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Abstract. Mobile devices are a special class of resource-constrained em-
bedded devices. Computing power, memory, the available energy, and
network bandwidth are often severely limited. These constrained re-
sources require extensive optimization of a mobile system compared
to larger systems. Any needless operation has to be avoided. Time-
consuming operations have to be started early on. For instance, load-
ing files ideally starts before the user wants to access the file. So-called
prefetching strategies optimize system’s operation. Our goal is to ad-
just such strategies on the basis of logged system data. Optimization
is then achieved by predicting an application’s behavior based on facts
learned from earlier runs on the same system. In this paper, we ana-
lyze system-calls on operating system level and compare two paradigms,
namely server-based and device-based learning. The results could be used
to optimize the runtime behaviour of mobile devices.

Keywords: Mining system calls, ubiquitous knowledge discovery

1 Introduction

Users demand mobile devices to have long battery life, short application startup
time, and low latencies. Mobile devices are constrained in computing power,
memory, energy, and network connectivity. This conflict between user expecta-
tions and resource constraints can be reduced, if we tailor a mobile device such
that it uses its capacities carefully for exactly the user’s needs, i.e., the services,
that the user wants to use. Predicting the user’s behavior given previous be-
havior is a machine learning task. For example, based on the learning of most
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often used file path components, a system may avoid unnecessary probing of files
and could intelligently prefetch files. Prefetching those files, which soon will be
accessed by the system, leads to a grouping of multiple scattered I/O requests
to a batched one and, accordingly, conservation of energy.

The resource restrictions of mobile devices motivate the application of ma-
chine learning for predicting user behavior. At the same time, machine learning
dissipates resources. There are four critical resource constraints:

– Data gathering: logging user actions uses processing capacity.
– Data storage: the training and test data as well as the learned model use
memory.

– Communication: if training and testing is performed on a central server,
sending data and the resulting model uses the communication network.

– Response time: the prediction of usage, i.e., the model application, has to
happen in short real-time.

The dilemma of saving resources at the device through learning which, in turn,
uses up resources, can be solved in several ways. Here, we set aside the prob-
lem of data gathering and its prerequisites on behalf of operation systems for
embedded systems [13] [22] [3]. This is an important issue in its own right. Re-
garding the other restrictions, especially the restriction of memory, leads us to
two alternatives.

Server-based learning: The learning of usage profiles from data is performed
on a server and only the resulting model is communicated back to the de-
vice. Learning is less restricted in runtime and memory consumption. Just
the learned model must obey the runtime and communication restrictions.
Hence, a complex learning method is applicable. Figure 1 shows this alter-
native.

Device-based learning: The learning of usage profiles on the device is severely
restricted in complexity. It does not need any communication but requires
training data to be stored. Data streaming algorithms come into play in two
alternative ways. First, descriptive algorithms incrementally build-up a com-
pact way to store data. They do not classify or predict anything. Hence, in
addition, simple methods are needed that learn from the aggregated compact
data. Second, simple online algorithms predict usage behavior in realtime.
The latter option might only be possible if specialized hardware is used, e.g.,
General Purpose GPUs. Figure 2 shows this alternative.

In this paper, we want to investigate the two alternatives using logged sys-
tem calls. Server-based learning is exemplified by predicting file-access patterns
in order to enhance prefetching. It is an open question whether structural models
are demanded for the prediction of user behavior on the basis of system calls,
or simpler models such as Naive Bayes suffice. Should the sequential nature of
system calls be taken into account by the algorithm? Or is it sufficient to encode
the sequences into the features? Or should features as well as algorithm be capa-
ble of explicitly addressing sequences? We investigate the use of two extremes,
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Fig. 1. Server-based Architecture Fig. 2. Device-based Archi-
tecture

Conditional Random Fields (CRF) and Naive Bayes (NB). In particular, we
inspect their memory consumption and runtime, both, for training and apply-
ing the learned function. Section 2 presents the study of server-based learning
for ubiquitous devices. We derive the learning task from the need of enhanc-
ing prefetching strategies, describe the log data used, and present the learning
results together with resource consumptions of NB and CRF.

Device-based learning is exemplified by recognizing applications from system
calls in order to prevent fraud. We apply the data streaming algorithm Hierar-
chical Heavy Hitters (HHH) yielding a compact data structure for storage. Using
these, the simple kNN method classifies systems calls. In particular, we investi-
gate how much HHH compress data. Section 3 presents the study of device-based
learning using a streaming algorithm for storing compact data. We conclude in
Section 4 by indicating related and future work.

2 Server-based Learning

In this section we present the first case-study, where log data are stored and ana-
lyzed on a server (data are described in Section 2.2). Learning aims at predicting
file access in order to prefetch files (see Section 2.1). The learning methods NB
and CRF are introduced shortly in Section 2.3 and Section 2.4, respectively. The
results are shown in Section 2.5.

2.1 File-access pattern prediction

A prediction of file-access patterns is of major importance for the performance
and resource consumption of system software. For example, the Linux operating
system uses a large “buffer cache” memory for disk blocks. If a requested disk
block is already stored in the cache (cache hit), the operating system can deliver
it to the application much faster and with less energy consumption than oth-
erwise (cache miss). In order to manage the cache the operating system has to
implement two strategies, block replacement and prefetching. The block replace-
ment strategy is consulted upon a cache miss: a new block has to be inserted
into the cache. If the cache is already full, the strategy has to decide which
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block has to be replaced. The most effective victim is the one with the longest
forward distance, i.e. the block with the maximum difference between now and
the time of the next access. This requires to know or guess the future sequence
of cache access. The prefetching strategy proactively loads blocks from disk into
the cache, even if they have not been requested by an application, yet. This of-
ten pays off, because reading a bigger amount of blocks at once is more efficient
than multiple read operations. However, prefetching should only be performed if
a block will be needed in the near future. For both strategies, block replacement
and prefetching, a good prediction of future application behavior is crucial.

Linux and other operating systems still use simple heuristic implementations
of the buffer cache management strategies. For instance, the prefetching code
in Linux [2] continuously monitors read operations. As long as a file is accessed
sequentially the read ahead is increased. Certain upper and lower bounds restrict
the risk of mispredictions. This heuristics has two flaws:

– No prefetching is performed before the first read operation on a specific file,
e.g., after “open”, or even earlier.

– The strategy is based on assumptions on typical disk performance and buffer
cache sizes, in general. However, these assumptions might turn out to be
wrong in certain application areas or for certain users.

Prefetching based on machine learning avoids both problems. Prefetching can
already be performed when a file is opened. It only depends on the prediction
that the file will be read. The prediction is based on empirical data and not on
mere assumptions. If the usage data change, the model changes, as well.

2.2 System Call Data for Access Prediction

We logged streams of system calls of type FILE, which consist of various typical
sub-sequences, each starting with an open- and terminating with a close-call,
like those shown in Figure 3. We collapsed such sub-sequences to one observation
and assign the class label

– full, if the opened file was read from the first seek (if any) to the end,
– read, if the opened file was randomly accessed and
– zero, if the opened file was not read after all.

We propose the following generalization of obtained filenames. If a file is reg-
ular, we remove anything except the filename extension. Directory names are
replaced by ”DIR”, except for paths starting with ”/tmp” – those are replaced
by ”TEMP”. Any other filenames are replaced by ”OTHER”. This generaliza-
tion of filenames yields good results in our experiments. Volatile information
like thread-id, process-id, parent-id and system-call parameters is dropped, and
consecutive observations are compound to one sequence if they belong to the
same process. The resulting dataset consists of 673887 observations in 80661
sequences, a snippet3 is shown in Table 1.

3 The final dataset is available at:
http://www-ai.cs.tu-dortmund.de/PUBDOWNLOAD/MUSE2010
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1,open,1812,179,178,201,200,firefox,/etc/hosts,524288,438,7 : 361, full

2,read,1812,179,178,201,200,firefox,/etc/hosts,4096,361

3,read,1812,179,178,201,200,firefox,/etc/hosts,4096,0

4,close,1812,179,178,201,200,firefox,/etc/hosts

Fig. 3. A sequence of system calls to read a file. The data layout is: timestamp, syscall,
thread-id, process-id, parent, user, group, exec, file, parameters (optional) : read bytes,
label (optional)

user group exec file label

201 200 firefox-bin cookies.sqlite-
journal

zero

201 200 firefox-bin default zero
201 200 firefox-bin hosts full
201 200 firefox-bin hosts full

201 200 multiload-
apple

mtab full

102 200 kmail png zero
Table 1. Snippet of the preprocessed dataset
(the marked row corresponds to the open call of
Fig. 3).

predicted\true full zero read

full 0 2 1

zero 5 0 4

read 4 2 0
Table 2. Cost matrix

exec file label

? firefox-bin ? ? cookies.sqlite-journal zero
firefox-bin firefox-bin ? cookies.sqlite-journal default zero
firefox-bin firefox-bin cookies.sqlite-journal default hosts full
firefox-bin firefox-bin default hosts hosts full

? multiload-apple ? ? mtab full

? kmail ? ? png zero
Table 3. Snippet of the final dataset using two features.

We used two feature sets for the given task. The first encodes information
about sequencing as features, resulting in 24 features, namely ft, ft−1, ft−2,
ft−2/ft−1, ft−1/ft, ft−2/ft−1/ft, with f ∈ {user, group, exec, file}. The second
feature set simply uses two features exect−1/exect and filet−2/filet−1/filet as
its only features – an excerpt of the dataset using these two features is shown in
Table 3.

Errors in predicting the types of access result in different degrees of fail-
ure. Predicting a partial caching of a file, if just the rights of a file have to be
changed, is not as problematic as predicting a partial read if the file is to be
read completely. Hence, we define a cost-matrix (see Table 2) for the evaluation
of our approach. For further research the values used in this matrix might have
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to be readjusted based on results of concrete experiments on mobile devices or
simulators.

2.3 Naive Bayes Classifier

The Naive Bayes classifier [10] assigns labels y ∈ Y to examples x ∈ X. Each
example is a vector of m attributes written here as xi, where i = 1...m. The
probability of a label given an example is according to the Bayes Theorem:

p(Y |x1, x2, ..., xm) =
p(Y )p (x1, x2, ..., xm|Y )

p (x1, x2, ..., xm)
(1)

Domingos and Pazzani [7] rewrite eq. (1) and define the Simple Bayes Classifier
(SBC):

p(Y |x1, x2, ..., xm) =
p(Y )

p (x1, x2, ..., xm)

n�

j=1

p (xj |Y ) (2)

The classifier delivers the most probable class Y for a given example x =
x1 . . . xm:

argmax
Y

p(Y |x1, x2, ..., xm) =
p(Y )

p (x1, x2, ..., xm)

m�

j=1

p (xj |Y ) (3)

The term p (x1, x2, ..., xm) can be neglected in eq. (3) because it is a constant
for every class y ∈ Y . The decision for the most probable class y for a given
example x just depends on p(Y ) and p (xi|Y ) for i = 1 . . .m. These probabilities
can be calculated after one run on the training data. So, the training runtime
is O(n), where n is the number of examples in the training set. The number
of probabilities to be stored during training are |Y| + (

�m

i=1 |Xj | ∗ |Y|), where
|Y| is the number of classes and |Xi| is the number of different values of the ith
attribute. The storage requirements for the trained model are O(mn).

It has often been shown that SBC or NBC perform quite well for many data
mining tasks [7, 11, 8].

2.4 Linear-chain Conditional Random Fields

Linear-chain Conditional Random Fields, introduced by Lafferty et al. [12], can
be understood as discriminative, sequential version of Naive Bayes Classifiers.
The conditional probability for an actual sequence of labels y1,y2, ...,ym, given a
sequence of observations x1,x2, ...,xm is modeled as an exponential family. The
underlying assumption is that a class label at the current timestep t just depends
on the label of its direct ancestor, given the observation sequence. Dependency
among the observations is not explicitly represented, which allows the use of
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rich, overlapping features. Equation 4 shows the model formulation of linear-
chain CRF

pλ (Y = y|X = x) =
1

Z (x)

T�

t=1

exp

�
�

k

λkfk (yt, yt−1,x)

�

(4)

with the observation-sequence dependent normalization factor

Z (x) =
�

y

T�

t=1

exp

�
�

k

λkfk (yt, yt−1,x)

�

(5)

The sufficient statistics or feature functions fk are most often binary indicator
functions which evaluate to 1 only for a single combination of class label(s) and
attribute value. The parameters λk can be regarded as weights or scores for this
feature functions. In linear-chain CRF, each attribute value usually gets |Y|+|Y|2

parameters, that is one score per state-attribute pair as well as one score for ev-
ery transition-attribute triple, which results in a total of

�m

i=1 |Xi|
�
|Y|+ |Y|2

�

model parameters, where |Y| is the number of classes, m is the number of at-
tributes and |Xi| is the number of different values of the ith attribute. Notice
that the feature functions explicitly depend on the whole observation-sequence
rather than on the attributes at time t. Hence, it is possible and common to
involve attributes of preceding as well as following observations from the current
sequence into the computation of the total score exp (

�
k λkfk (yt, yt−1,x)) for

the transition from yt−1 to yt given x.
The parameters are usually estimated by the maximum-likelihood method,

i.e., maximizing the conditional likelihood (Eq. 6) by quasi-Newton [14], [19],
[15] or stochastic gradient methods [25], [17], [18].

L (λ) =

N�

i=1

pλ(Y = y(i)|X = x(i)) (6)

The actual class prediction for an unlabeled observation-sequence is done by the
Viterbi algorithm known from Hidden Marcov Models [21], [16].

Although CRF in general allow to model arbitrary dependencies between
the class labels, efficient exact inference can solely be done for linear-chain CRF.
This is no problem here, because they match the sequential structure of our
system-call data, presented in section 2.2.

2.5 Results of Server-based Prediction

Comparing the prediction quality of the simple NB models and the more complex
CRF models, surprisingly, the CRF are only slightly better when using the two
best features (see Tables 4 and 6). CRF outperforms NB when using all features
(see Tables 5 and 7). These two findings indicate that the sequence information
is not as important as we expected. Neither encoding the sequence into features
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nor applying an algorithm which is made for sequential information outperforms
a simple model. The Tables show that precision, recall, accuracy, and misclas-
sification cost are quite homogeneous for CRF, but vary for NB. In particular,
the precision of predicting “read” and the recall of class “zero” differs from the
numbers for the other classes, respectively. This makes CRF more reliable.

Inspecting resource consumption, we stored models of the two methods for
both feature sets and for various numbers of examples to show the practical
storage needs of the methods. Table 10 presents the model sizes of the naive
Bayes classifier on both feature sets and for various example set sizes. We used
the popular open source data mining tool RapidMiner4 for these experiments.
Table 10 also shows the model sizes of CRF on both feature sets and various
example set sizes.

predicted\true full zero read prec.

full 1427467 19409 3427 98.43
zero 12541 2469821 40258 97.91
read 80872 217380 2467695 89.22
recall 93.86 91.25 98.26

Table 4. Result of Naive Bayes Classifier on best
two features, 10x10-fold cross-validated, accuracy:
94.45 ± 0.00, missclassification costs: 0.152 ± 0.001

full zero read prec.

1426858 21562 22717 96.99
15392 2371009 97566 95.45
78630 314039 2391097 85.89
93.82 87.60 95.21

Table 5. Result of Naive Bayes
Classifier on all 24 features,
10x10-fold cross-validated, accu-
racy: 91.84 ± 0.00, missclassifica-
tion costs: 0.218 ± 0.002

predicted\true full zero read prec.

full 1446242 7123 29051 97.56
zero 19452 2639097 133007 94.54
read 55186 60390 2349322 95.31
recall 95.09 97.51 93.55

Table 6. Result of HMM-like CRF on the best
two features, 10x10-fold cross-validated, accuracy:
95.49 ± 0.00, missclassification costs: 0.150 ± 0.000

full zero read prec.

1450147 8335 25629 97.71
14563 2639724 126403 94.93
56170 58551 2359348 95.36
95.35 97.53 93.95

Table 7. Result of HMM-like
CRF on all 24 features, 10x10-fold
cross-validated, accuracy: 95.70
± 0.00, missclassification costs:
0.143 ± 0.000

predicted\true full zero read prec.

full 1467440 4733 7503 99.17
zero 10883 2659294 108340 95.71
read 42557 42583 2395537 96.57
recall 96.49 98.25 95.39

Table 8. Result of linear-chain CRF on the best
two features, 10x10-fold cross-validated, accuracy:
96.79 ± 0.00, missclassification costs: 0.112 ± 0.000

full zero read prec.

1468095 4117 5022 99.38
10306 2662966 107859 95.75
42479 39527 2398499 96.69
96.53 98.39 95.51

Table 9. Result of linear-chain
CRF on all 24 features, 10x10-fold
cross-validated, accuracy: 96.89
± 0.00, missclassification costs:
0.110 ± 0.000

4 RapidMiner is available at: http://www.rapidminer.com
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#Att.\#Seq. 0 67k 135k 202k 270k 337k 404k 472k 539k 606k 674k

2 nB 244 248 251 253 256 255 256 257 257 256 256
24 nB 548 561 571 577 582 585 588 590 590 585 585
2 CRF++ (HMM) 5 247 366 458 490 512 569 592 614 634 649
24 CRF++ (HMM) 12 615 878 1102 1170 1216 1367 1420 1463 1521 1551
2 CRF++ 6 523 776 978 1043 1089 1213 1260 1299 1345 1378
24 CRF++ 19 1339 1914 2415 2559 2652 2988 3095 3184 3303 3365

Table 10. Storage needs (in kB) of the naive Bayes (nB) classifier model produced
by RapidMiner, the HMM-like CRF (CRF++ (HMM)) and the linear-chain CRF
(CRF++) on different numbers of sequences and attributes.

#Att.\#Seq. 0 67k 135k 202k 270k 337k 404k 472k 539k 606k 674k

2 nB < 1 < 1 < 1 < 1 1 < 1 < 1 < 1 < 1 < 1 < 1
24 nB < 1 < 1 < 1 1 < 1 1 1 1 1 2 1
2 CRF++ (HMM) < 1 9.09 28.56 44.08 60.1 75.76 107.28 127.04 149.95 165.94 199.2
24 CRF++ (HMM) < 1 27.92 55.9 103.24 153.53 160.33 230.7 273.29 232.84 309.19 317.62
2 CRF++ < 1 16.69 50.23 85.18 113.21 145.96 173.56 200.98 234.65 260.56 325.54
24 CRF++ < 1 41.06 105.29 156.67 296.31 300.83 343.28 433.03 440.88 463.84 632.96

Table 11. Training time (in seconds) of the naive Bayes (nB) classifier model pro-
duced by RapidMiner, the HMM-like CRF (CRF++ (HMM)) and the linear-chain
CRF (CRF++) on different numbers of sequences and attributes.

We used the open source CRF implementation CRF++5 with L2-regulariza-
tion, σ = 1 and L-BFGS optimizer in all CRF experiments. Obviously, the
storage needs for a model produced by a NB classifier are lower than those for
a CRF model. This is the price to be paid for more reliable prediction quality.
CRF don’t scale-up well. Considering training time, the picture becomes worse.
Table 11 shows the training time of linear-chain or HMM-like CRF consuming
orders of magnitude more time than NB.

3 Device-based Learning

In this section, we present the second case-study, where streams of log data are
processed in order to store patterns of system use. The goal is to aggregate the
streaming system data. A simple learning method might then use the aggregated
data. The method of Hierarchical Heavy Hitters (HHH) is defined in Section 3.1.
The log data are shown in Section 3.2. For the comparison of different sets of
HHH, we present a distance measure that allows for clustering or classifying
sets of HHH. In addition to the quality of our HHH application, its resource
consumption is presented in Section 3.3.

3.1 Hierarchical Heavy Hitters

The heavy hitter problem consists of finding all frequent elements and their fre-
quency values in a data set. According to Cormode [4], given a (multi)set S

5 CRF++ is available at: http://crfpp.sourceforge.net/
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of size N and a threshold 0 < φ < 1, an element e is a heavy hitter if its fre-
quency f(e) in S is not smaller than �φN�. The set of heavy hitters is then
HH = {e|f(e) ≥ �φN�}.

If the elements in S originate from a hierarchical domain D, one can state
the following problem [4]:

Definition 1 (HHH Problem). Given a (multi)set S of size N with elements
e from a hierarchical domain D of height h, a threshold φ ∈ (0, 1) and an error
parameter � ∈ (0, φ), the Hierarchical Heavy Hitter Problem is that of identifying
prefixes P ∈ D, and estimates fp of their associated frequencies, on the first N
consecutive elements SN of S to satisfy the following conditions:

– accuracy: f∗
p − εN ≤ fp ≤ f∗

p , where f∗
p is the true frequency of p in SN .

– coverage: all prefixes q �∈ P satisfy φN >
�

f(e) : (e � q)∧( � ∃p ∈ P : e � p).

Here, e � p means that element e is generalizable to p (or e = p). For the
extended multi-dimensional heavy hitter problem introduced in [5], elements can
be multi-dimensional d-tuples of hierarchical values that originate from d differ-
ent hierarchical domains with depth hi, i = 1, . . . , d. There exist two variants
of algorithms for the calculation of multi-dimensional HHHs: Full Ancestry and
Partial Ancestry, which we have both implemented. For a detailed description
of these algorithms, see [6].

3.2 System Call Data for HHH

FILE COMM PROC INFO DEV

open recvmsg mmap2 access ioctl

read recv munmap getdents

write send brk getdents64

lseek sendmsg clone clock gettime

llseek sendfile fork gettimeofday

writev sendto vfork time

fcntl rt sigaction mprotect uname

fcntl64 pipe unshare poll

dup pipe2 execve fstat

dup2 socket futex fstat64

dup3 accept nanosleep lstat

close accept4 lstat64

stat

stat64

inotify init

inotify init1

readlink

select

Table 12. We focus on 54 system call types which are functionally categorized into
five groups. FILE: file system operations, COMM: communication, PROC: process and
memory management, INFO: informative calls, DEV: operations on devices.

The kernel of current Linux operating systems offers about 320 different
types of system calls to developers. Having gathered all system calls made by
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several applications, we observed that about 99% of all calls belonged to one of
the 54 different call types shown in Tab. 12. The functional categorization of
system calls into five groups is due to [20]. We focus on those calls only, since
the remaining 266 call types are contained in only 1% of the data and therefore
can’t be frequent.

HHHs can handle values that have a hierarchical structure. We have utilized
this expressive power by representing system calls as tuples of up to three hi-
erarchical feature values. Each value originates from a taxonomy (type, path or
sequence) that either can be derived dynamically from the data itself or has to
be defined explicitly by the user. The groups introduced in Tab. 12 form the top
level of the taxonomy for the hierarchical variable type (see Fig. 4). The socket
call is a child of group COMM and FILE is the parent of calls like open and
fcntl64. Subtypes of system calls can be defined by considering the possible
values of their parameters. For example, the fcntl64 call which operates on file
descriptors has fd, cmd and arg as its parameters. We have divided the 16 differ-
ent nominal values of the cmd parameter into seven groups — notify, dflags,
duplicate, sig, lock, fflags and lease — that have become the children of
the fcntl64 system call in our taxonomy (see Fig. 4). One may further divide
fcntl64 calls of subtype fflags by the values F SETFL and F GETFL of the arg
parameter. In the same way, we defined parents and children for each of the 54
call types and their parameters.

�

���� ���� ���� ���� ���

������ ���� �������

��������� ����������� ��� ��� ����� �����

Fig. 4. Parts of the taxonomy we defined for the hierarchical variable type.

The path variable is filled whenever a system call accesses a file system path.
Its hierarchy comes naturally along with the given path hierarchy of the file
system. The sequence variable expresses the temporal order of calls within a
process. The directly preceding call is the highest, less recent calls are at deeper
levels of the hierarchy.

We collected system call data from eleven applications (like Firefox, Epiphany,
NEdit, XEmacs) with the strace tool (version 4.5.17) under Ubuntu Linux (ker-
nel 2.6.26, 32 bit). All child processes were monitored by using option -f of
strace. For each application, we logged five times five minutes and five times ten
minutes of system calls if they belonged to one of the 54 types shown in Tab. 12,
resulting in a whole of 110 log files comprising about 23 million of lines (1.8 GB).
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3.3 Resulting Aggregation through Hierarchical Heavy Hitters

We have implemented the Full Ancestry and Partial Ancestry variants of the
HHH algorithm mentioned in Section 3.1. The code was integrated into the
RapidMiner data mining tool. Regarding run-time, all experiments were done
on a machine with Intel Core 2 Duo E6300 processor with 2 GHz and 2 GB main
memory.

Memory Run-time Similarity
Min Max Avg Min Max Avg Avg Dev

T 19 151 111 16 219 79 0.997 0.006
FA TP 25 9,971 5,988 31 922 472 0.994 0.003

TPS 736 73,403 48,820 78 14,422 6,569 0.987 0.008
T 7 105 70 15 219 74 0.985 0.010

PA TP 7 4,671 2,837 31 5,109 2,328 0.957 0.017
TPS 141 18,058 10,547 78 150,781 74,342 0.921 0.026

Table 13. Memory consumption (number of stored tupels), run-time (milliseconds)
and similarity to exact solution of the Full Ancestry (FA) and Partial Ancestry (PA)
algorithms (ε = 0.0005, φ = 0.002). Minimum (Min), maximum (Max) and average
(Avg) values were calculated over measurements for the first log file of all eleven ap-
plications with varying dimensionality of the element tupels (T = type hierarchy, P =
path hierarchy, S = sequence hierarchy).

Since we want to aggregate system call data on devices that are severely
limited in processing power and available memory, measuring the resource usage
of our algorithms was of paramount importance. Table 13 shows the run-time
and memory consumption of the Full Ancestry and Partial Ancestry algorithms
using only the type hierarchy, the type and path hierarchy, or the type, path, and
sequence hierarchy. Minimum, maximum and averages were calculated over a
sample of the ten gathered log files for each of the eleven application by taking
only the first log file for each application into account.

Memory consumption and run-time increase with the dimensionality of the
elements, while at the same time approximation quality decreases. Quality is
measured as similarity to the exact solution. Full Ancestry has a higher ap-
proximation quality in general. The results correspond to observations made by
Cormode and are probably due to the fact that Partial Ancestry outputs bigger
HHH sets, which was the case in our experiments, too. Note that approximation
quality can always be increased by changing parameter ε to a smaller value at
the expense of a longer run-time.

Even for three-dimensional elements, memory consumption is quite low re-
garding the number of stored tuples. The largest number of tuples (73,403), only
equates to a few hundred kilobytes in main memory! The longest run-time of
150,781 ms for Partial Ancestry in three dimensions relates to the size of the
biggest log file (application Rhythmbox).

Figure 5 shows the behaviour of our algorithms on the biggest log file (appli-
cation Rhythmbox) for three dimensions with varying ε and constant φ. Memory
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consumption and quality decrease with increasing ε, while the run-time increases.
So the most important trade-off involved here is weighting memory consumption
against approximation quality — the run-time is only linearly affected by pa-
rameter ε. Again, Full Ancestry shows a better approximation quality in general.

7 Ressourcenbedarf der Algorithmen
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Abbildung 7.1: Speicherbedarf (in Tupeln) für verschiedene Dimensionen bei
Variation von ε am Beispiel der größten Logdatei Rhythmbox 4
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7.1 Speicherbedarf und Laufzeiten
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7.3 Approximationsgüte
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77

7.3 Approximationsgüte
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Fig. 5. Memory consumption (a, b), run-time (c, d) and similarity to exact solution
(e, f) of HHH algorithms (three-dimensional) with varying ε, φ = 0.001 on biggest log
file of application Rhythmbox.

Classification results For the 110 log files of all applications, we determined
the HHHs, resulting in sets of frequent tupels of hierarchical values. Interpreting
each HHH set as an example of application behaviour, we wanted to answer the
question if the profiles could be separated by a classifier. So we estimated the
expected classification performance by a leave-one-out validation for kNN.

Therefore, we needed to define a distance measure for the profiles determined
by HHH algorithms. The data structures of HHH algorithms contain a small
subset of prefixes of stream elements. The estimated frequencies fp are calculated
from such data structure by the output method and compared to φ, thereby
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generating a HHH set. The similarity measure DSM operates not on the HHH
sets, but directly on the internal data structures D1, D2 of two HHH algorithms:

sim(D1, D2) =

�
p∈P1∩P2

contribDSM(p)

|P1 ∪ P2|
.

Be f i
p the estimated frequency of prefix p for data structure Di as normally

calculated by the HHH output method. The contribution of individual prefixes
to overall similarity can then be defined as

contribDSM(p) =
2 ·min(f1

p , f
2
p )

min(f1
p , f

2
p ) + max(f

1
p , f

2
p )

.

The so defined similarity measure is independent from the choice of φ, as no
HHH sets need to be calculated.

The classification errors for different values of k, hierarchies and distance
measures are shown in Tab. 14. The new DSM distance measure which is in-
dependent of parameter φ shows the lowest classification error in all validation
experiments. As a baseline, we also determined the relative frequencies (TF,
term frequencies) of call types per log file and classified them using kNN (with
Euclidean distance). The error for profiling by HHH sets is significantly lower
than for the baseline.

T TS

k DSM TF DSM TF

3 10.3 17.0 7.7 17.0

5 12.7 18.7 8.7 18.7

7 14.0 21.7 8.7 21.7

9 14.0 21.0 9.0 21.0

Table 14. Results for kNN (k = 3, 5, 7, 9), ε = 0.0005, φ = 0.002 and distance
measures DSM and TF, when only the type hierarchy or type and sequence hierarchy
together are used.

4 Conclusion

Server-based and device-based learning has been investigated regarding resource
constraints. Further experiments to measure resource consumption and predic-
tion accuracy will be conducted on real mobile devices, like Android mobile
phones, whose operating system is also based on the Linux kernel.

Aggregation using HHH worked successfully for the classification of applica-
tions. Further work will exploit HHH aggregation for other learning tasks and
inspect other data streaming algorithms. Concerning server-based learning, we
may now answer the questions from the introduction, whether structural models
are demanded for the prediction of user behavior on the basis of system calls,
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or simpler models such as Naive Bayes suffice. Should the sequential nature of
system calls be taken into account by the algorithm? Or is it sufficient to en-
code the sequences into the features? Or should features as well as algorithm
be capable of explicitly addressing sequences? We have compared CRF and NB
with respect to their model quality, memory consumption, and runtime. Neither
encoding the sequence into features nor applying an algorithm which is made
for sequential information (i.e., CRF) outperforms a simple model (i.e., NB).

This is in contrast with studies on intrusion detection, where it was shown
advantageous to take into account the structure of system calls, utilizing Con-
ditional Random Fields (CRF) [9] and special kernel functions to measure the
similarity of sequences [23]. Structured models in terms of special tree kernel
functions outperformed n-gram representations when detecting malicious SQL
queries [1]. Possibly, for prefetching strategies, the temporal order of system
calls is not as important as we expected it to be. In the near future the result-
ing improvements in terms of cache hit rate and file operation latencies will be
evaluated systematically based on a cache simulator and by modifying the Linux
kernel.

Given regular processors, CRF are only applicable in server-based learning.
Possibly, the integration of special processors into devices and a massively par-
allel training algorithm could speed up CRF for device-based learning. Further
work will implement CRF on a GPGPU (general purpose graphic processing
unit). GPGPUs will soon be used by mobile devices. It has been shown that
their energy efficiency is advantagous [24].
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