set. On
the resulting working set the algorithm makes an optimal step by solving the decomposed
quadratic program. Recently, Chang et al. analyzed the working-set-selection strategy
proposed above [Chang et al., 1999]. They present a proof that a variant of the working-
set-selection strategy does always converge. A di�erent convergence proof that directly
applies to the selection criterion of Optimization Problem 13 is given in [Lin, 2000].

8.3.2 How to Compute the Working Set

The solution to OP13 is easy to compute using a simple strategy. Let !i = yigi(~�
(t))

and sort all �i according to !i in decreasing order. Let us furthermore require that q is
an even number. Successively pick the q=2 elements from the top of the list for which

0 < �
(t)
i < C, or di = �yi obeys (8.21) and (8.22). Similarly, pick the q=2 elements from

the bottom of the list for which 0 < �
(t)
i < C, or di = yi obeys (8.21) and (8.22). These

q variables compose the working set.

8.4 Shrinking: Reducing the Number of Variables

For many tasks the number of SVs is much smaller than the number of training examples.
If it were known a priori which of the training examples turn out to be SVs, it would be
suÆcient to train just on those examples and still get the same result. This would make
OP11 smaller and faster to solve, since we could save time and space by not needing parts
of the Hessian Q which do not correspond to SVs.

Similarly, for noisy problems there are often many SVs with an �i at the upper
bound C. Let us call these support vectors \bounded support vectors" (BSVs). Similar
arguments as for the non-support vectors apply to BSVs. If it was known a priori which
of the training examples turn out as BSVs, the corresponding �i could be �xed at C,
leading to a new optimization problem with fewer variables.
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During the optimization process it often becomes clear fairly early that certain exam-
ples are unlikely to end up as SVs or that they will be BSVs. By eliminating these variables
from OP11, we get a smaller problem OP110 of size n0. From OP110 we can construct
the solution of OP11. Let X denote those indices corresponding to unbounded support
vectors, Y those indexes which correspond to BSVs, and Z the indices of non-support
vectors. The transformation from OP11 to OP110 can be done using a decomposition
similar to (8.16). Let us assume ~�, ~y, and Q are properly arranged with respect to X, Y ,
and Z, so that we can write

~� =

�������
~�X
~�Y
~�Z

������� =
�������
~�X
C~1
~0

������� ~y =

�������
~yX
~yY
~yZ

������� Q =

�������
QXX QXY QXZ

QY X QY Y QY Z

QZX QZY QZZ

������� (8.25)

The decomposition of W (~�) is

minimize: W (~�X) = �~�TX(~1� (QXY~1) � C) + 1

2
~�TXQXX~�X +

1

2
C~1TQY Y C~1� jY jC (8.26)

subject to: ~�TX~yX + C~1T~yY = 0 (8.27)

~0 � ~�X � C~1 (8.28)

Since 1
2C

~1TQY Y C~1 � jY jC is constant, it can be dropped without changing the so-
lution. So far it is not clear how the algorithm can identify which examples can be
eliminated. It is desirable to �nd conditions which indicate early in the optimization
process that certain variables will end up at a bound. Since suÆcient conditions are not
known, a heuristic approach based on Lagrange multiplier estimates is used.

At the solution, the Lagrange multiplier of a bound constraint indicates how much
the variable \pushes" against that constraint. A strictly positive value of a Lagrange
multiplier of a bound constraint indicates that the variable is optimal at that bound. At
non-optimal points, an estimate of the Lagrange multiplier can be used. Let A be the
current set of �i ful�lling 0 < �i < C. By solving (8.7) for �eq and averaging over all �i
in A, we get the estimate (8.29) for �eq.

�eq =
1

jAj
X
i2A

2
4yi � nX

j=1

�jyjK(~xi; ~xj)
3
5 (8.29)

Note the equivalence of �eq and b in the classi�cation rule (3.21). Since variables �i
cannot be both at the upper and the lower bound simultanously, the multipliers of the
bound constraints can now be estimated by

�loi = yi

0
@
2
4 nX
j=1

�jyjK(~xi; ~xj)
3
5+ �eq

1
A� 1 (8.30)

for the lower bounds and by

�upi = �yi
0
@
2
4 nX
j=1

�jyjK(~xi; ~xj)
3
5+ �eq

1
A+ 1 (8.31)

for the upper bounds. Let us consider the history of the Lagrange multiplier estimates
over the last h iterations. If the estimate (8.30) or (8.31) was positive (or above some
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positive threshold �) at each of the last h iterations, it is likely that this will be true
at the optimal solution, too. These variables are eliminated using the decomposition
from above. This means that these variables are �xed and neither the gradient nor the
optimality conditions are computed. This leads to a substantial reduction in the number
of kernel evaluations.

Since this heuristic can fail, the optimality conditions for the excluded variables are
checked after convergence of OP110. As described in the following section this can be
done more eÆciently for linear SVMs than for non-linear kernels. Therefore, the values
for h and � should be chosen more conservatively for non-linear SVMs. If the optimality
conditions for some variables are not ful�lled, the full problem is reoptimized starting
from the solution of OP110.

8.5 EÆcient Implementation

While the previous sections dealt with algorithmic issues, there are still a lot of open
questions to be answered before having an eÆcient implementation. This section addresses
these implementational issues.

8.5.1 Termination Criteria

There are two obvious ways to de�ne termination criteria which �t nicely into the algo-
rithmic framework presented above. First, the solution of OP13 can be used to de�ne a
necessary and suÆcient condition for optimality. If (8.19) equals 0, OP11 is solved with
the current ~�(t) as solution.

However, for this stopping criterion it is diÆcult to specify the desired precision in
a meaningful and intuitive way. Therefore, SVM light goes another way and uses a ter-
mination criterion derived from the optimality conditions (8.7)-(8.13). Using the same
reasoning as for (8.29)-(8.31), the following conditions with � = 0 are equivalent to (8.7)-
(8.13).

8i with 0 < �i < C: �eq � � � yi � [
Pn

j=1 �jyjK(~xi; ~xj)] � �eq + � (8.32)

8i with �i = 0: yi([
Pn

j=1 �jyjK(~xi; ~xj)] + �eq) � 1� � (8.33)

8i with �i = C: yi([
Pn

j=1 �jyjK(~xi; ~xj)] + �eq) � 1 + � (8.34)

~�T ~y = 0 (8.35)

The optimality conditions (8.32), (8.33), and (8.34) are very natural since they re
ect
the constraints of the primal optimization problem (3). In practice these conditions need
not be ful�lled with high accuracy. Using a tolerance of � = 0:001 is acceptable for most
tasks. Using a higher accuracy did not show improved generalization performance on the
tasks tried, but lead to considerably longer training time.

8.5.2 Computing the Gradient and the Termination Criteria EÆciently

The eÆciency of the optimization algorithm greatly depends on how eÆciently the \house-
keeping" in each iteration can be done. The following quantities are needed in each
iteration.

� The vector of partial derivatives g(~�(t)) for selecting the working set.

� The values of the expressions (8.32), (8.33), and (8.34) for the termination criterion.
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� The matrices QBB and QBN for the QP subproblem.

Fortunately, due to the decompositon approach, all these quantities can be computed
or updated knowing only q rows of the Hessian Q. These q rows correspond to the
variables in the current working set. The values in these rows are computed directly after
the working set is selected and they are stored throughout the iteration. It is useful to
introduce ~s(t)

s
(t)
i =

nX
j=1

�jyjK(~xi; ~xj) (8.36)

Knowing ~s(t), the gradient (8.14) as well as in the termination criteria (8.32)-(8.34) can
be computed very eÆciently. When ~�(t�1) changes to ~�(t) the vector ~s(t) needs to be
updated. This can be done eÆciently and with suÆcient accuracy as follows:

s
(t)
i = s

(t�1)
i +

X
j2B

(�
(t)
j � �

(t�1)
j )yjK(~xi; ~xj) (8.37)

Note that only those rows of Q are needed which correspond to variables in the working
set. The same is true for QBB and QBN , which are merely subsets of columns from these
rows.

For the the linear kernel, the computation of s
(t)
i can be sped up further using the

following equality [Platt, 1999a]. It exploits the fact that in the linear case it is not
necessary to compute the kernel for each support vector and each training example, but

that the changes in the working set can be reduced to a single weight vector ~w
(t)
� .

~w
(t)
� =

X
j2B

(�
(t)
j � �

(t�1)
j )yj~xj (8.38)

This weight vector is computed only once in each iteration. It reduces the update to

s
(t)
i = s

(t�1)
i + ~xi � ~w(t)

� (8.39)

which can be much more eÆciently done than computing the full expansion like in the
non-linear case.

8.5.3 What are the Computational Resources Needed in each Iteration?

For non-linear kernels, most time in each iteration is spent on the kernel evaluations
needed to compute the q rows of the Hessian. This step has a time complexity of O(qlf),
where f is the maximum number of non-zero features in any of the training examples.
Using the stored rows of Q, updating ~s(t) is done in time O(ql). Setting up the QP
subproblem requires O(qq). Also the selection of the next working set, which includes
computing the gradient, can be done in O(ql). The highest memory requirements are due
to storing the q rows of Q. Here O(ql) 
oating point numbers need to be stored. Besides
this, O(q2) is needed to store QBB and O(l) to store ~s(t), ~�, etc.

The linear case can be handled much more eÆciently in two respects. Due to equation
(8.38) it is not necessary to compute the q complete rows of the Hessian, but only the
submatrix QBB that is the input to the core optimizer. This step has a time complexity
of O(q2f). Furthermore, updating ~s(t) can be done in O(qf) for computing the weight
vector and O(fl) for calculating the new ~s(t). The memory requirements are smaller for
the linear kernel as well, since it is not necessary to store the q rows of Q.
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Figure 8.1: Frequency distribution of variables entering the working set for the income
prediction task (32,562 examples, RBF-kernel with 
 = 0:05 and C = 1). The working-
set-size is q = 10.

Note that the time complexity of an iteration does not depend on the number of
features. The non-linear kernels considered here all depend on a simple dot product
between feature vectors. Using the sparse vector representation such dot products can be
computed with a time complexity that depends only on the number of non-zero features.
For text the number of non zero features is typically on the order of 102, while the total
number of features is typically on the order of 104. In the linear case, a time complexity
independent of the dimensionality of the feature space can be achieved using a single

non-sparse vector for storing the weight vector ~w
(t)
� .

8.5.4 Caching Kernel Evaluations

As pointed out in the last section, for non-linear kernels the most expensive step in
each iteration is the evaluation of the kernel to compute the q rows of the Hessian Q.
Throughout the optimization process, eventual support vectors enter the working set
multiple times. Figure 8.1 shows a typical example. For each example it plots the number
of times it is selected into the working set. The examples are ranked by this frequency.
The plot indicates that a small number of examples (approx. 2000) enters the working
set very often, while the vast majority (approx. 30,000) is selected very infrequently or
never. To avoid recomputation of the parts of the Hessian corresponding to frequently
selected examples, SVM light uses caching for non-linear kernels. This allows an elegant
trade-o� between memory consumption and training time.

SVM light uses a least-recently-used caching strategy. When the cache is full, the
element which has not been used for the greatest number of iterations, is removed to
make room for the current row. Only those columns are computed and cached which
correspond to active variables. After shrinking, the cache is reorganized accordingly.
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8.5.5 How to Solve the QP on the Working Set

Currently, two core optimizers are available for solving the subproblems OP12. The
default solver is based on the method of Hildreth and D'Espo [Hildreth, 1957][D'Espo,
1959] as described in [Wismer and Chattergy, 1978] (HIDEO). It is adapted to handle
semi-de�nite problems by excluding variables that correspond to linearly dependent parts
of the Hessian. The second solver is a primal-dual interior-point method (see [Vanderbei,
1994]) implemented by A. Smola [Smola, 1998] (LOQO). Other optimizers can easily be
incorporated into SVM light as well.

8.6 Related Work

The �rst approach to splitting large SVM learning problems into a series of smaller op-
timization tasks was proposed by [Boser et al., 1992]. It is known as the \chunking"
algorithm (see also [Kaufman, 1999]). The algorithm starts with a random subset of the
data, solves this problem, and iteratively adds examples which violate the optimality con-
ditions. [Osuna et al., 1997b] prove formally that this strategy converges to the optimal
solution. One disadvantage of this algorithm is that it is necessary to solve QP-problems
scaling with the number of SVs. The decomposition of [Osuna et al., 1997a], which is
used in the algorithm presented here, avoids this.

In parallel to the work presented here, an algorithm called Sequential Minimal Opti-
mization (SMO) was explored for SVM training [Platt, 1998][Platt, 1999a]. It can be seen
as a special case of the algorithm presented in this chapter, allowing only working sets
of size 2. This restriction allows that the QP subproblems OP12 can be solved analyti-
cally, avoiding the need to implement a full QP solver. In addition, the algorithm di�ers
in its working-set-selection-strategy. Instead of the steepest feasible descent approach
presented here, SMO uses a set of heuristics motivated by the Karush-Kuhn-Tucker con-
ditions. Nevertheless, these heuristics are likely to produce similar decisions in practice.
While caching and shrinking were not part of the original SMO algorithm, they were
recently transferred [Platt, 1999c]. Complementarily, handling linear SVMs in a special
way was not part of the original SVM light algorithm, but was later added as suggested
in [Platt, 1999a].

Based on the original publication [Joachims, 1998a, Joachims, 1999b], the working-
set-selection strategy from Section 8.3 was further developed and re�ned in several ways.
Laskov extended the selection method to the SVM-regression problem [Laskov, 2000].
He shows that for regression it is also possible to achieve a similar speed-up as for the
pattern recognition case considered here. Similarly, Chang and Lin [Chang and Lin, 1999]
generalize the selection strategy to �-SVMs [Sch�olkopf et al., 1999, Sch�olkopf et al., 2000].
A re�ned version of the working-set-selection strategy is proposed in [Hsu and Lin, 2000].
Their analysis reveals that convergence is slow when there are unnecessarily many free
variables during the optimization process and when the optimizer zigzags during the �nal
iterations. Zigzagging occurs when the working-set-selection strategy cycles between two
or more working sets without making much progress. The extensions they propose tackle
both problems and help reduce the number of iterations.

Other algorithms simplify the original SVM training problem to make it computa-
tionally easier to handle. In the successive overrelaxation approach [Mangasarian and
Musicant, 1999] it is required that the hyperplane passes through the origin. The bias
weight can only be mimicked by adding a new feature to the original feature space. This
introduces an additional parameter that needs to be tuned and makes the SVM sensitive
to translation and rotation of the data. However, the simpler formulation removes the
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equality constraint in the dual formulation so that it is possible to modify one variable
at a time. This leads to a very simple update rule. A similar approach of modifying one
variable at a time is followed with the Kernel-Adatron algorithm [Frie� et al., 1998].

Very recently, Mangasarian and Musicant explored a further simpli�ed SVM formula-
tion [Mangasarian and Musicant, 2000]. They require that the hyperplane not only passes
through the origin, but also that training loss is measured squared (i.e. �2) and not linear
(i.e. �). Furthermore, they restrict themselves to linear support vector machines without
kernels. Exploiting these simpli�cations, they present an algorithm that in each iteration
requires matrix inversions scaling only with the number of features N , but not with the
number of examples n. This results in an algorithm that is very fast for low-dimensional
feature spaces. But since the number of features is very high in text classi�cation, their
algorithm is inappropriate for the problems considered in this dissertation.

While all algorithms discussed so far work directly with the primal/dual formula-
tion of the SVM training problem, Keerthi et al. recently proposed a di�erent approach
[Keerthi et al., 1999]. They showed that the SVM training problem can be transformed
into the problem of computing the nearest point between two convex polytopes. This
transformation requires that the training data be linearly separable or, like above, that
margin violations enter the objective function as �2 instead of �. For nearest point prob-
lems, eÆcient algorithms already exist. Empirical results show that their training time is
comparable to SMO.

8.7 Experiments

The following experiments evaluate the approach on the text-classi�cation tasks Reuters,
WebKB, and Ohsumed, as well as on two benchmark datasets. If not stated otherwise, the
following experiments are done with SVM light V3.10 using LOQO as the core optimizer.
The cache size is 80 megabytes for non-linear kernels. The number of iterations h for
the shrinking heuristic is 100 for non-linear kernels and 10 for the linear kernel, and
OP11 is solved up to a precision of � = 0:001 in (8.32)-(8.34). The conventional chunking
algorithm uses the projected conjugent gradient method as its QP solver [Platt, 1998].

8.7.1 Training Times for Reuters, WebKB, and Ohsumed

This section gives the training times for the text-classi�cation experiments from Chapter
6. The experiments are conducted on a Pentium III/500Mhz with 128MB of a RAM
running Linux. Tables 8.1, 8.2, and 8.3 show the results for the ten most frequent Reuters
categories, the WebKB data set, and the �ve most frequent Ohsumed categories. Each
table contains the training time and the number of support vectors for both the linear
kernel and the RBF-kernel (3.34) with 
 = 0:1. In addition to the total number of support
vectors, the column BSV shows the number of support vectors at the upper bound C. The
last line of each table gives the average training time over all categories. The working-set
size is q = 30 for the linear SVM and q = 10 for the RBF-kernel.

The most notable observation is that a linear support vector machine can be trained
much faster than an SVM with a non-linear kernel. While an average linear support
vector machine can be trained within seconds for data sets with up to 10,000 examples
and 35,000 features, the RBF-SVM requires minutes.

The results also show that there is a trend connected with the frequency of a category.
Generally, the more positive examples there are for a category, the higher the training
time is. The same is true for the number of support vectors. There are two other trends
not observable from the tables. Training time tends to increase modestly for larger values
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linear, C = 0:5 RBF, 
 = 0:1, C = 1000
Training Time total SV BSV Training Time total SV BSV

earn 5.5 1826 653 196.1 1788 0

acq 6.6 2450 1124 241.2 2245 0

money-fx 4.9 1012 450 161.1 911 16

grain 4.4 1039 256 110.6 909 0

crude 2.7 846 322 110.8 838 4

trade 3.2 786 331 112.5 796 9

interest 4.5 763 369 138.9 624 22

ship 3.2 911 171 105.4 855 0

wheat 2.5 531 149 67.2 470 1

corn 2.7 573 151 67.4 533 0

average (all 90) 1.3 38.1

Table 8.1: Training time (in cpu-seconds) for the ten most frequent Reuters categories
(9603 examples) and average training time over all 90 categories.

linear, C = 0:5 RBF, 
 = 0:1, C = 1000
Training Time total SV BSV Training Time total SV BSV

course 2.8 775 341 49.4 713 0

faculty 3.8 1351 837 84.0 1245 0

project 2.8 928 501 61.1 882 0

student 4.4 1389 866 81.2 1234 0

average 3.5 68.9

Table 8.2: Training time (in cpu-seconds) for the WebKB categories (3957 examples) and
average training time.

linear, C = 0:5 RBF, 
 = 0:1, C = 1000
Training Time total SV BSV Training Time total SV BSV

Pathology 18.7 6052 3338 724.6 6267 0

Cardiovascular 11.8 3758 1628 393.5 3962 0

Neoplasms 11.3 3515 1140 363.2 3705 0

Nervous System 10.6 3439 1240 366.4 3760 0

Immunologic 9.0 2938 952 310.6 3098 0

average (all 23) 7.4 271.9

Table 8.3: Training time (in cpu-seconds) for the �ve most frequent Ohsumed categories
(10,000 examples) and average training time over all 23 categories.
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Figure 8.2: Training times for the linear SVM (left) and for the RBF-kernel (right) on
the income prediction task. The times are repeated from tables 8.4 and 8.5.

of C independent of the choice of kernel. In addition, for non-linear kernels training time
increases strongly with a larger 
 for the RBF-kernel (3.34) and a higher degree of the
polynomial kernel (3.33).

8.7.2 How does Training Time Scale with the Number of Training Ex-
amples?

For practical applications it is particularly important to know how training time scales
with the training set size. This section �rst analyzes two benchmark tasks before consid-
ering an extended version of the Ohsumed data set. To be approximately comparable to
previous studies [Platt, 1998] using a 266Mhz Pentium II computer, all following experi-
ments were run on a 333Mhz Pentium II. When comparing absolute training times, one
should keep in mind that SMO and Chunking were run on a slightly slower computer.

8.7.2.1 Income Prediction

This task was compiled by John Platt (see [Platt, 1998]) from the UCI \adult" data set.
The goal is to predict whether a household has an income greater than $50,000. After
discretization of the continuous attributes, there are 123 binary features. On average,
there are �14 non-zero attributes per example.

Using the same parameters as in [Platt, 1998], Table 8.4 and the left-hand graph in
Figure 8.2 show training times for the linear SVM with C = 0:05. Similarly, Table 8.5
and the right-hand graph in Figure 8.2 show training times for an RBF-kernel (3.34) with

 = 0:05 and C = 1. The results for SMO and Chunking are taken from [Platt, 1998].

In terms of absolute runtime, both SVM light and SMO are substantially faster than
the conventional chunking algorithm. For the RBF-kernel SVM light is more than three
times faster than SMO. The best working-set size is q = 10. In the linear case SVM light out-
performs SMO for large data sets. The best working-set size is q = 20.

By �tting lines to the log-log plot it is possible to get an empirical scaling of processing
time vs. the number of training examples. In the linear case SVM light shows a much better
scaling of n1:5 compared to SMO with n1:9. This advantage is due to shrinking and the
larger working-set size. While SMO repeatedly iterates over all support vectors, shrinking
quickly identi�es and removes the BSVs early in the optimization process. In addition,
the increased working-set size leads to fewer iterations. For the RBF-kernel the scaling is
n2:1 for both SVM light and SMO. The scaling of the chunking algorithm is much worse
in both cases.
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Examples SVM light SMO Chunking Minimum total SV BSV

1605 0.6 0.4 37.1 <0.01 675 633

2265 1.0 0.9 228.3 <0.01 978 930

3185 2.1 1.8 596.2 <0.01 1268 1210

4781 2.9 3.6 1954.2 0.01 1856 1793

6414 4.1 5.5 3684.6 0.01 2433 2368

11221 9.5 17.0 20711.3 0.03 4158 4083

16101 19.1 35.3 N/A 0.04 5928 5854

22697 35.7 85.7 N/A 0.05 8326 8203

32562 59.4 163.6 N/A 0.07 11708 11542

Scaling 1.5 1.9 3.1 1.0

Table 8.4: Training times and number of SVs for the income prediction data with linear
kernel.

Examples SVM light SMO Chunking Minimum total SV BSV

1605 3.1 15.8 34.8 1.6 691 584

2265 6.4 32.1 144.7 3.5 1007 849

3185 12.4 66.2 380.5 6.3 1297 1112

4781 28.9 146.6 1137.2 14.1 1888 1651

6414 52.8 258.8 2530.6 30.3 2488 2180

11221 205.6 781.4 11910.6 97.4 4221 3731

16101 433.1 1784.4 N/A 212.0 5948 5344

22697 881.6 4126.4 N/A 425.1 8346 7502

32562 1829.7 7749.6 N/A 857.4 11690 10604

Scaling 2.1 2.1 2.9 2.0

Table 8.5: Training times and number of SVs for the income prediction data using an
RBF-kernel

The column \minimum" gives a lower bound on the training time. It is the training
time of an imaginary \oracle" algorithm that could guess the solution of the optimization
problem and simply needed to verify that the guess was correct.

For the non-linear case the bound makes two assumptions. It assumes that there is no
other solution of the optimization problem with substantially fewer support vectors, and
that any optimization algorithms needs to at least once look at the rows of the Hessian
Q which correspond to the support vectors. The column \minimum" shows the time
to compute those rows once (exploiting symmetry). This time scales with n2:0, showing
the complexity inherent in the classi�cation task. For the training set sizes considered,
SVM light is both close to this minimum scaling as well as within a factor of approximately
two in terms of absolute runtime. Therefore, if a particular Hessian Q does not show
regularities that could be exploited for an eÆcient approximation, the maximum speedup
that could be achieved by an improved algorithm is small.

In the linear case the \oracle" algorithm can verify its guess much more eÆciently.
Kernel computations can be avoided by using a single weight vector. Here, SVM light is
much further away from the optimum, still leaving much room for improvements.
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Examples SVM light SMO Chunking Minimum total SV BSV

2477 3.2 2.2 13.1 <0.01 173 47

3470 6.5 4.9 16.1 <0.01 230 71

4912 8.5 8.1 40.6 0.01 277 106

7366 18.8 12.7 140.7 0.02 380 163

9888 24.7 24.7 239.3 0.03 471 240

17188 44.5 65.4 1633.3 0.04 753 477

24692 60.0 104.9 3369.7 0.05 991 682

49749 126.7 268.3 17164.7 0.09 1755 1396

Scaling 1.2 1.6 2.5 1.0

Table 8.6: Training times and number of SVs for the Web data with linear kernel.

Examples SVM light SMO Chunking Minimum total SV BSV

2477 7.5 26.3 64.9 1.3 430 47

3470 13.4 44.1 110.4 2.6 575 69

4912 21.2 83.6 372.5 4.5 675 96

7366 49.4 156.7 545.4 10.3 882 138

9888 70.8 248.1 907.6 15.9 1076 187

17188 212.5 581.0 3317.9 46.8 1607 364

24692 402.1 1214.0 6659.7 78.4 1997 506

49749 1458.8 3863.5 23877.6 298.7 3081 949

Scaling 1.7 1.7 2.0 1.7

Table 8.7: Training times and number of SVs for the Web data using an RBF-kernel.

8.7.2.2 Classifying Web Pages

The second data set - again compiled by John Platt (see [Platt, 1998]) - is a text-
classi�cation problem with a binary representation based on 300 keyword features. This
representation is extremely sparse. On average there are only �12 non-zero features per
example.

Tables 8.6 and 8.7 show the training times on this data set for the linear SVM with
C = 1 and an RBF-kernel with 
 = 0:05 and C = 5. The training times are also plotted
as graphs in Figure 8.3. Again, the times for SMO and Chunking are taken from [Platt,
1998].

For the RBF-kernel SVM light is faster than SMO and Chunking on this data set as
well, scaling with n1:7. The best working-set size is q = 2. In the linear case SVM light out-
performs SMO with increasing training set size. Here, the best working-set size is q = 20.
Again, the scaling of SVM light (n1:2) is substantially better than that of SMO (n1:6) and
Chunking (n2:5).

8.7.2.3 Extended Ohsumed Data Set

The previous experiments using the Ohsumed data set used only the �rst 10,000 docu-
ments. Now, the training set size is extended to up to the �rst 46,160 documents from
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Figure 8.3: Training times for the linear SVM (left) and the RBF-kernel (right) on the
Web page classi�cation task. The times are repeated from tables 8.6 and 8.5.

Examples SVM light Minimum total SV BSV

9337 10.0 0.09 2662 1319

13835 19.2 0.12 3507 1852

27774 56.3 0.25 5687 3361

46160 115.8 0.40 8343 5426

Scaling 1.5 1.0

Table 8.8: Training time and number of SVs for di�erent training set sizes of the Ohsumed
data with linear kernel.

Examples SVM light Minimum total SV BSV

9337 617.5 278.6 4037 0

13835 1583.3 542.5 5384 0

27774 6005.2 1840.2 9016 0

46160 16471.3 4769.4 13811 0

Scaling 2.0 1.8

Table 8.9: Training time and number of SVs for di�erent training set sizes of the Ohsumed
data using an RBF-kernel.

1991. The particular task is to learn the \Cardiovascular Diseases" category. On average,
there are �63 non-zero features per example.

Table 8.8 shows the training times of the linear SVM with C = 0:5. Table 8.9 gives
the training times for an RBF-kernel with 
 = 0:6 and C = 50. The RBF-kernel leads
to many SVs which are not at the upper bound. Relative to this high number of SVs
the cache size is small. To avoid frequent recomputations of the same part of the Hessian
Q, an additional heuristic is incorporated here. The working set is selected with the
constraint that for at least half of the selected variables the kernel values are already
cached. Optimum performance is achieved with a working-set size of q = 20 and h =
400. For the training set sizes considered here, runtime is within a factor of 4 from the
minimum. The scaling in the linear case (n1:5) is again much better than for the non-linear
kernel (n2:0). The best working-set size in the linear case is q = 30.
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Figure 8.4: Training time dependent on working-set size for the Ohsumed task.
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Figure 8.5: Training time dependent on cache size for the Ohsumed task.

Let us now evaluate how particular strategies of the algorithm in
uence the perfor-
mance.

8.7.3 What is the In
uence of the Working-Set-Selection Strategy?

Figure 8.4 plots training time dependent on the size q of the working set. It shows the
results for the smallest training set of the extended Ohsumed task using the RBF-kernel.
The selection strategy from Section 8.3 (lower curve) is compared to a basic strategy
similar to that proposed in [Osuna et al., 1996] (upper curve). In each iteration the basic
strategy randomly replaces half of the working set with variables that do not ful�ll the
optimality conditions. The graph shows that the new selection strategy reduces time by
a factor of more than 3.

8.7.4 What is the In
uence of Caching?

Figure 8.5 shows that caching has a strong impact on training time. It plots training time
for the RBF-kernel on the 9,337 examples of the Ohsumed data dependent on the cache
size. With the cache size ranging from 2 megabytes to 200 megabytes a speedup factor of
almost 4 is achieved. The speedup generally increases with an increasing density of the
feature vectors ~xi.
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Figure 8.6: Training times with and without shrinking for the linear SVM (left) and the
RBF-kernel (right) on the extended Ohsumed task.

8.7.5 What is the In
uence of Shrinking?

All experiments above use the shrinking strategy from Section 8.4. Figure 8.6 (linear
case left, RBF-kernel right) shows the training time with and without shrinking. For
the linear SVM shrinking substantially reduces absolute training time and improves the
scaling. While smaller, shrinking provides a speedup also for the RBF-kernel. For non-
linear kernels the gain depends on the cache size in relation to the size of the problem and
the number of support vectors. It is most e�ective when the cache is small compared to
the size of the problem. In both the linear and the non-linear case, the gain of shrinking
generally increases the smaller the fraction of unbounded SVs is compared to the number
of training examples n.

8.8 Summary and Conclusions

This chaper presented an improved algorithm for training SVMs on large-scale problems.
It is substantially more eÆcient than the conventional chunking algorithm with a projected
conjugate gradient solver. The algorithm was the �rst to show that it is tractable to
train SVMs also for large problems with many support vectors and many features. The
algorithm is based on a decomposition strategy and includes the �rst principled approach
to the problem of selecting the variables for the working set in an e�ective and eÆcient way.
Furthermore, a technique for \shrinking" the problem during the optimization process is
introduced. This is found particularly e�ective for large learning tasks where the fraction
of SVs is small compared to the sample size, or when many SVs are at the upper bound.

The chapter also describes how this algorithm is eÆciently implemented in SVM light .
It was the �rst SVM learner suitable for training text classi�ers with reasonably sized
training sets. Since the algorithm exploits the sparsity of feature vectors, it is particularly
eÆcient for learning text classi�ers. Using only dot products based on a sparse vector
representation, the time complexity of an iteration is independent of the dimensionality of
the feature space. The memory requirements are linear in the number of training examples
and in the number of SVs. Nevertheless, the algorithms can bene�t from additional
storage space, since the caching strategy allows an elegant trade-o� between training
time and memory consumption.



Chapter 9

Training Transductive Support

Vector Machines

Chapter 7 shows that a transductive approach to text classi�cation can lead to improved
predictive performance. Especially when the number of labeled training examples is small
and the test set is large, a transductive SVM (TSVM) can o�er a substantial bene�t
over an inductive SVM. However, the problem of computational eÆciency in training
transductive SVMs has not been considered yet.

This chapter tackles the optimization problem associated with training transductive
SVMs. The optimization problem has the form of a mixed integer quadratic program.
In general, this problem is not convex and the number of integer variables scales with
the number of test examples. So �nding the global optimum with known methods is
possible only for very small test sets. Therefore, conventional optimization methods are
not applicable to training transductive SVMs, since TSVMs are useful only when the test
set is large.

The following proposes an eÆcient algorithm that �nds an approximate solution even
for large test sets. The algorithm is analyzed and shown to converge. Its runtime is eval-
uated on several text-classi�caton tasks. While it takes longer to train than an inductive
SVM, the algorithm makes the transductive approach tractable even for large test sets
with several thousands of examples.

The algorithm is publicly available as part of SVM light V3.10.

9.1 Problem and Approach

Chapter 7 shows based on [Vapnik, 1998] how training a transductive SVM leads to the
following (partly) combinatorial optimization problem.

Optimization Problem 14 (Transductive SVM (non-separable case))

minimize: V (y�1 ; :::; y
�
k; ~w; b; �1; :::; �n; �

�
1 ; :::; �

�
k) =

1

2
~w � ~w + C

nX
i=0

�i + C�
kX

j=0

��j

subject to: 8ni=1 : yi[~w � ~xi + b] � 1� �i

8kj=1 : y
�
j [~w � ~x�j + b] � 1� ��j

8ni=1 : �i > 0

8kj=1 : �
�
j > 0

8kj=1 : y
�
j 2 f�1;+1g
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For a small number of test examples, this problem can be solved optimally simply by
trying all possible assignments of y�1; :::; y�k to the two classes. However, this approach
become intractable for test sets with more than 10 examples. Previous approaches using
branch-and-bound search [Vapnik and Sterin, 1977, Wapnik and Tscherwonenkis, 1979]
push the limit to some extent, but their maximum test set size is still limited too less
than 100 test examples. Since the transductive SVMs were found to be most useful for
large test sets, these algorithms are not appropriate for learning text classi�ers.

The algorithm proposed next is designed to handle the large test sets common in
text classi�cation with 10,000 test examples and more. It �nds an approximate solution
to Optimization Problem 14 using a form of local search. Local search algorithms start
with some initial instantiation of the variables. In each iteration the current variable
instantiation is modi�ed so that it moves closer to a solution. This process is iterated
until no further improvement is possible.

At the �rst glance, a straightforward way to apply this algorithm to solving OP14 is
the following. Start with some labeling of the test examples. Then switch the label of
some example in each iteration, so that the size of the margin increases. Nevertheless, at
the second glance there are two problems with this approach. First, there is no obvious
suÆcient criterion for selecting which label to switch in each iteration. Finding an example
so that switching its class increases the margin requires actually performing the switching
and retraining. This makes the selection process very expensive. Second, there are many
local minima so that the search gets stuck before much progress was made.

The algorithm presented here circumvents these problems by using a smooth approx-
imation to the objective function of OP14. This approximation is iteratively made closer
and closer as the optimization proceeds. Eventually, the approximation is identical to the
objective function of OP14. For the approximated objective function there is a suitable
suÆcient condition for improvement. In addition, the algorithm was empirically found to
be robust against getting stuck in local minima far away from the optimum.

9.2 The TSVM Algorithm

The algorithm takes the training data and the test examples as input and outputs the
predicted classi�cation of the test examples. Besides the two parameters C and C�, the
user can specify the number of test examples to be assigned to class +. This allows trading-
o� recall vs. precision. The following description of the algorithm covers only the linear
case. A generalization to non-linear hypothesis spaces using kernels is straightforward.

The algorithm is summarized in Figure 9.1. It starts with training an inductive SVM
on the training data. The initial labeling of test data is based on the classi�cation of this
inductive SVM. While the inductive SVM providing the initial labeling does not take the
test examples into account, Loop 1 uniformly increases the in
uence of the test examples
by incrementing the cost-factors C�� and C�

+ up to the user-de�ned value of C�. This can
be viewed as a slow shift between a fully inductive (C�� = C�

+ = 0) and a fully transductive
SVM (C�� = C�

+ = C�).
At each level of approximation, Loop 2 iteratively improves the solution by switching

the labels of a pair of test examples. The criterion in the condition of Loop 2 identi�es two
examples for which changing the class labels leads to a decrease in the current objective
function. If there are no more such examples, the algorithm moves to a closer (but less
smooth) approximation in Loop 1. The algorithm uses unbalanced costs C�� and C�

+ to
better accomodate the user-de�ned ratio num+.
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Algorithm TSVM:

Input: { training examples (~x1; y1); :::; (~xn; yn)
{ test examples ~x�1; :::; ~x�k

Parameters: { C,C�: parameters from OP14
{ num+: number of test examples to be assigned to class +

Output: { predicted labels of the test examples y�1; :::; y�k

(~w; b; ~�; ) := solve svm qp([(~x1; y1):::(~xn; yn)]; []; C; 0; 0);

Classify the test examples using < ~w; b >. The num+ test examples with

the highest value of ~w � ~x�j + b are assigned to the class + (y�j := 1); the

remaining test examples are assigned to class � (y�j := �1).
C�� := 10�5; // some small number
C�
+ := 10�5 � num+

k�num+
;

while((C�� < C�) k (C�
+ < C�))f // Loop 1

(~w; b; ~�; ~��) := solve svm qp([(~x1; y1):::(~xn; yn)]; [(~x
�
1; y

�
1):::(~x

�
k; y

�
k)]; C;C

��; C�
+);

while(9m; l : (y�m � y�l < 0)&(��m > 0)&(��l > 0)&(��m + ��l > 2)) f // Loop 2

y�m := �y�m; // take a positive and a negative test
y�l := �y�l ; // example, switch their labels, and retrain

(~w; b; ~�; ~��) := solve svm qp([(~x1; y1):::(~xn; yn)]; [(~x
�
1; y

�
1):::(~x

�
k ; y

�
k)]; C;C

��; C�
+);

g
C�� := min(C�� � 2; C�);
C�
+ := min(C�

+ � 2; C�);

g
return(y�1; :::; y�k);

Figure 9.1: Algorithm for training transductive support vector machines.
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The function solve svm qp is used throughout the algorithm as a sub-procedure. It
refers to quadratic programs of the following type.

Optimization Problem 15 (Inductive SVM (primal))

minimize: V (~w; b; ~�; ~��) =
1

2
~w � ~w + C

nX
i=1

�i + C�
�
X

j:y�
j
=�1
��j + C�

+

X
j:y�

j
=1

��j

subject to: 8ni=1 : yi[~w � ~xi + b] � 1� �i

8kj=1 : y
�
j [~w � ~xj + b] � 1� ��j

8ni=1 : �i > 0

8kj=1 : �
�
j > 0

This optimization problem is similar to an inductive SVM. It is solved in its dual
formulation using the algorithm described in Chapter 8. For the calls to solve svm qp
from within Loop 1 and Loop 2, the optimizer uses the current solution as a starting point.
For the call withing Loop 2 the current optimization problem di�ers from the previous
only with respect to the labels of two examples. So the solutions of both problems are
generally similar and starting the optimizer at the old solution greatly reduces runtime.
The same argument also applies to the call of solve svm qp at the beginning of Loop 1.
Here, only the upper bounds C�� and C�

+ di�erentiate it from the previous optimization
problem.

9.3 Analysis of the Algorithm

This section �rst gives an intuitive mechanical interpretation of the algorithm before it
analyses the algorithm formally.

9.3.1 How does the Algorithm work?

The basic intuition behind the TSVM algorithm can be best explained using an analogy
for the SVMs solution in terms of forces and torgues. In [Burges, 1998] it is identi�ed
that the SVM solution has a mechanical interpretation. At the solution, the optimal
hyperplane is held by a mechanical system that applies a perpendicular force of �i to the
hyperplane form each training example i. This means that each support vector pushes
against the hyperplane with force �i, keeping it in a stable position.

The example in Figure 9.2 shows how this analogy applies to the TSVM algorithm.
Each plus sign indicates a positive training example, minus signs indicate negative training
examples, and dots stand for test examples. In a) the solution of an inductive SVM
is depicted. The shaded area indicates the margin. The test examples are classi�ed
according to the inductive SVM and the algorithm enters Loop 1. By increasing the
values of C�� and C�

+, the test examples are now allowed to apply a small force to the
hyperplane as well. More speci�c, those test examples that lie within the margin now
apply a force pulling at the margin boundaries as indicated by the lines. In the example,
this \rotates" the hyperplane counter-clockwise as indicated in b).

The rotation continues with the allowed force increasing in Loop 1 until one of two
cases occurs. First, examples can leave the margin area as indicated in the lower right
corner of b). Nevertheless, for the example in Figure 9.2, the hyperplane keeps moving
with increasing force. The second case is that at least one test example from each class
lies beyond a line parallel to the hyperplane. This is the case in c). When this happens,
the condition of Loop 2 is ful�lled and the labels of those test examples are switched.
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a) b)

c) d)

Figure 9.2: Intuitive example for the TSVM algorithm.

After this switch, d) depicts how this changes the direction of the force. Those examples
now pull to the opposite direction. The process iterates until there are no examples left
in the margin or until the upper bound C� is reached.

9.3.2 Convergence

What are the algorithmic properties of the algorithm? The following theorem shows that
the algorithm does not cycle and converges in a �nite number of steps.

Theorem 15 Algorithm 1 converges in a �nite number of steps.

Proof To prove this, it is necessary to show that Loop 2 is exited after a �nite number of
iterations. This holds since the objective function of optimization problem OP10 decreases
with every iteration of Loop 2 as the following argument shows. The condition y�my�l < 0
in Loop 2 requires that the examples to be switched have di�erent class labels. Assign
��0m = max(2� ��m; 0) and ��0l = max(2� ��l ; 0). Let y

�
m = 1 so that we can write

1

2
~w � ~w+C

nX
i=0

�i + C�
�
X

j:y�j=�1
��i + C�

+

X
j:y�j=1

��i

=
1

2
~w � ~w + C

nX
i=0

�i + :::+ C�
+�

�
m + :::+ C�

��
�
l + :::
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>
1

2
~w � ~w+C

nX
i=0

�i + :::+ C�
��

�0
m + :::+ C�

+�
�0
l + :::

The inequality holds due to the selection criterion ��m + ��l > 2; ��m > 0; ��l > 0 in Loop 2,
so that ��

0

m = max(2���m; 0) < ��l and �
�0
l = max(2���l ; 0) < ��m. It remains to be veri�ed

that the constraints of OP10 are ful�lled for the new values y�0m, y�
0

l , �
�0
m, and ��0l . It is

clear from the construction that the positivity constraints for ��0m and ��0l are ful�lled. The
following shows that the constraints y�0j [~w � ~xj + b] � 1 � ��0j ; j 2 fl;mg are also ful�lled.
For the old values it holds that y�j [~w � ~xj + b] = 1 � ��j , since ��j > 0 is required in the
condition of Loop 2. This implies

1� ��
0

j = 1�max(2� ��j ; 0)
� �1 + ��j
= �y�j [~w � ~xj + b]

= y�
0

j [~w � ~xj + b]

This completes the argument that the objective function decreases with every step. It
follows that Loop 2 is exited after a �nite number of iterations, since there is only a �nite
number of permutations of the test examples. Loop 1 also terminates after a �nite number
of iterations, since C�� is bounded by C�.

While convergence is an important property, the theorem does not give much informa-
tion about the rate of convergence. Surely, the algorithm cannot make more than O(2k)
switches. Each switch provides a strict descent in the objective function and there are
only 2k possible states for each approximation. Nevertheless, this bound is not very useful
in practice. Finding a tighter bound is an open problem. Such a bound is likely to exist,
since the following experiments show that the number of switches is generally very small.

Furthermore, the theorem does not describe the quality of the solution found. It is an
open problem to characterize situations in which the algorithm converges to the global
optimum. That the algorithm does e�ectively maximize margin is shown experimentally.

9.4 Experiments

The experiments in this section evaluate the quality and the eÆciency of the algorithm.
The �rst experiment brie
y veri�es that the algorithm does in fact maximize margin as
expected. The main focus is on the evaluation of its eÆciency. If not noted otherwise, the
runtimes are averages over multiple test/training splits for a linear TSVM with C = 20.
They correspond to the experiments from Chapter 7. The cpu-times are measured on a
SUN Ultra 10 with a 300Mhz CPU.

9.4.1 Does the Algorithm E�ectively Maximize Margin?

The plot in Figure 9.3 veri�es that the algorithm does maximize margin. It shows an
experiment for the Reuters category 'acq' using 5 training and 300 test examples from
each class. The x-axis of the plot shows the number of iterations through Loop 2 or
equivalently the number of switches. On the y-axis the normalized inverse margin R2

Æ2 is
plotted, if the algorithm was stopped after the n-th iteration. The plot shows that the
TSVM algorithm does almost uniformly improve the labeling of the test data so that the
margin is increased by a factor of almost two.
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Figure 9.3: The inverse relative margin after a given number of iterations of the TSVM
algorithm.

9.4.2 Training Times for Reuters, WebKB, and Ohsumed

This section evaluates the training times of the TSVM algorithm on text-classi�cation
tasks. Tables 9.1, 9.2, and 9.3 give the training times for the ten most frequent Reuters
categories, the WebKB data set, and the �ve most frequent Ohsumed categories. The
training times are on the order of minutes and are substantially longer than those for an
inductive SVM. For the small training set sizes considered here, inductive SVMs lie well
below one second on all categories. However, the TSVM algorithm is substantially faster
than, for example, conventional branch-and-bound methods. They are intractable for the
size of problem considered here.

The tables also show the number of switches that are performed in Loop 2. It is
relatively small and far away from a potential worst case of 2k. The following section
shows how the number of switches relates to training time.

9.4.3 How does Training Time Scale with the Number of Training Ex-
amples?

While for inductive learning algorithms training time is expected to increase with the
number of training examples, this is not necessarily the case for transductive learning
algorithms. Figure 9.4 plots training time depending on the number of training examples.
Beginning with very small training sets, time decreases with an increasing training set
size. Only for larger training sets the trend changes again. This can be explained as
follows. The �gure also plots the number of iterations in Loop 2. For small training
sets the TSVM algorithm changes the labels of many test examples so that Loop 2 is
repeated often. For larger training sets the labeling of the test examples produced by the
inductive SVM is already close to the transductive solution. This leads to fewer iterations
in Loop 2 and therefore lower training time. On the other hand, each call to solve svm qp
takes longer for a larger training set. So for very large training sets the additional cost
of solve svm qp outweighs the savings from a reduced number of switches, and overall
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Avg. Training Time Avg. number of Switches
(cpu-seconds)

earn 131.5 271

acq 138.9 554

money-fx 104.6 146

grain 106.9 87

crude 110.1 256

trade 98.5 137

interest 99.1 119

ship 97.3 130

wheat 89.2 59

corn 87.0 41

Table 9.1: Average training time and average number of switches for the Reuters data
with 17 training examples and 3,299 test examples.

Avg. Training Time Avg. number of Switches
(cpu-seconds)

course 449.9 501

faculty 500.9 1065

project 427.3 878

student 513.7 850

Table 9.2: Average training time and average number of switches for the WebKB data
with 9 training examples and 3,957 test examples.

Avg. Training Time Avg. number of Switches
(cpu-seconds)

Pathology 2041.1 1833

Cardiovascular 1667.0 807

Neoplasms 1647.0 884

Nervous System 1766.3 1248

Immunologic 1497.6 838

Table 9.3: Average training time and average number of switches for the Ohsumed data
with 120 training examples and 10,000 test examples.
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Figure 9.4: Training time and number of switches averaged over the ten most frequent
Reuters categories as a function of the training set size. The test set size is 3299 examples.

training time increases.

Figure 9.4 also shows the average training time of an inductive linear SVM with
C = 20. The inductive SVM is faster than the TSVM for all training set sizes. Since the
inductive SVM is independent of the test set, the di�erence is largest for small training
sets.

9.4.4 How does Training Time Scale with the Number of Test Exam-
ples?

Transductive learning depends not only on the training set, about also on the test set.
So it is necessary to ask how training time scales with the number of test examples.
Figure 9.5 shows training time and number of switches depending on the number of test
examples. Both increase superlinearly with the size of the test set. The scaling of the
training time is approximately k1:5.

9.5 Related Work

The �rst training algorithm for transductive support vector machines was proposed in
[Vapnik and Sterin, 1977] and re�ned in [Wapnik and Tscherwonenkis, 1979]. It is based
on a branch-and-bound algorithm. While it �nds the optimal solution, the authors already
recognized that it applies only to problems with small test sets. They present experiments
with up to 60 test examples. For larger scale problems, Vapnik and Tschervonenkis
mention local search algorithms as a potential solution [Wapnik and Tscherwonenkis,
1979]. The algorithm they sketch is similar to the naive local search algorithm from
Section 9.2.

After a long period with no activity, Bennett and Demiriz recently proposed another
approach [Bennett and Demiriz, 1998, Bennett, 1999]. They consider a modi�ed problem



154 CHAPTER 9. TRAINING TRANSDUCTIVE SUPPORT VECTOR MACHINES

0

20

40

60

80

100

120

140

160

180

206 412 825 1650 3299

S
ec

on
ds

 / 
S

w
itc

he
s

Examples in test set

Training Time
Number of Switches

Figure 9.5: Training time and number of switches averaged over the ten most frequent
Reuters categories as a function of the test set size. The training set consists of 17
examples.

that is easier to solve. Instead of using the 2-norm of the weight vector in the objective
function of the SVM, they replace it with the 1-norm. While this results in a di�erent
learning algorithm, they show that this problem can be transformed into a (linear) mixed
integer program. This problem can be solved using the standard CPLEX optimization
software. Nevertheless, even for this modi�ed formulation the maximum test set size is
around 70 depending on the particular branching factor.

Another approach using the modi�ed problem proposed by Bennett and Demiriz is
currently explored by Fung and Mangasarian [Fung and Mangasarian, 1999] . They avoid
the mixed integer formulation and instead use an approach based on repeated linear pro-
gramming. Similar to the algorithm presented here, they drop the requirement of having
to �nd the global optimum for the bene�t of improved eÆciency. Their repeated linear
programming algorithm can handle test sets much larger than mixed integer program-
ming. Nevertheless, their approach does not apply to regular support vector machines
considered in this chapter and throughout this dissertation. It is an open question whether
the modi�ed formulation provides good learning results for text classi�cation.

9.6 Summary and Conclusions

This chapter proposes an algorithm for training transductive support vector machines
eÆciently. It is the �rst algorithm that can handle test sets with more than 100 examples.
The algorithm proceeds by repeatedly optimizing closer and closer approximations to the
TSVM training problem using local search. The algorithm is analyzed and shown to
converge in a �nite number of steps. The solutions found by the algorithm are evaluated on
text-classi�cation tasks and shown to lead to substantial improvements in generalization
performance.

The eÆciency of the algorithm is evaluated experimentally. Compared to training an
inductive SVM, the TSVM algorithm requires a substantially longer training time. The
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relative increase is largest when the transductive approach shows the largest bene�ts {
namely for small training sets and large test sets. Nevertheless, training is still tractable
even for large test sets with thousands of examples.
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Chapter 10

Conclusions

The contributions of this dissertation are threefold. From an application perspective, it
provides a new approach to solving the problem of learning text classi�ers from examples
that overcomes the limitations of conventional methods. From a technical perspective,
this dissertation develops new methods in the �eld of support vector learning that are
independent of the application domain and can apply to a large range of other machine-
learning tasks. And �nally, on a meta level, this dissertation as a whole serves as a case
study for how to approach and analyze a class of high-dimensional learning problems that
can be transferred to other domains. These three views on this dissertation are discussed
separately in the following.

10.1 Conclusions and Contributions on the Application

Level

This dissertation presents a new machine-learning approach to the problem of learning
text classi�ers from examples. It is not primarily about methods, nor primarily about
theory, nor primarily about algorithms. Rather, it addressed all relevant aspects of this
particular class of learning problems. It is the �rst approach to learning text classi�ers
from examples

� that is computationally eÆcient,

� for which there is a justi�ed learning theory that describes its mechanics with respect
to text classi�cation, and

� that performs well and robustly in practice.

No conventional method has provided a solution that covers all three points suÆciently.
Generative modeling based methods, like naive Bayes, make unreasonable assumptions
about text-classi�cation tasks and show suboptimal prediction accuracy. Non-parametric
classi�ers, like k-NN, show better performance, but lack a theoretical learning model
applicable to text classi�cation. Like most other learning methods (e.g. decision tree
classi�ers, neural nets, etc.) they depend on the dimensionality of the feature space,
which makes them | without further justi�cation | inappropriate for learning text
classi�ers.

The key insight that drives the methods, the theory, and the algorithms developed in
this dissertation is a new complexity measure for text classi�cation. It is based on the
idea of maximizing margin as developed in statistical learning theory. This dissertation
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shows that a maximum-margin approach to learning text classi�ers based on support
vector machines provides �ve main advances on the application level:

Good Empirical Performance: Support vector machines provide state-of-the-art gen-
eralization performance, outperforming conventional learning methods substantially.

Appropriate Modeling of Text-Classification Tasks: Chapter 7 proposes a new
framework to model many text classi�cation and information retrieval tasks more
appropriately. The new model is based on the transductive setting. In contrast
to inductive learning, in the transductive setting the examples to be classi�ed are
part of the input to the learner. The maximum-margin approach presented in this
dissertation o�ers the 
exibility to model both scenarios. Each text-classi�cation
problem can therefore be modeled in the most appropriate way, exploiting all in-
formation that is available. The transductive model is novel to the �elds of text
classi�cation and information retrieval. The bene�t of the transductive approach
was found to be most pronounced for learning tasks with little training data and
large test sets.

Autonomy and Flexibility: The most appropriate document representation depends
on the learning task. For conventional learning methods evaluating multiple repre-
sentations is a time-consuming process that involves resampling methods like cross-
validation or bootstrap. Chapter 6 shows how selecting among multiple representa-
tions, processing steps like stemming, stopword removal, and weighting schemes, as
well as setting other learning parameters can be done eÆciently and without need
for expert interventions. In addition, the methods proposed in Chapter 5 deliver
an estimate of the generalization performance without additional data or additional
training time. The estimate makes it possible to automatically detect when the
accuracy of a learned classi�cation rule is appropriate for the task at hand. This
makes the approach presented in this dissertation suitable even for situations where
expert interventions are not possible (e.g. desktop applications).

Theoretical Validity: For none of the conventional methods is there an appropriate
model that explains why and when they will perform well on a particular text-
classi�cation task. While the models for some methods, like the naive Bayes clas-
si�er, are overly restrictive and inappropriate for text, others, like decision tree
learners, rely purely on empirical evidence. Their suitability for learning text clas-
si�ers is not well understood. The statistical learning model presented in Chapter 4
overcomes these de�ciencies. It is the �rst model that connects the statistical prop-
erties of text-classi�cation tasks with the generalization performance of a learn-
ing algorithm { here the support vector machine. The model explains how the
maximum-margin approach can avoid the \curse of dimensionality" for text classi�-
cation even without a feature-selection step that is essential for many conventional
methods. This makes support vector machines the only learning method for which
it is well understood when and why it works well for text classi�cation. The model
identi�es suÆcient conditions of text-classi�cation tasks that provably lead to low
classi�cation error. Furthermore, for the �rst time it provides a justi�ed formal
model of text-classi�cation tasks, making them accessible for theoretical analysis
also with respect to other learning methods.

Computational Efficiency: Methods are of little practical use without eÆcient algo-
rithms. In particular, the training phase of a learning algorithm can be ineÆcient.
For the learning methods explored in this dissertation, chapters 8 and 9 propose
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eÆcient training algorithms. In contrast to most other learning methods, these
algorithms do not necessarily depend on the dimensionality of the feature space,
which makes them particularly appropriate for learning text classi�ers.

Based on the original publications of the work presented in this dissertation, parts
of the approach presented here were already validated by other researchers as outlined
in the individual chapters. It has already inspired several extensions and found entrance
into commercial applications.

10.2 Conclusions and Contributions on the Technical Level

This work develops some widely applicable machine-learning techniques, but limits their
discussion to the text-classi�cation problem. However, both the particular techniques and
the general approach taken here are not limited to text classi�cation. While it was possible
to use existing results to achieve some of these advances in the application domain, the
development of new methods and theory was necessary in several areas. They range from
questions in statistical learning theory to mathematical programming issues.

The main technical advances provided in this dissertation are:

Efficient Performance Estimation: Chapter 5 proposes and analyzes eÆcient esti-
mators of the error rate, the precision, the recall, and other performance measures
for classi�cation rules generated with a support vector machine. The estimators
can be computed at essentially no extra cost directly after training the SVM on the
training set. This makes the new estimators an order of magnitude more eÆcient
than naive cross-validation or bootstrap. In addition, Chapter 5 proposes how exact
leave-one-out estimation can be sped up, making it practical even for large training
sets.

Efficient Model Selection: Chapter 6 shows how these estimators can be used for
model selection regarding the input representation, the kernel, and the regulariza-
tion parameter of a support vector machine.

Upper Bound for the Expected Error Rate of an SVM: Chapter 4 provides a
new bound on the expected error of a support vector machine. It overcomes the
problems of Vapnik's bound that applies only to the special case of unbiased support
vector machines and that cannot handle inseparable training data.

Efficient Training Algorithm for Inductive Support Vector Machines:

While training an inductive support vector machine can be reduced to a standard
quadratic optimization problem, standard methods for solving such problems are
inappropriate or even intractable for large data sets. Chapter 8 proposes and ana-
lyzes a new training algorithm for inductive SVMs that can handle large training
sets with 50,000 and more examples eÆciently.

Transductive Classification: Chapter 7 analyzes and veri�es when and why trans-
ductive learning algorithms provide an advantage over regular inductive support
vector machines. It also develops criteria that help identify when the transductive
predictions are likely to be suboptimal.

Efficient Training Algorithm for Transductive Support Vector Machines:

Training a support vector machine in the transductive framework requires solving
a mixed integer quadratic program for which there is no known eÆcient solution.
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Chapter 9 proposes and evaluates an algorithm that eÆciently �nds an approxima-
tion and can handle large data sets.

10.3 Conclusions and Contributions on the Meta Level

On a meta level, this dissertation gives an example of how to approach a class of learn-
ing problems that is characterized by a certain type of high-dimensional feature space.
While this contribution is diÆcult to evaluate, this dissertation may also provide insight
into other tasks with properties similar to text classi�cation. Examples of such tasks
could be optical character recognition, natural language understanding tasks, and speech
recognition.

10.4 Summary

This dissertation presents a new approach to learning text classi�ers from examples.
It provides not only learning methods that empirically have state-of-the-art predictive
performance, but also a theory that connects the properties of text-classi�cation tasks with
the generalization accuracy of the learning methods, as well as algorithms that eÆciently
implement the methods. While the work presented in this dissertation is driven by the
application, the techniques it develops are not limited to text classi�cation, giving it a
contribution beyond this particular application. But not only can individual techniques
be transferred to other tasks, this dissertation as a whole serves as a case study for how
to approach high-dimensional learning tasks.

10.5 Open Question

While this dissertation answers some questions, it also opens new areas for research. What
follows is an incomplete list of interesting open questions.

� What are the learning theoretical properties of other learning algorithms for text
classi�cation? In particular, it should be possible to analyze other margin-based
algorithms like Boosting and Winnow in the same way it was done here for support
vector machines.

� What are better learning methods depending on the properties of the task? A
promising choice are SVMs with alternative norms. My conjecture is that L1-margin
should work best for tasks with a small set of strong features (e.g. the word \wheat"
occurs in all positive examples, but in no negative example). On the opposite side
of the spectrum lie L1-SVM for extremely dense target concepts.

� How can be amount of training data be further reduced? It was already demon-
strated that active learning can reduce the required number of labeled training
examples. It might be possible to integrate active learning into the transductive
setting for support vector machines.

� Are there lower bounds for the generalization performance of a support vector ma-
chine for text classi�cation? In connection with analyzing the theoretical properties
of other learning algorithms for text classi�cation, such analysis could identify for
which type of task other methods are more appropriate than SVMs.
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� Are there special kernels for text classi�cation? While the conventional kernels
did not lead to improved performance for text classi�cation, incorporating prior
knowledge about text could be bene�cial. String kernels [Haussler, 1999][Watkins,
2000] that exploit ordering in the document could be bene�cial especially for short
documents and for information extraction tasks.

� Can training nonlinear support vector machines be further sped up? This dis-
sertation showed that the largest bottleneck in training nonlinear support vector
machines lies in the computation of the kernel matrix. Incorporating information
retrieval techniques like an inverted index could provide a speed up for kernels based
on dot products. Another promising direction are eÆcient approximations of the
Hessian [Smola and Sch�olkopf, 2000][Williams and Seeger, 2000].

� How well do humans perform when learning text classi�ers merely from examples?
In particular, it would be interesting to study how the bias of our learning methods
relates to that of humans. Text classi�cation provides a promising ground for such
a comparison.

� Is it possible to incorporate prior knowledge about a particular task into the SVM?
Often, it is easy to get a natural language description of the classi�cation task. In
a relevance feedback setting one might have a query like \documents on machine
learning". The success of relevance feedback demonstrates that this information can
be exploited for improved performance. However, machine learning algorithms and
theory cannot operationalize such information in a principled way, yet.

� How can we design learning algorithms that directly maximizes precision and recall
instead of minimizing error rate?

� How can learning many classes in parallel be sped up? Currently, an individual
SVM has to be trained for each class.

� Is it possible to improve prediction performance by considering multiple tasks in
parallel? Often, learning tasks are not isolated. Transferring knowledge between
tasks was found bene�cial in other domains already (see [Caruana et al., 1997]).
For example, in text classi�cation it might lead to weighting schemes adapted to a
particular collection.

� Do our machine learning algorithms perform well in the real world? The ultimate
challenge is making machine learning work beyond our benchmarks and idealized
environments. For example, it would be interesting to apply transductive SVMs in
relevance feedback and have text classi�cation support service hotlines.
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FreeWais Stoplist

The following list of stopwords is used in the experiments reported here.

a about above according
across actually adj after
afterwards again against all
almost alone along already
also although always among
amongst an and another
any anyhow anyone anything
anywhere are aren't around
as at b be
became because become becomes
becoming been before beforehand
begin beginning behind being
below beside besides between
beyond billion both but
by c can can't
cannot caption co co.
could couldn't d did
didn't do does doesn't
don't down during e
each eg eight eighty
either else elsewhere end
ending enough etc even
ever every everyone everything
everywhere except f few
�fty �rst �ve for
former formerly forty found
four from further g
h had has hasn't
have haven't he he'd
he'll he's hence her
here here's hereafter hereby
herein hereupon hers herself
him himself his how
however hundred i i'd
i'll i'm i've ie
if in inc. indeed
instead into is isn't
it it's its itself
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j k l last
later latter latterly least
less let let's like
likely ltd m made
make makes many maybe
me meantime meanwhile might
million miss more moreover
most mostly mr mrs
much must my myself
n namely neither never
nevertheless next nine ninety
no nobody none nonetheless
noone nor not nothing
now nowhere o of
o� often on once
one one's only onto
or other others otherwise
our ours ourselves out
over overall own p
per perhaps q r
rather recent recently s
same seem seemed seeming
seems seven seventy several
she she'd she'll she's
should shouldn't since six
sixty so some somehow
someone something sometime sometimes
somewhere still stop such
t taking ten than
that that'll that's that've
the their them themselves
then thence there there'd
there'll there're there's there've
thereafter thereby therefore therein
thereupon these they they'd
they'll they're they've thirty
this those though thousand
three through throughout thru
thus to together too
toward towards trillion twenty
two u under unless
unlike unlikely until up
upon us used using
v very via w
was wasn't we we'd
we'll we're we've well
were weren't what what'll
what's what've whatever when
whence whenever where where's
whereafter whereas whereby wherein
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whereupon wherever whether which
while whither who who'd
who'll who's whoever whole
whom whomever whose why
will with within without
won't would wouldn't x
y yes yet you
you'd you'll you're you've
your yours yourself yourselves
z
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