
ar
X

iv
:p

hy
si

cs
/0

40
20

93
v1

 [
ph

ys
ic

s.
da

ta
-a

n]
 1

8
Fe

b
20

04

IEKP-KA/04-05
February 2, 2008

A Neural Bayesian Estimator for

Conditional Probability Densities

Michael Feindt
Institut für Experimentelle Kernphysik

Universität Karlsruhe

michael.feindt@physik.uni-karlsruhe.de

http://www-ekp.physik.uni-karlsruhe.de/ f̃eindt

Abstract

This article describes a robust algorithm to estimate a conditional probability density
f(t|~x) as a non-parametric smooth regression function. It is based on a neural network
and the Bayesian interpretation of the network output as a posteriori probabability. The
network is trained using example events from history or simulation, which define the
underlying probability density f(t, ~x).

Once trained, the network is applied on new, unknown examples ~x, for which it can
predict the probability distribution of the target variable t. Event-by-event knowledge
of the smooth function f(t|~x) can be very useful, e.g. in maximum likelihood fits
or for forecasting tasks. No assumptions are necessary about the distribution, and
non-Gaussian tails are accounted for automatically. Important quantities like median,
mean value, left and right standard deviations, moments and expectation values of any
function of t are readily derived from it.

The algorithm can be considered as an event-by-event unfolding and leads to sta-
tistically optimal reconstruction. The largest benefit of the method lies in complicated
problems, when the measurements ~x are only relatively weakly correlated to the output
t. As to assure optimal generalisation features and to avoid overfitting, the networks are
regularised by extended versions of weight decay. The regularisation parameters are de-
termined during the online-learning of the network by relations obtained from Bayesian
statistics.

Some toy Monte Carlo tests and first real application examples from high-energy
physics and econometry are discussed.

This article is a reprint of an internal EKP note from January 2001, corrected and
supplemented by information on the development in the 3 years since then. The algorithm is

implemented and further developed in the NeuroBayes r©package by Phi-T r©Physics
Information Technologies GmbH, Karlsruhe, Germany.

http://arXiv.org/abs/physics/0402093v1
http://www-ekp.physik.uni-karlsruhe.de/

1 Introduction

Assume we have a random variable t whose probability density function is known or can be
estimated from a large but finite number of examples, e.g. the energy distribution of a certain
very short-lived particle in a high energy physics experiment or the daily change of an equity
price. The aim is to model the probability density for a given event or date from available
input data. In our examples one might have one or more, perhaps correlated, not very precise
measurements of the energy. Or one knows the actual price and the recent history plus some
technical indicators at a given day and wants to predict what will be the probability density
for next day’s or week’s price change. It is easy to know what happens on average, given by
f(t), but one wants to have a better estimate taking into account the particular situation of
the event under consideration, ~x.

We do not just want to have a single number for t, but an estimate of the complete
probability density, from which we then can deduce the most probable value, the mean value,
the median, moments, but also uncertainty intervals or expectation values of any function
of t. As an example, from the probability density describing an equity price change one can
compute the probability density of an option price for that equity and its fair price.

Precise measurements are easy to handle, one just identifies the measured value with the
true value and uses classical statistical methods for error estimates etc. The method proposed
in this article has its largest benefit for difficult predictions, when the measurements are not
very strongly correlated to the desired output, i.e. when the individual measurements are not
assumed to be much more precise than the width of the complete distribution averaged over
many events. This certainly is the case in the last example of predicting future equity prices.

The algorithm is a Bayesian estimator in the sense that it takes into account a priori
knowledge in the form of the inclusive (unconditional) distribution. It will never result in un-
physical values outside the training range, a very helpful feature when the input measurements
are not very exact. The influence of the shape of the inclusive distribution diminishes with
increasing precision of the input measurements [1]. Bayes theorem plays a large role in two
other places: the interpretation of network output levels as Bayesian a posteriori probabilities
in classificiation problems, and for determining regularisation constants.

In recent years the analysis methods in High Energy Physics experiments have been steadily
further developed [2, 3]. Neural network algorithms for classification tasks [4] have become
very successful and - after initial scepticism in the community - essentially accepted. In the
DELPHI experiment at LEP the author and coworkers have optimised electron identification
[5], kaon and proton identification [6] using neural networks, and developed inclusive b-hadron
reconstruction algorithms [7] for energy, decay length, lifetime reconstruction, B hadron iden-
tification, particle/antiparticle distinction at production and decay time etc., which have been
and are applied in many analyses. These are hybrid algorithms combining classical approaches
with a large number of neural networks at different levels (single track, hemisphere, event).
Also other modern statistical methods have been investigated, e.g. Support Vector Machines
[8]. However, we have found [9] that for difficult non-separable classification problems often
encountered in High Energy Physics simple neural networks with intelligent preprocessing are
more useful. With this knowledge and experience we have searched for a method to extend
this technology to continuous, real-valued variables t.

The proposed algorithm is based on a simple feed-forward neural network which is trained
using backpropagation [10] of either simulated Monte Carlo or historical data. The cumulated
probability distribution of the whole dataset is discretised into N bins, with variable width but

1

same amount of statistics inside. For each of the bins, a separate output node is trained to
the binary classification problem “the true value is above the threshold value” vs. “the true
value is below the threshold value”. The output of the network is filtered through a symmetric
sigmoid transfer function, as usual in binary decision nets. A cubic B-spline (see e.g. [2]) is
fit through the N filtered net output values, forced through −1 and 1 at the extreme values
and applying Tikhonov-type regularisation [11] on the basis of the third derivatives’ squares.

This spline, properly rescaled, is a robust estimator of the cumulative probability distribution
function of the true value for a given event. Median and quantiles are easily obtained from it,
the derivative of the spline is an estimator of the probability density itself. This can e.g. be
employed in maximum likelihood fits. Reconstructing the truth distribution for each individual
event, the algorithm corresponds to an event-by-event unfolding. In fact, it can be extended
to an unfolding procedure to estimate an unknown f(t), but this is left for future research.

Some methods to predict conditional probability distributions from examples can already be
found in the literature, but have been come to the author’s attention only after this work was
essentially completed. Weigend’s and Srivastava’s ansatz [12] is similar to the one presented in
this paper, also based on a feed-forward network with several output nodes, however it works
directly on the probability density function. It does not have the aim of a smooth density
function, does not include regularisation terms and does not include pre- and postprocessing.
Other methods are based on kernel estimation [13, 8].

Section 2 contains a detailed description of the algorithm, in section 3 the theoretical back-
ground is laid out. In section 4 we review and develop a number of optimisations implemented
during the development of the example nets. Section 5 and 6 describe toy and real world
example applications from high energy physics and econometry.

2 The algorithm

Assume we have a random variable t which is distributed according to a probability density
f(t). t may e.g. be the day-to-day change of an equity price or a quantum physical quantity.
Our knowledge of this density is empirical, i.e. it is determined by a large number of examples,
e.g. historical data or data simulated by Monte Carlo methods. For each of these examples,
or “events”, labelled i, there exists a vector of measurements ~xi that are correlated to the
variable ti. An overall probability density f(t, ~x) is defined by the training sample.

It is the aim of the method described in this paper to achieve a smooth estimate of
the conditional probability density f(t|~xi) for a given measurement vector ~xi. If there is no
information in the input vectors then obviously f(ti|~xi) = f(ti) = f(t), i.e. the conditional
probability is equal to the inclusive distribution. This would e.g. be true for a random walk
model in econometry. If however there is a correlation then one should be able to get a better
estimator for a given event, f(ti|~xi), and from that one can deduce better expectation values
and error intervals.

The method proceeds in several steps:

2.1 Preprocessing of the target values

At first we perform a flattening of the distribution f(t) by an in general non-linear, monotonous
variable transformation F : t → s, such that the transformed variable s is distributed uniformly

2

between 0 and 1: s(tmin) = 0 and s(tmax) = 1:

s = F (t) =
∫ t

tmin

f(t′)dt′. (1)

s measures the fraction of events that has lower values of t than the actual t. The probability
density in the transformed variable g(s) is simply constant 1 in the interval [0, 1]. The value
s therefore can be interpreted as the cumulative probability density of its own distribution:

s = G(s) =
∫ s

0

g(s′)ds′. (2)

This is illustrated in Fig. 1.

0

0.
2

0.
4

0.
6

0.
81

0
0.

2
0.

4
0.

6
0.

8
1

s

g(s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
t

F
(t

)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
t

f(
t)

Figure 1: Variable transformation F : t → s (upper right) leading to a flat output
distribution g(s) (upper left) when t is distributed according to f(t) (lower plot).

3

A robust method of constructing F from a finite number of examples is to sort them
(using a binary search tree) according to t. s(ti) then just is i/Nevents, when ti is the ith

element in the sorted list. It is practical to store the t-values in 1% bins, i.e. the 101 values
tmin, t1%, t2%, ..., tmax. The functions F and F−1 for transformation and back transformation
are constructed using this list and linear interpolation. However, for some problems there may
be long but important tails (e.g. describing stock market crashes) such that by just storing
1% quantiles information may be lost. To avoid that, a histogram with 200 equally sized bins
between the observed minimum and maximum value is stored in addition. Later both lists are
used for reconstruction.

2.2 Discretisation

The probability distribution G(s) is now sampled at N equidistant levels Lj = (j − 0.5)/N ,
j = 1, N . From the property G(s) = s, it further follows that G(0) = 0 and G(1) = 1, such
that N + 1 intervals are defined. All the inner intervals contain the same number of events,
namely Nevents/N , the first and last interval half of this number. For N = 10 this is illustrated
in Fig. 1.

2.3 Neural Net Prediction

Classification of events into two classes is a task that neural networks can handle well. A
possible classification task for a neural network is to separate events with t larger than a
threshold value L from those with t < L. The main idea is that the conditional cumulated
probability density G(s|~x) can be estimated from many neural networks that perform such
classifications at different thresholds Lj . Instead of training several independent networks,
this is done in one net that has N output nodes, corresponding to the N discretised output
levels. In such a (usually sufficient) three layer neural net (see Fig. 2) the N outputs oj are
calculated via

oj = S(
∑

l

w2→3
lj · S(

∑

k

w1→2
kl · xk)) (3)

where the xk are the input values and the index l runs over the intermediate layer nodes.
w1→2

kl is the weight of the connection between node k of the first and node l of the second
layer, and w2→3

lj that between node l of the second and node j of the output layer. S(x)
is a transfer function that maps] − ∞,∞[to the interval [−1, 1], for which we apply the
symmetric sigmoid function

S(x) =
2

1 + e−x
− 1. (4)

The architecture of the network is shown in Fig.2.
As in common simple classification neural net training, the weights are determined using

the iterative back propagation algorithm employing historical or simulated data, with some
acceleration and regularisation techniques applied as outlined in section 4.

Each output node j is trained on the binary decision: is the real output strue larger than
Lj (target value = 1) or it is smaller (target = −1)? Thus the target vector of an event with

strue = 0.63 and N = 10 levels would be ~T = (+1, +1, +1, +1, +1, +1,−1,−1,−1,−1,).
Note that strue = 0.56 and strue = 0.64 would give the same target vector, this is the
discretisation uncertainty introduced. If the individual measurement resolution is good, this

4

is a potential source of information loss. The number of intervals N should be matched
to the obtainable resolution. An alternative to reduce the discretisation information loss
in the training is to set the target node nearest to the true value strue to a value be-
tween −1 and 1 as to smoothen the dependence. In this training mode the target vec-
tor would be ~T = (+1, +1, +1, +1, +1, +0.2,−1,−1,−1,−1,) for strue = 0.56, but
~T = (+1, +1, +1, +1, +1, +1,−0.2,−1,−1,−1,) for strue = 0.64. This procedure can be
used when employing the quadratic loss function.

sp
lin

e
fi

t
==

 G
(S

|X
)

t

median t

f(t|x)

sigma(t)

 a(t)

in
pu

t
ve

ct
or

 x

ou
tp

ut
 v

ec
to

r
o

w kl w lj

Figure 2: Example architecture of the Bayesian neural net, with 8 input nodes, 10 inter-
mediate, and N = 10 output nodes. The lines denote the connections, each of which is
associated with a weight that is optimised in the training. The post-processing consists of
a regularised spline fit through the single nodes’ output, from which the interesting final
quantities can be calculated.

2.4 Neural Net Output Interpretation

After minimising the quadratic loss function

χ2 =
∑

j

wjχ
2
j =

∑

j

wj

1

2

∑

i

(Tji − oji)
2, (5)

(where Tji denotes the target value for output node j in event i and the definiton and role of
the wj is as described in section 3) in the network training, and assuming that the network is

5

Neural Net Output (node 10 of 20)

0
250
500
750

1000
1250
1500
1750
2000

-1 -0.5 0 0.5 1

DistributionsDistributionsDistributions
o

Signal
Background

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-1 -0.5 0 0.5 1

PurityPurity
o

Figure 3: Left: Signal (true s is larger than L10 = 0.475) and background distribution
of the 10th node of a N = 20 network. Right: Signal purity in each bin as function of
network output o. The expected linear behaviour is observed, demonstrating that the net
is well trained.

well trained, the network output oj, rescaled to the interval [0, 1], is equal to the purity

P (oj) = f(strue < Lj |oj)/f(oj) = (oj + 1)/2. (6)

This can be seen as follows: The mean χ2 contribution of measured events with output o is

χ2 = P · (1 − o)2 + (1 − P) · ((−1) − o)2 (7)

where the first term describes the contribution of signal events (purity P , target +1), and
the second of background events (purity 1 − P , target −1). When the network is trained
optimally, χ2 is minimal, i.e. dχ2/do = 0. This directly leads to P = (o + 1)/2. Figure 3
shows signal and background distribution and the purity in each bin as a function of the net
output for the 10th node of a N = 20 network. Thus (oj + 1)/2 is the probability that the
true value really lies below the given threshold Lj . An interpolation through the N rescaled
network outputs is the desired conditional cumulated probability density G(s|~x).

The same arguments also hold for the entropy loss function:

ED =
∑

j

wjE
j
D =

∑

j

wj

∑

i

log(
1

2
(1 + Tji · oji + ε)) (8)

which we prefer since it has some advantages in classification problems. In this case a com-
pletely wrong classification oj = 1 for tj = −1 or vice versa leads to an infinitely large ED. To
get rid of such completely wrong classifications is thus the first thing learned by the network
using the entropy error function. In order to avoid numerical problems for untrained networks,

6

a small regularistaion constant ε is introduced. ε is reduced in each training iteration and is
zero after just a few iterations.

Moreover, the absolute value of ED has a meaning in Bayesian statistics avoiding an extra
regularisation constant in the weight decay regularisation scheme (see section 3.4).

2.5 Interpolating the discrete network outputs

In order to get a closed functional form and to be able to calculate G(s, ~x) and its derivative,
the probability density g(s, ~x), at any value s, a cubic B-spline fit with variable bin size is
applied through the end points (0, 1), (1,−1) and the N points (Lj, oj) estimated by the
neural network. It is constructed from a 4-fold knot at s = 0, a 4-fold knot at s = 1, and
a number of simple knots placed in between 0 and 1. The actual number should be chosen
smaller than the number of output nodes N , as to smoothen statistical network fluctuations.
It has been proven useful to not distribute the nodes equidistantly, but to place more in the
regions of a large third derivative.

We want to achieve a smooth distribution function g(s|~x). This is achieved by the follow-
ing Tikhonov type regularisation procedure: The total curvature c =

∫ 1
0 (g(s|~x)′′)2ds should

be as small as possible with G(s|~x) still giving a good description of the N output levels.
Constructing G(s|~x) using cubic B-splines, c is just the bin-size weighted sum of the third
derivatives’ squares of the spline. These are constants between any two knots of the spline,
and can be easily added to the normal equations.

Thus the regularised spline fits stay linear fits which only demand an inversion of a sym-
metric N ×N band matrix of band width 4, which is performed very quickly [2]. In addition,
in order that F (t|~x) can be interpreted as cumulated probability distribution, the constraints
of monotoniticity, positivity and a maximum value of 1 must be satisfied. In order to keep
the fits linear and fast, these unequality constraints are fulfilled by the following procedure:
First a normal fit is performed , this can be done analytically in one step. If the result does
not fulfill all requirements, a quadratic loss function multiplied by a large number is added to
the normal equations of the corresponding parameter or difference of parameters. This way a
new fit is expected to result at exactly the border of the allowed region. Then the procedure
is iterated, until all constraints are fulfilled. Accepting numerical uncertainties of 10−6, one
or two iterations are usually enough. This procedure works well and is considerably easier to
program than iterative usage of Lagrange multipliers to fulfill the unequality constraints.

The probability density g(s|~x) can be calculated analytically from the spline parametrisa-
tion. To transform back to the original variable t the inverse mapping F−1 has to be applied.
If F is stored as 101 interval borders as described above, t can be retrieved from searching in
the list and linear interpolation. The function f(t|~x) = f(t) · g(F (t), ~x) also is calculated as
a 100 value table with linear interpolation.

2.6 Important Quantities:

The median of the conditional distribution f(t|~x) is calculated from

tmed = F−1(G−1(0.5)). (9)

Left and right error intervals may be defined as in Gaussian distributions as the limits
of the interval that contains 68.26% of the data:

σleft = F−1(G−1(0.5)) − F−1(G−1(0.8413)) (10)

7

and
σright = F−1(G−1(0.1587)) − F−1(G−1(0.5)) (11)

The expectation or mean value 〈t〉 can be estimated from

〈t〉 =
∫

t′f(t′|~x)dt′ (12)

=
∫

t′(s′)g(s′|~x)ds′ (13)

≈
∑

j

F−1(sj)g(sj|~x) (14)

≈ 1/M
M
∑

m=1

F−1((G−1((m − 0.5)/M)) (15)

This latter expression is particularly simple to calculate: One just chooses M equidistant points
ym between 0 and 1, and performs the two back transformations F−1(G−1(y)) successively on
them to achieve the corresponding tm values, and takes their average. This simple operation
even is an optimal estimator of the integral at a given number of function evaluations: It
contains an implicit importance sampling.

The expectation value for any function a(t) of t is estimated from

〈a(t)〉 =
∫

a(t′)f(t′|~x)dt′ (16)

≈
∑

j

a(F−1(sj))g(sj|~x) (17)

≈ 1/M
M
∑

m=1

a(F−1((G−1((m − 0.5)/M))) (18)

Again the last expression delivers a very simple and effective way of calculation. An example
application is option price calculation, leading to a better prediction than the Nobel-prized
Black-Scholes formula [17].

3 Theoretical framework

Here we shortly summarise the mathematical framework from statistics and learning theory of
the heuristic method explained in the previous section.

3.1 The learning problem

A probability density f(t) is defined from the following Fredholm integral equation of first
kind:

∫ t

−∞
f(t′)dt′ = F (t). (19)

The probability distribution function F (t) for a scalar random variable is defined as the prob-
ability that a random realisation has a value smaller than t:

F (t) = P{ξ < t}. (20)

8

For a vector quantity, F (~x) is defined coordinatewise:

F (~x) =
∫ ~x

−∞
f(~x′)d~x′ =

∫ x1

−∞
...

∫ xn

−∞
f(x′

1, ..., x
′
n)dx′

1...dx′
n. (21)

A conditional probability density f(t|~x) is defined by

∫ t

−∞

∫ ~x

−∞
f(t′|~x′)dF (~x′)dt′ = F (t, ~x). (22)

Here F (~x) is the distribution of random vectors ~x, and F (t, ~x) is the joint distribution function
of pairs (t, ~x). Since dF (~x) = f(~x)d~x and f(t|~x) = f(t, ~x)/f(~x), f(t|~x) is a conditional
probability density. Equation 22 is an example of a linear operator equation Af = F , where
both the right side F and the operator A (depending on F (~x) ≈ Fl(~x)) are only approximately
known.

Our problem is to estimate a non-parametric solution f(t|~x) of integral equation 22, where
the probability distributions F (~x) and F (t, ~x) are unknown but defined from a finite number of
pairs (t1, ~x1), ..., (tl, ~xl). This means that F (~x) and F (t, ~x) are approximated by the empirical
distribution functions

Fl =
1

l

l
∑

i=1

Θ(t − ti) · Θ(~x − ~xi) (23)

where

Θ(x) =

{

0 for x < 0
1 for x ≥ 0

(24)

denotes the Heaviside step function. The Glivenko-Cantelli theorem [14] assures that this
empirical distribution function Fl is a good estimate of the actual distribution function F ,
and uniform convergence takes place as l → ∞. Kolmogorov and Smirnov have shown that
the convergence is proportional to

√
l [15]. For one-dimensional probability distributions, the

deviation is limited by

lim
l→∞

P{
√

l sup
t

|F (t) − Fl(t)| ≥ ε} = e−2ε2

. (25)

For the multidimensional case the limit is unknown but known to exist [8].

3.2 Solving the ill-posed problem

To solve the integral equation the quadratic risk function W = ||Af − F ||2 is minimised.
Since we approximate the real risk by the risk calculated from the given events, one talks
about empirical risk minimisation (ERM).

Solving such a Fredholm integral equation of first kind is known to be an ill-posed problem.
This means that it cannot be assured that the solution is stable. An infinitesimal change on
the right hand side may lead to a large variation in the solution f(t|~x). Oscillatory behaviour is
a typical phenomenon of solutions of ill-posed problems. Several regularisation schemes have
been proposed to stabilise the solutions, putting in some theoretical prejudice. One of the
most common techniques is the Tikhonov regularisation scheme [11]. Here the risk function
to be minimised is modified to WT = ||Af − F ||2 + γΩ(f) by adding a regularisation term.
A possible Ω(f) could be the total curvature of the solution f if one knows it to be a smooth

9

function. The regularisation parameter γ > 0 has to be chosen such that the original risk W
is still small and simultaneously good smoothness is obtained.

Another important ansatz is structural risk minimisation (SRM) [8]. Even in so-called
non-parametric estimations the solution is constructed from a number of basis functions, e.g.
polynomials, splines, or some orthogonal function set. Learning then means to determine the
free parameters that e.g. describe the amount of each basis function.

3.3 Generalisation error and VC dimension

Learning theory has shown that generalisation ability is best when only few parameters are
necessary. However, not only the number of parameters is decisive, but also the structure
of the functions. So high frequency oscillatory functions may contain only few parameters
but can lead to very unstable solutions. Vapnik and Chernovenkis [16] have introduced the
concept of the VC dimension. A small VC dimension means good generalisation ability of a
learning machine, whereas infinite VC dimension denotes just a learning by heart of the given
events and no generalisation ability at all. For affine linear functions in n-dimensional space,
the VC dimension simply is n + 1. This is not true in general, for non-linear functions it may
be much larger.

For neural network training, a structure may be defined by the network architecture. The
more hidden nodes are introduced, the smaller the empirical risk, but the larger the structural
risk. Overfitting may occur and generalisation ability degrades when too many nodes are used.
This requires careful control.

The VC dimension of neural networks can decrease significantly when the weights are
bounded to be small [18]. However, independent of the size of the weights, a lower limit on
the VC dimension of a three-layer neural network with n input nodes and k hidden nodes has
been established [19]:

V Cdim ≥ (k − 1) · (n + 1), (26)

equal to the number of weights of a network with n− 1 input nodes and k − 1 hidden nodes.
VC dimension is a worst case concept, and there is substantial evidence that improved gener-
alisation performance is achieved when networks are trained with weight decay regularisation
[20]. This can be understood in a Bayesian framework [21], which also allows to choose
regularisation parameters αc and β:

M =
∑

c

αcE
c
W (~w|A) + βED(D|~w,A) (27)

where

ED(D|~w,A) =
∑

events m

∑

output nodes i

1

2
(oi(~x

m) − tmi)2 (28)

is the quadratic error function of the data and

Ec
W (~w|A) =

∑

i weights

1

2
w2

i (29)

is the regularisation energy (which leads to a subtraction of a multiple of ~w in the weight
update rule). It has been shown[21] to be useful to separate this term into three (c = 1, 2, 3)
terms, which determine the weight decay of the weights of the input measurements to the
second layer, the bias node to the second layer, and the second to the output layer, since there
is no a priori reason why these weights should be in the same order of magnitude.

10

3.4 Bayesian approach to regularisation

The Bayesian approach in [21] leads to the following optimal parameters: The point of maximal
probability P (D|α, β) to observe the observed data D has the following property:

χ2
W ≡ 2αEW = γ (30)

χ2
D ≡ 2βED = N − γ (31)

where γ is the effective number of degrees of freedom:

γ =
k

∑

a=1

λa

λa + α
(32)

where λa are the eigenvalues of the quadratic form βED in the natural basis of EW . If the
entropy function eq. 8 is used instead of the quadratic loss function (28), there is no need for
a β to be estimated from the data [22].

Calculating the Hessian matrix H = ∇∇M allows to distinguish between well and poorly
determined parameters, and to calculate error bars on weights and net outputs. This is not
yet implemented in NeuroBayes.

3.5 Pruning

When during the training weights become completely insignificant (less than 0.001σ), the
connections are pruned away, i.e. set to exactly zero. Thus, the architecture is changed and
the number of free parameters is lowered. The VC-dimension explicitely is reduced by this pro-
cedure. It is interesting to note that something similar works in biology: neurobiologists have
found that the intelligent mature brain has less connections between the neurons. In contrast,
an untrained (young) neural network still has many connections. During its development the
brain actually loses the neuronal connections that are less used, and forms strong connections
in those synaptic circuits that have been utilized the most. Pruning improves the signal-to-
noise ratio in the brain by removing the cause of the noise. This process is constant and
quick. Synaptic connections can form in a matter of hours or days. Experience, particularly
in childhood up to early adulthood, sculpts the brain [23].

3.6 Automatic Relevance Determination

MacKay [21] has introduced an interesting extension of the weight decay procedure by intro-
ducing a hyperparameter for each individual input node. This is called “automatic relevance
determination” and allows the algorithm to better prune away unsignificant input variables.
We have found this extension to be useful.

3.7 Automatic Shape Smoothing

A direct copy of the same concept, for the connections to the different output nodes, called
Automatic Shape Smoothing, also is implemented in NeuroBayes.

4 Some considerations for efficient net training

Here we list a few experiences we have gained during development of this code.

11

4.1 Online instead of batch training mode

The training is performed in stochastic, mini-batch or quasi-online mode: A weight update is
performed after about 200 events. Since the problems to be solved by NeuroBayes typically
learn from relatively large and partly redundant training sets, online learning is much faster
than batch mode, where weight updates are only performed after all training examples have
been read [24].

4.2 Random start values for weights

We preset all weights with random numbers distributed around zero. To ensure a fast initial
learning, it is useful to take Gaussian random numbers with a σ = 1/

√
nin, where nin is

the fan-in of a neuron, i.e. the number of incoming weights. If the input variables are also
distributed like a standard Gaussian (see below), then this is true also for the output of the
hidden layer nodes, such that the same argument holds for the output layer. This ensures
optimal learning conditions directly from the start.

4.3 Non-randomness of start values in the second and output layer

However, since we expect in each single event that the net output oj is a monotonous function
of j, we start off with the same random weight w2→3

lj for all j for a given l. During the training
they will quickly change, but due to the monotonous targets of all training events this feature
will survive at each training step and thus reduce statistical uncertainties in the reconstruction
of the probability density function.

4.4 Relative importance of the N output nodes

What are the maximum errors that the single output nodes can contribute? Using the quadratic
loss function, this can be estimated from

χ2
j ≈ N

∫ 1

−1

g(oj)(Pj · (oj − 1)2 + (1 − Pj) · (oj + 1)2) (33)

where g(oj) is the distribution function of output node j and the purity Pj is the fraction of
events with target +1. In an untrained net with random weights, when the outputs still are
completely random, g(oj) = 1/2, the mean is χ2/N = 4/3 independent of Pj.

The next extreme is that the network learns the target = +1 to target = −1 ratio for
each output node, but nothing else. This corresponds to g(oj) = δ(oj − 2Pj + 1) and a mean
χ2/N = 4Pj(1−Pj), which is 1 for Pj = 50%, and down to 0.0975 at Pj = 2.5% and 97.5%.

This is a trivial learning, i.e. the net learns the inclusive distribution, but no improvement
from the individual input vectors. It thus is useful to know about this (constant) contribution
from χ2

j,inclusive. To follow and judge the quality of the training we compare each node’s χ2
j

to the χ2
j,inclusive. Ratios below 1 indicate real learning beyond the shape of the inclusive

distribution. Sometimes it has been useful to give a larger weight to the extremal nodes after
some iterations during the backpropagation step, such that small systematic effects here have
a chance to be learned compared to the large statistical fluctuations of the inner nodes.

This is not necessary with the entropy error function. In this case, learning just the inclusive
distribution corresponds to ED/N = Pj log (Pj) + (1 − Pj) log (1 − Pj).

12

4.5 Learning with weighted events:

It is possible to train the network with weighted events. This is useful if e.g. one set of Monte
Carlo simulation events is available but single input distributions (e.g. lifetimes or branching
ratios) must be adjusted to new (better) values. For time series prediction one may want
to give more recent data more weight than ancient data, without completely neglecting the
latter.

A too large variation of the weights however drastically reduces the statistical accuracy of
the learning, the “effective” number of training events decreases, and statistical fluctuations
of the large weight events may start to fool the network.

The backpropagation algorithm is adjusted by multiplying the difference of output and
target by the weight. The mean weight should be one.

4.6 Bias nodes

The introduction of bias nodes, i.e. nodes which have a constant value 1, are generally
extremely useful for net learning. A bias node in the input layer is clearly advantageous.
However, in this multi-output net the existence of a bias node in the second layer has proven
not to be useful and may lead to convergence into a non-optimal local minimum. The reason
is that at the beginning of the training the error is dominated by the vastly different number
of signal and background events for the non-central output nodes. For example, just 2.5% of
the data has truth values below the first threshold for N = 20 levels. The fastest way to learn
this fact is to shift the threshold of the final sigmoid transfer function to −1.9, which is easily
achieved when a bias node is available in the second layer. Only later the other variables are
looked at, however now at the expense that often the relevant output node already is saturated.
Thus, learning is more difficult. In practice, leaving out a bias node in the intermediate layers
always has led to smaller χ2 values.

4.7 Shifts in individual output transfer functions

We noticed that at least in difficult (low correlation) cases it may be of advantage to shift the
weighted sum of the output units such that, if the weighted sum is zero, the inclusive distri-
bution results automatically. This is achieved by the following replacement of the argument
of the transfer function of the output node j:

S(
∑

wijai) → S(
∑

wijai + S−1(1 − 2 ∗ Pj)) (34)

where Pj denotes the nominal probability level of the inclusive distribution.

4.8 Fast function evaluation

To speed up the learning process it is important that function evaluation is as fast as possible
in the inner learning loop. It can for example be accelerated by tabulating the sigmoid function
and using linear interpolation.

4.9 Dynamic step size adaptation

We use the following procedures to speed up learning: From the first few thousand events
the largest eigenvalue of the Hessian (i.e. second derivative) matrix of χ2 with respect to the

13

f(t)

0

500

1000

1500

2000

2500

3000

-1 0 1 2 3
-1

-0.5
0

0.5
1

1.5
2

2.5
3

3.5

0 0.5 1 1.5 2

x vs. t

Figure 4: Left: True distribution f(t) (black) along with distribution of two measured
quantities (green, red). Right: Correlation of one of the measured quantities with the
truth.

weights is calculated according to the recipe of [26, 27], exploiting the power method and
Rayleigh quotients [28]. This defines the largest learning rate.

4.10 Randomising event order

During learning the network usually sees the events always in the same order. Since the weights
are updated every 200 or so events, the state of the network at the end of a training period
has a slight bias towards the last events. We have found it useful to randomise the order of the
events in each iteration. This avoids the bias to always be the same. Checking the network
performance on a test sample after each iteration one can observe and estimate the size of the
statistical fluctuations due to this effect. We have found that - especially in difficult learning
patterns - the randomisation of the order improves convergence. The chance that the network
always moves along the same path and gets stuck in a local minimum is minimised.

4.11 Choosing input variables

There are two important classes of input variables that should be considered: those which are
correlated with the true output give information about the deviation of the mean and median
from the unconditional distribution, and quality variables which determine the width of the
conditional probability distribution, e.g. estimated measurement errors. Both types should be
fed into the net.

14

4.12 Preprocessing of input variables

A completely automatic and robust preprocessing procedure has been developed. First all input
variable distributions are equalised just like the output variable described above (by sorting).
This is especially important because otherwise (probably wrong or unreliable) extreme outliers
in one variable can completely saturate neurons and thus dominate the net output. The
equalised variables are scaled to lie between -1 and 1. Using the inverse of the integrated χ2

function, the flat distributions are then converted into Gaussian distributions, centered at zero
with standard deviation 1. This is important for two reasons: a nonzero mean value implies a
large eigenvalue of the Hessian in weight space that restricts the initial allowed learning rate
[24]. And a width of one, together with the random weights preset as described above, makes
sure that also the inputs to the output layer are distributed with mean zero and width one,
thus providing optimal conditions for a fast initial learning and avoiding neuron saturation.

4.13 Decorrelation of input variables

Now all continuous input variables have a Gaussian shape with mean zero and width one.
However, they still may be correlated. For network training it is advantageous to decorrelate
the input variables. To do this, first the covariance matrix of the preprocessed input variables
is calculated. Then it is diagonalised using iterative Jacobian rotations [2]. The rotated input
vectors are divided by the square root of the corresponding eigenvalue. This way the covariance
matrix of the transformed variables is a unit matrix.

4.14 Linear optimisation towards one input node

Once the inputs are prepared this way, the covariance “ellipsoid” is a sphere, and any rotation
applied to the input vectors leaves them orthogonal and normalised. Now the correlation
coefficent of each of the eigenvectors to the true target value is calculated. Using a sequence
of N − 1 rotations, it is possible to rotate this unit matrix such that only one variable shows
the complete linear correlation to the target, and all other correlations are zero. The resulting
correlation is the best one can achieve with a linear method. It also has been proven useful to
rotate the complete correlation to the second moment of the target distribution to the second
input variable etc. Exploiting the non-linear neural network, more is possible.

4.15 An alternative mapping of the input variables

Another possibility to increase net learning speed is to perform another variable transformation:
The mean performance is plotted against the equalised input variables. If one observes a
monotonuous but non-linear correlation, it is useful to fit this dependence and take the fitted
function value as input instead of the original variable. Although this non-linear function
should also be learned by the net, this preprocessing may help in finding the global minimum
or at least a good local minimum.

4.16 Why learn the cumulative distribution?

This algorithm learns the cumulative distibution in each output node, not the interesting
distribution itself. One may ask why this is necessary: one could instead directly train the

15

network outputs to the true t value lying in a given interval, since neural networks are able
to map every function. This is correct. However, experience shows that is more difficult for
a network to learn it, especially when the correlation is weak. Some more subtleties occur:
The mean output sum of such a (multinomial) multi-output network is 1, but event-by-event
fluctuations lead to deviations. Smoothness is thus more difficult to achieve. Also, knowledge
of the cumulative distribtion readily allows for calculating expectation values in a statistically
optimal way.

5 Monte Carlo tests

5.1 A simple toy example: two measurements of the same variable

A Monte Carlo experiment shows how the method works and how it takes into account the
a priori knowledge of the inclusive distribution. 50000 events distributed according to f(t) =
5/8 · t3 · (2 − t) have been simulated. For each event two independent “measurements”
with Gaussian smearing are available: One with a constant σ = 0.4, and another one with

σ =
√

0.252 + (0.35 · (2. − t))2. Fig. 4 shows f(t) along with the distributions of the two
measurements. Observe that a part of the measurements yield values outside of the physical
region. A simple weighted mean cannot avoid this, but the Bayesian network will avoid it.
The right side shows the correlation of the more precise measurement with the truth. Four
input variables are chosen, the two measurements and estimations (with 15% smearing) of
their uncertainties. Of course, for the second measurement the error calculation cannot use
the true t, but has to estimate it from the very uncertain measurement. The equalisation of
the target variable is shown in Fig. 1. The output of three example events are shown in Fig. 5.
Two of the examples can well be reconstructed from the measurements (steep curves top left),
whereas the other only had weak additional information from the measurements, such that
the result differs only slightly from the inclusive distribution. Top right of the same figure
shows the conditional probability densities g(s, ~x) of the transformed variable. A constant
distribution here means that there is no more information than the inclusive distribution. One
of the example events exhibits such a behaviour, only very low and higher values are suppressed.
On the bottom of Fig. 5 the final output f(t|~x) is shown for these example events, along with
their mean values, error estimates, median and maximum likelihood estimate. Note that not
only an expected value, but also an error estimate is given event by event. Deviations from
Gaussian behaviour is clearly visible, partly due to the limits of the physical region.

Fig. 6 shows the resolution (distribution of estimated minus true values) of the maximum
likelihood estimator derived from f(t|~x), as compared to the weighted average of the two
measurements that enter the neural net. A marked improvement is visible. Also the estimated
uncertainty is important and good information: Note how the resolution improves with a
smaller error estimate (here taken as sum of left and right standard deviations).

16

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
s

o

0
1
2
3
4
5
6
7
8

0 0.2 0.4 0.6 0.8 1
s

g(
s|

x)

0

0.5

1

1.5

2

2.5

3

3.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
t

f(
t|x

)

Figure 5: Top left: Network output o vs. purity P (s) = s of output node for three
events. The boxes denote the 20 network outputs, the lines are the spline fits G(s|~x).
By construction, the unconditional G(s) is the diagonal from (0, 1) to (1,−1). Top right:
the conditional probability density g(s|~x) for the three events, determined from the first
derivative of the spline fit. Bottom: The conditional probability density f(t|~x) for the
three example events. In all cases also the true values, mean, median and left and right
error are indicated. The black histogram is the inclusive distribution f(t).

5.2 More sophisticated: A function of two different measured variables with
error propagation: lifetime reconstruction

The proper lifetime t of a relativistic particle can be reconstructed from the decay length d
and the momentum p via

t =
m

c

d

p
(35)

17

resolution

0
250
500
750

1000
1250
1500
1750
2000
2250

-1 -0.5 0 0.5 1
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

-1 -0.5 0 0.5 1

resolution vs estimated error

Figure 6: Left: Resolution of the maximum likelihood estimate of t (black), compared
to the resolution of the weighted mean of both input measurements (red curve). Right:
Error estimate (σleft +σright) vs. deviation of the maximum likelihood estimator from the
true t values.

where m and c are constant and known quantities, the particle mass and the speed of light.
The inclusive distribution is an exponential decay law: f(t) = e−

t

τ , where τ is the mean
lifetime. The numbers taken for this example are typical for the measurement of b-hadron
lifetimes using inclusive reconstruction in DELPHI [7]. The usual way is to measure d and p
separately, and then to divide them. However, both measurements can have relatively large
errors and unphysical values, in which case this is not the optimal thing to do.

Here we investigate whether the net also can learn that it has to divide two input num-
bers and how to combine the measurement errors. Since three layer neural networks can
approximate any function this should also work in this configuration.

A toy Monte Carlo has shown that this is feasable. The momentum distribution is generated
as in the toy example above, scaled to between 0 and 45 GeV , and decay length from an
exponential distribution in lifetime t with τ = 1.6 ps and calculation of d. Decay length
resolution is simulated as Gaussian smearing of width 250 µm, and momentum resolution as

Gaussian smearing of width (10−p/5) GeV . The acceptance is modelled as A(d) = 1−e
− d

d0 ,
in addition events with negative measured decay lengths are rejected.

A neural network is then trained with just two input nodes, the measured d and measured
p, and the true proper time t to define the targets. The results are very promising: Some
example events are shown in Fig. 7. Obviously the net can learn the division and the error
propagation. The right plot shows the deviation of the NeuroBayes maximum likelihood and
median estimators along with that of the direct ratio of measured d and p (shaded area). They
have about the same resolution, but do not show the large upwards tail.

This demonstrates that at least simple functional combinations of different measured quan-

18

0

1

2

3

4

5

1 2 3 4 5
t

f(
t)

0
1000
2000
3000
4000
5000
6000
7000
8000

-2 -1 0 1 2
t resolution

Figure 7: NeuroBayes lifetime reconstruction from measured decay length and momentum.
Left: f(t|~x) for some events. The widths show the generally expected tendency of getting
broader with increasing t. Different widths at the same mean t are learned from the
different combinations of d and p leading to the same t.
Right: Deviation of NeuroBayes median (black) and max likelihood (red) estimators from
the true t values, compared to the direct ratio of measured variables (shaded). The
resolution is similar, but the right tail vanishes due to the Bayesian ansatz.

tities can directly be learned by such an approach. This can be extremely helpful since also
the (non-Gaussian) error propagation is handled correctly.

6 Real application examples

6.1 A difficult case: Improved B energy reconstruction in DELPHI

b-hadrons may decay into thousands of different channels. BSAURUS [7] contains algorithms
that try to estimate the energy of a b-hadron inclusively, without knowing which the actual
decay channel was. The currently best estimate is built from track rapidity, exploits the
track neural network, the missing energy in the hemisphere and the invariant mass of the
particles which probably stem from a B decay. A NeuroBayes network has been set up and
trained to try to improve its performance. Twenty input variables were chosen, which include
different estimators of the energy available in BSAURUS, their input quantities as well as
some measures of the measurement uncertainty like hemisphere multiplicity, reconstruction
quality flag, B-fragmentation distinction quality, number of identified leptons and number of
reconstructed jets.

Compared to the best classical BSAURUS estimator a non-negligiable improvement could

19

0
250
500
750

1000
1250
1500
1750
2000
2250

-20 -10 0 10 20
E resolution

0

100

200

300

400

500

600

-20 -10 0 10 20
E resolution

0

200

400

600

800

1000

1200

-4 -2 0 2 4
pull

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0 20 40 60 80 100
s

Figure 8: NeuroBayes inclusive B energy reconstruction for the DELPHI experiment.
Top left: resolution of the currently best BSAURUS energy estimator (shaded) with
NeuroBayes median and max likelihood estimator. Top right: resolution of NeuroBayes
median estimator for 4 intervalls of its error estimate: σ < 2.25 GeV , 2.25 < σ < 3 GeV ,
3 < σ < 4 GeV and σ > 4 GeV (shaded). Bottom left: Pull distribution of the NeuroBayes
median estimator. σL has been used when the estimated value was below the true value
and vice versa. It appoximates well the standard Gaussian of width 1. Bottom right:
Distribution of the maximal bins in g(s|~x) for many events (dark histogram) and the
mean g(s|~x) of all events (shaded area- should be flat).

be achieved (top left in Fig. 8.). Moreover, for the first time good error estimates are available:
This can be seen in the top right plot which shows the resolution in four bins of the estimated
uncertainty. The corresponding resolutions clearly are very different, it thus is possible to
select events with especially good reconstructed energy. This is very helpful, for example in

20

spectroscopy analyses. The lower left plot shows the pull distribution, i.e. the deviation of the
median energy estimate from the true value, divided by its estimated error, σl or σr, depending
on the sign of the deviation. The mean width is compatible with 1 on both sides. However,
the right side shows a stronger, non-Gaussian tail which has its origin in low energetic events.
The single f(t|~x) distributions clearly exhibit this non-Gaussian behaviour. The lower right
plot shows the distribution of the maxima of g(s|~x), which should and in the best of all worlds
would be flat. It is however clearly visible that the method often pushes the maxima into
the extreme values 0 and 1, when the truth is near those values. The shaded area shows the
average g(s|~x), obtained by adding many events. This also should be flat, and it is already
much flatter than the maximum positions.

6.2 A very difficult case: Econometry

This algorithm is also very useful in time series predictions [31, 32]. An important application
of time series prediction is financial forecasting, and maybe here the algorithm brings the largest
benefits since the correlations to the target are very small und hidden under large stochastic
background. Historical data can be used to train the network.

To predict the future of an equity price is of course a very difficult problem, since it is very
uncertain and clearly depends on many unforeseeable facts. The most robust estimate is that
the mean value will stay constant. On the other hand, it is known that over many years there
is a rise observable. A first look to the data suggests that the “random walk model” works
very well. This model suggests that every day’s price change is truely random with mean value
zero, e.g. according to a Gaussian distribution

f(t, ~x) = f(t) =
1

2π
√

σ
e−

t
2

2σ2 (36)

and there is no more information in the price history from which ~x can be constructed. This
states that it is impossible to predict the direction, but the standard deviation σ (the “volatil-
ity”) can be estimated from history. Lots of physicists and mathematicians are now hired by
banks to do quantitative risk calculations and develop strategies [29].

Nevertheless some features which probably lie in human nature (greed and fear) make
it possible to look a bit into the future. This is the basis of what is known as “technical
analysis”. There is an enormous literature on this subject, see e.g. [30]. Many of the common
“technical” concepts seem a bit esoteric and subjective to a physicist and there is very few
quantitative information about the reliability published.

Without going into details – just saying that a clever choice of input variables with intelli-
gent preprocessing is an important prerequisite – it is possible to observe short time correlations
from the past to the future of equity prices. Of course it must be made sure that enough
input data is taken, such that the net does not only learn statistical fluctuations ”by heart”.

Training on 20 years’ data of the 30 equities of the Dow Jones Industrial Index with a
relatively simple input model leads to the performance shown in Fig. 9. A clear dependence of
the mean true performance as function of the mean of the estimated performance is visible,
which still is small, but not at all negligible compared to the spread. The left side of that figure
shows the resulting conditional probability densities for three examples. In addition to finding
optimal combinations of different technical indicators on the basis of history, NeuroBayes does
not only give an indication of “up” or “down” but quantifies it day by day and equity by equity.
This could help in decision finding and especially timing of financial transactions.

21

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

-10 -5 0 5 10
t

f(
t|x

)

-10
-7.5

-5
-2.5

0
2.5

5
7.5
10

0 0.5 1
〈 t 〉 estimate

t

Figure 9: Left: Three examples of estimated conditional probabilities for a measure for
10 working day price changes of American Dow Jones equities. Right: Correlation of
the true 10 days’ performance to the estimated mean performance. A clear correlation is
visible.

The method may also be used for determining a fair price for a call option when t is the price
of the underlying at the date of maturity, the distribution of which is estimated by f(t), and
S is the strike price: Neglecting interest rates (can be included), a(t) = min(t − S, 0.). The
famous Black-Scholes formula [17] is just a special case of this pricing model for the random
walk model shown above, i.e. a simple Gaussian with zero mean 〈t〉 = 0 and “volatility” σ.

7 Developments from 2001 to 2003

The NeuroBayes algorithm has been completely recoded in a structured way by the Phi-T
project, J. Bossert, A. Heiss and the author, between 2001 and 2002. Phi-T was sponsered by
the exist-seed program of the German Bundesminsterium für Bildung und Forschung BMBF
with the aim to found a company which makes the technology available outside physics. In
October 2002, the Phi-T Physics Information Technologies GmbH was founded in Karlsruhe.
Phi-T has developed lots of additions and improvements to the algorithm and the code,
bindings for several programming languages and several input/output interfaces. They use
NeuroBayes with large success for insurance and banking applications [33].

Also in physics research NeuroBayes and its predecessors have found a lot of very successful
applications:

• Measurement of the b-fragmentation function with DELPHI [34, 35]

• Precision lifetime measurements of B+ and B0 mesons [42, 37]

22

• Spectroscopy of orbitally excited B mesons, in particular discovery of B∗∗
S mesons [41, 38]

• Search for resonances in the final state Bπ+π− with DELPHI [39],

• Electron identification in the CDF experiment at Fermilab [40]

8 Summary

A simple but effective and robust algorithm has been described that calculates the conditional
probability density f(t|~x) from (simulated or historical) example events for multidimensional
input data. It is using a smoothing function over a number of neural network outputs, each
of them delivering a Bayesian a posteriori probability that the real value lies above the cor-
responding threshold. Completely automatic and parameter-free input variable preprocessing
and stochastic second order methods to adapt individual learning rates for each weight speed
up the quasi-online learning by at least an order of magnitude compared to plain-vanilla back-
propagation. The generalisation ability is controlled by a weight decay regularisation with
several independent regularisation constants that all are chosen and recalculated online during
the training using a Bayesian reasoning.

Several toy examples and some real examples have been tested. The procedure is an event-
by-event unfolding with multidimensional input. It can directly be used in maximum likelihood
fits. It allows to handle difficult measurements in a large number of application areas in an
optimal way.

Acknowledgements

I like to thank V. Blobel (Univ. Hamburg) for many good algorithms and enlightening discus-
sions, Z. Albrecht and U. Kerzel (Univ. Karlsruhe) for their contributions, G. Barker and M.
Moch (Univ. Karlsruhe) for carefully reading the mansucript and T. Allmendinger, C. Weiser
(Univ. Karlsruhe) and N. Kjaer (CERN) for useful feedback. Last but not least I thank the
Phi-T team J. Bossert, C. Haag, A. Heiss and L. Ramler for making NeuroBayes a success.

References

[1] D. S. Sivia, Data Analysis - A Bayesian Tutorial, Oxford University Press, New York,
1996.

[2] V. Blobel, E. Lohrmann, Statistische und numerische Methoden der Datenanalyse,
Teubner, Stuttgart, Leipzig, 1998

[3] G. Cowan, Statistical Data Analysis, Oxford University Press, New York, 1998.

[4] A. Grauer, Neuronale Netzwerke: Grundlagen und mathematische Modellierung, BI
Wissenschaft, Mannheim, Leipzig, Wien 1992,
W. Kinnebrock, Neuronale Netze: Grundlagen, Anwendungen, Beispiele, Oldenbourg
München, Wien 1992,
T. Kohonen, Self-Organizing Maps, Springer, New York, 1997.

23

[5] M. Feindt, C. Kreuter and O. Podobrin, The ELEPHANT Reference Man-
ual, DELPHI-Note 96-82 PROG 217. DELPHI Notes are obtainable at
http://delphiwww.cern.ch/SearchDelnote.

[6] Z. Albrecht, M. Feindt, M. Moch, MACRIB High efficiency - high purity hadron
identification for DELPHI, DELPHI Note 99-150 RICH 95.

[7] T. Allmendinger, G. Barker, M. Feindt, C. Haag, M. Moch, BSAURUS - A package for
inclusive B-reconstruction in DELPHI, DELPHI Note 2000-069 PHYS 868.

[8] V. Vapnik, The Nature of Statistical Learning Theory, 2. edition, Springer, New York,
1999.

[9] M. Feindt, C. Haag, Support Vector Machines for Classification Problems in High
Energy Physics, DELPHI Note 99-151 GEN 176.

[10] Y. LeCun, Learning processes in an asymmetric threshold network, in Disordered
systems and biological organisations, Les Houches, France, Springer 1986, pp.233-240
D. H. Rumelhart, G. E. Hinton and R. J. Williams, Learning internal representations by
error propagation, in Parallel distributed processing: Explorations in macrostructure
of cognition, Vol. I, Badford 1986, Cambride MA., pp. 318-362.

[11] A.N. Tikhonov, On solving ill-posed problems and method of regularisation, Doklady
Akademii Nauk USSR, 153 (1963), 501,
A.N. Tikhonov and V.Y. Arsenin, Solutions of Ill-Posed Problems, Winston, Washing-
ton, 1977.

[12] A.S. Weigend, A.N. Srivastava, Predicting Conditional Probability Distributions: A
Connectionist Approach, Int. J. of Neural Systems 6 (no.2) (1995)

[13] P. Kulczycki, H. Schioler, Estimating Conditional Distributions by Neural Networks,
IEEE Transactions on Neural Networks, 8 (1997), 1015.

[14] V. I. Glivenko, Sulla determinazione empirica di probabilita, Giornale dell’ Instituto
Italiano degli Attuari (4) (1933).

[15] A. N. Kolmogorov, Sulla determinazione empirica di una leggi di distribuzione, Gior-
nale dell’ Instituto Italiano degli Attuari (4) (1933)

[16] V. N. Vapnik, A. Ja. Chernovenkis, On the uniform convergence of relative frequencies
of events to their probabilities, Doklady Akademii Nauk USSR 181 (1968) 4. English
translation Sov. Math. Dokl.,
V. N. Vapnik, A. Ja. Chernovenkis, On the uniform convergence of relative frequencies
of events to their probabilities, Theory Proibab. Apl. 16 (1971) 264.

[17] F. Black and M. Scholes, The Pricing of Options and Corporate Liabilities, Journal of
Political Economy 81 (1973), 637.

[18] B. Boser, I. Guyon and V. Vapnik, A Training Algorithm for Optimal Margin Classi-
fiers, Procs. Fifth Workshop on Computational Learning Theory, (1992) 144.

24

http://delphiwww.cern.ch/SearchDelnote

[19] W. S. Lee, P. L. Bartlett, Lower Bounds on the VC-Dimension of Smoothly
Parametrized Function Classes, Neural Computation 7 (1995) 990.

[20] A. Krogh, J. A. Hertz, A Simple Weight Decay Can Improve Generalization, Advances
in Neural Information Processing Systems 4, (1995), 950.

[21] D. J. C. MacKay, A Practical Framework for Backprop Networks, Neural Computation,
4 (1992) 448.

[22] D.J.C. MacKay, Probable networks and plausible predictions – a review of practical
Bayesian methods for supervised neural networks, Network: Computation in Neural
Systems 6 (1995) 469

[23] D. Goleman, A. Mc Kee, R. E. Boyatzis, Primal Leadership: Realizing the Power of
Emotional Intelligence, Harvard Business School Press 2002 and references therein

[24] Y. LeCun, L. Bottou, G. B. Orr, K.-R. Müller, Efficient BackProp, in G. Orr, K.-R.
Müller, Neural Networks: tricks of the trade, Springer 1998.

[25] Y. LeCun, I. Kanter, S. Solla, Eigenvalues of Covaraince Matrices: Application fo
Neural Network Learning, Phys. Rev. Lett. 66 (1991) 2396

[26] Y. LeCun, P. Y. Simard, B. Pearlmutter, Local Computation of the Second Derivative
Information in a Multilayer Network, Procs. Neural Information Processing Systems,
Morgan Kauffman.

[27] M. Moller, Exact Calculation of the Product of the Hessian Matrix of a Feed-Forward
Network Error Functions and a Vector in O(N) Time, Arhus University

[28] A. Ralston, P. Rabinowitz, A First Course in Numerical Analysis, McGraw-Hill, 1978.

[29] N. Bouleau, Martingales et Marchés financiers, Ed. Odile Jacob 1998. German transla-
tion: Glück und Strategie auf Finanzmärkten, Birkhäuser, Basel 2000.

[30] J. Murphy, A random walk down Wall Street, Norton 1999, German translation: Tech-
nische Analyse der Finanzmärkte, Finanzbuch, München 2000.

[31] J. Honerkamp, Statistical Physics, Springer, Berlin, Heidelberg 1998.

[32] T. Masters, Neural, Novel And Hybrid Algorithms for Time Series Predictions, John
Wiley, New York, 1995.

[33] Phi-T GmbH, see web pages http://www.phi-t.de.

[34] L. Ramler, Inklusive Messungen der B**-Rate und der B-Fragmentationsfunktion,
diploma thesis Univ. of Karlsruhe, Preprint IEKP-KA/2001-13. Available from
http://www-ekp.physik.uni-karlsruhe.de.

[35] U. Kerzel, Erste inklusive Messung der b-Quark-Fragmentation f(Z) in Z0-Zerfllen
mit dem DELPHI-Detektor bei LEP I, diploma thesis University of Karlsruhe, Preprint
IEKP-KA/2002-3.

25

http://www.phi-t.de
http://www-ekp.physik.uni-karlsruhe.de

[36] T. Allmendinger, Neutral B-Meson Oscillations in Inclusive Samples with the
DELPHI-Detector at LEP, Ph.D. thesis University of Karlsruhe, Preprint IEKP-
KA/2002-6.

[37] C. Haag, Precision Measurements of the lifetimes of identified b-hadrons with the
DELPHI-detector, Ph.D. thesis Univ. of Karlsruhe, Preprint IEKP-KA/2003-08

[38] Z. Albrecht, Analysis of B∗∗ mesons, Ph.D. thesis, Univ. of Karlsruhe, Preprint IEKP-
KA/2003-13.

[39] S. Huegel, Suche nach Resonanzen im Endzustand Bπ+π− mit dem DELPHI-
Detektor am LEP-Beschleuniger, Diploma Thesis University of Karlsruhe, Preprint
IEKP-KA/2003-22.

[40] M. Milnik, New Methods for Electron Identification with the CDF II detector, diploma
thesis University of Karlsruhe, Preprint IEKP-KA/2003-21.

[41] Z. Albrecht, G. J. Barker, M. Feindt, U. Kerzel, M. Moch, P. Kluit,A study of Excited
b-Hadron States with the DELPHI Detector at LEP , Contribution to Europhysics
2003, Aachen, and Lepton Photon 2003, Fermilab, DELPHI-Note 2003-029 CONF 649.

[42] G. J. Barker, M. Feindt, C. Haag, A Precise Measurement of the B+ and B0 and Mean
b-Hadron Lifetime with the DELPHI Detector at LEP1, Contribution to Europhysics
2003, Aachen, and Lepton Photon 2003, Fermilab, DELPHI Note 2003-031 CONF 651.

[43] K. Munich, M. Elsing, W. Liebig, B. Schwering, T. Allmendinger, G. Barker, M. Feindt,
C. Haag, T. Scheidle, C. Weiser, Determination of Afb using inclusive charge recon-
struction and lifetime tagging at the Z pole, Contribution to Europhysics 2003, Aachen,
and Lepton Photon 2003, Fermilab, DELPHI Note 2003-057 CONF 677.

26

	Introduction
	The algorithm
	Preprocessing of the target values
	Discretisation
	Neural Net Prediction
	Neural Net Output Interpretation
	Interpolating the discrete network outputs
	Important Quantities:

	Theoretical framework
	The learning problem
	Solving the ill-posed problem
	Generalisation error and VC dimension
	Bayesian approach to regularisation
	Pruning
	Automatic Relevance Determination
	Automatic Shape Smoothing

	Some considerations for efficient net training
	Online instead of batch training mode
	Random start values for weights
	Non-randomness of start values in the second and output layer
	Relative importance of the N output nodes
	Learning with weighted events:
	Bias nodes
	Shifts in individual output transfer functions
	Fast function evaluation
	Dynamic step size adaptation
	Randomising event order
	Choosing input variables
	Preprocessing of input variables
	Decorrelation of input variables
	Linear optimisation towards one input node
	An alternative mapping of the input variables
	Why learn the cumulative distribution?

	Monte Carlo tests
	A simple toy example: two measurements of the same variable
	More sophisticated: A function of two different measured variables with error propagation: lifetime reconstruction

	Real application examples
	A difficult case: Improved B energy reconstruction in DELPHI
	A very difficult case: Econometry

	Developments from 2001 to 2003
	Summary

