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Abstract. Domain understanding is one of the first steps in real-world
applications of Knowledge Discovery in Databases (KDD). Preprocessing
the data properly and finding an appropriate representation is crucial
for a successful application of data mining algorithms. We present a
metamodel of KDD preprocessing chains that contains an ontology for
describing conceptual domain knowledge. This metamodel is operational,
yet abstract enough to allow the reuse of successful KDD applications in
similar domains.

1 Introduction

This paper presents the use of ontologies in the KDD preprocessing tool Mining-
Mart1 [4]. We describe the different goals that MiningMart addresses and how
they are supported by the ontology formalism it is based on.

Data made available for KDD applications has often primarily been collected
for other purposes. As a consequence data mining tools are hardly applicable to
the raw data directly. One of the first steps foreseen by the cross-industrial stan-
dard for data mining (CRISP, [1]) is domain understanding. In this phase data
analysts try to identify and understand the important concepts and relationships
of the domain and to couple this information with the available data. Subsequent
steps of the CRISP model augment the domain model, so that a representation
of the data is achieved that can be fed into a mining algorithm.

The position taken in this paper is that establishing a higher level of data
abstraction allows to ease the KDD process in terms of understandability and re-
usability, if working at this level is supported by a suitable tool with a graphical
user interface. Well-known formalisms for data abstraction like entity relation-
ship diagrams or UML’s class diagrams allow to model concepts and some of
their properties intuitively. However, the main purpose of such formalisms is to
ease the construction of schemas by means of visualisation. Once the schema has
been established it can be considered as an interface for inserting, updating and
deleting objects, thus for applications the ideal case is a schema that does not
change while it is in use.

1 http://mmart.cs.uni-dortmund.de



In contrast to this, the CRISP model suggests an iterative nature of the
KDD process, in which it is common practice to repeat experiments in a trial-
and-error-like fashion. Operations like feature construction, feature selection, and
aggregations of data sets can be considered to change the part of the database
schema which is subject to the analysis. However, the original data and its
schema do not have to be changed in any way. Thus we may look for alternative
ways of abstraction for building data models in KDD.

Similar to the well known TCP/IP model, where different levels of abstraction
are available for different kinds of services, we propose an abstract conceptual

level on top of the logical level of relational databases, tailored to ease the devel-
opment and re-use of KDD processes. Basically this level should enable experts
to comfortably describe sequences of pre-processing and data mining steps, us-
ing understandable notions of the respective domain language. When analysing
customer data, for example, a domain expert may probably prefer to think of
customers as basic entities, although inspecting databases of different compa-
nies may reveal that names, adresses, contract information, or data about past
interactions with customers are hardly ever stored in the same single table. Yet,
at a higher level, it is possible and preferrable to describe such data in terms of
the entities that are most natural to the domain expert. In this example, pro-
viding the concept “customer” as an entity on which further processing is based
would help the expert to structure the complete application intuitively. This ar-
gument is similar to those for ontology-based query formulation in systems like
Observer [3]. The following sections explain the MiningMart approach in this
light.

2 MiningMart Overview

A complete KDD process begins on raw data from an institution’s databases,
transforms the data into a format suitable for data mining (preprocessing), ap-
plies a mining algorithm and deploys the mining results on new data. The success
of the mining algorithm depends strongly on the representation of the examples
it learns from; this representation is built during preprocessing. It is a difficult
task to choose a suitable mining algorithm and example representation, given
only the initial data.

The MiningMart environment [4] is a graphical tool based on relational
databases. It addresses the difficulty above by enabling the exchange of knowl-
edge about successful KDD applications. To this end, such processes and their
data are stored in a meta model called M4 [2]. By making M4 operational, the
MiningMart system supports not only the storage, documentation and exchange
of such processes but also their initial development and execution.

M4 consists of a data model and a case model; both of these parts are ex-
plained in the following.

1. The data is modelled at two levels. First, the database schema, which de-
scribes the tables, their attributes and links between tables, is stored. This
allows a consistent access to this information across databases. Second, an



ontology level is introduced that allows to describe the data in more abstract
terms. Basically, the ontology level uses concepts with features, and relation-

ships, to model the data. Both levels are described in more detail in section
3. Obviously, the mapping between the two levels is crucial and section 3 will
say more about this as well. The principal advantage of this two-level data
model is that all the data processing will be described in terms of the ontol-
ogy level, which allows to re-use the complete description on a new database
by simply changing the initial mapping.

2. A complete sequence of operations describing a KDD process is called a
case in MiningMart. The case model describes the operations executed on
the data by providing an open set of fixed operators that perform basic
data transformations as well as more sophisticated learning steps (some-
times learning is applied during preprocessing). Apart from some optional
operator-specific parameters (constants) all inputs and outputs of operators
are specified in terms of the domain ontology. In valid operator sequences
outputs of predecessors are available as input to subsequent steps. As soon as
the inputs of an operator have been mapped to database objects it becomes
executable. Each operator has a specific task which is basically to establish
a new database view on the given input data. This process can be seen as a
transformation into a different data representation. The M4 compiler is the
system component responsible for executing operators. It reads the infor-
mation on how to apply operators in the current case from M4 and creates
views based on dynamically generated SQL code.

The MiningMart environment includes a GUI that allows to a) create and
edit objects at the ontology level and map them to database objects, and b)
create and edit chains of operators. Further, all M4 information related to one
case can be imported and exported to XML files; these files can be exchanged
between users, either directly or using the central MiningMart web repository of
cases.

To sum up, MiningMart is a KDD tool that makes use of ontologies in its
data model. The main advantages of this approach are:

– Description of the data in terms familiar to the user
– Automatic documentation of data and processing steps
– Re-usability of KDD applications on different databases
– Exchangability of knowledge about successful KDD applications

The following section will provide more details about the data model in M4 and
discuss several issues related to it.

3 MiningMart Data Model

3.1 An example

In this subsection the M4 data model is illustrated along a short example, taken
from a telecommunications company that has modelled a customer relationship



Table 1. A Call Details Table.

CallerNumber CalledNumber Length Date Tariff ...

7222277 2777722 194 12-02-2002:18:04:56 11 ...
1881181 8118818 82 24-12-2002:11:44:23 2 ...
... ... ... ... ... ...

management application with MiningMart. Their database stores each telephone
call individually; see table 1. For each call, the column CallerNumber contains
the caller’s telephone number, CalledNumber is the telephone number that was
called, Length is the number of seconds the call took, Date gives the exact date
and time of the call and Tariff gives a code for the tariff used for billing the call.

The lower level of the M4 data model, which represents the database schema,
stores the table name (say CallDetails) and the names and datatypes of its
columns (CallerNumber, Length, etc.). In addition, primary and foreign keys
and information about cross tables can be stored.

At the ontological level, we might introduce a concept Phonecall. Each con-
cept has got a non-empty set of features; for Phonecall, some features could be
CallingPerson, CalledPerson, Duration and Date. Phonecallmight be linked
to another concept Customer by a relationship Calls. Inheritance of concepts
is supported by the M4 formalism: the concept Customer could have subcon-
cepts such as Private Customer and Business Customer. Subconcepts inherit
all features of their super concept but have a smaller extension.

3.2 Mapping the logical to the conceptual level

In the above example, we have a simple 1:1 mapping between a concept and
a database object (a table) that contains the data for that concept. Yet this
mapping can simplify things for the user if not all attributes of the table are
relevant for an application. In this case it is possible to introduce a concept that
hides the irrelevant subset of attributes. But let us discuss some cases of more
complex mappings.

We may want to have several concepts that use the same database table
(using the same or different sets of columns as features). These concepts can serve
different purposes in the KDD application in question. This is easily possible in
MiningMart.

We may want to have concepts that use only parts of the contents of a table.
For this, we may or may not want to introduce a concept for the complete
table, and model subsets as subconcepts. For example it may be interesting to
distinguish between several different kinds of customers. In any case, the subset
of the table to be used must be specified. Since this kind of specification is
provided as a data processing operator in MiningMart, it seems easiest to use
the MiningMart environment to produce the concept desired; this can be done in
very few processing steps. In fact, the MiningMart system will create the desired
concept as a subconcept of the original concept whenever selection operations



are applied. As a special case, MiningMart offers parallel execution of processing
operations on all subsets of a table if the subsets are distinguished by the values
of just one attribute (Segmentation).

We may want to subsume two or more tables under the same concept, using
all or a subset of their attributes. On the database level this corresponds to
a table join. Joining tables to one concept makes most sense if there is a 1:1
relationship between the tables, that is, each row in one table corresponds to a
single row in the other table(s). However, even with 1:n or n:m relationships this
may make sense, especially when combined with further selection operations.
The point is that in MiningMart, the necessary operations are provided anyway
as part of the case model, that is, as data processing operations which may be
needed in any KDD application.

To sum up, because M4 is used in an application that offers data manipulation
operations such as joining and selection, it was easy to introduce a two level
approach in the M4 data model, with the advantages listed at the end of section
2. The mapping between the two levels can be kept rather simple. Even so,
rather than creating a redundant description layer for the existing database, as
is necessary in ontology-based systems for interoperability of databases like [3],
the extra level is used in MiningMart to describe a view of the data that is
wanted, either to enable further processing in the KDD application at hand, or
to model more naturally a human’s understanding of the domain. The wanted
view of the data can be created using the operations the system provides. This
is especially interesting when a case model is ported to a new database. Semi-
automatic schema matching approaches as described in [5] could simplify the
adaptation of successful cases to new databases in the future.

3.3 Storing the meta model

As explained above, the M4 meta model that underlies the MiningMart system
stores information about preprocessing steps and data at two levels of abstrac-
tion. All M4 information is stored in tables of a relational database. This choice
was made because a database interface was needed anyway, and the additional
powers of other formalisms like description logics are not needed for Mining-
Mart’s purposes. It also offers some advantages compared to, for example, flat-
file storage using XML. Most importantly, it allows to build the meta model on
top of the well understood relational calculus, with clearer semantics than most
XML-based formalisms. The DBMS may be seen as a virtual SQL machine. It
takes care about data consistency, transaction management, and optimisation of
assigned resources. Especially the consistency of the meta data is of high value,
because M4 contains highly structured, interdependent information. SQL offers
a structured access to the data, while XML still requires efficient handling of
data streams where sometimes only small parts of the stream are relevant for
the current purpose. If native XML databases should gain attention in the fu-
ture, then the interface can be adjusted accordingly. For transferring meta data
from one database to another, MiningMart offers an XML-based import/export



facility, already. Together with the flexibility in the data model due to the two-
level approach (see above), this feature allows the adaptation of cases to different
environments.

4 Conclusions

Finding the right representation of data is one of the most crucial issues in the
KDD process. To this end the MiningMart system offers support for modelling
conceptual knowledge about the domain. The description of available data in a
higher level representation language is the first step towards an understandable
and operational case study in this framework. Relevant concepts of a domain
are structured by a domain ontology, allowing to structure concepts by means
of inheritance and to represent different kinds of relationships between concepts.
This kind of domain model allows to structure the relevant concepts better
than the facilities available in relational databases, and allows for a convenient
handling of views in different contexts. With the MiningMart meta model M4 it
is possible to set up operational sequences of preprocessing steps, making use of
the conceptual descriptions of the data, only. This results in an increase of the
interpretability and reusability of KDD processes.
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Colin Shearer, and Rüdiger Wirth. Crisp–dm 1.0. Technical report, The CRISP–DM
Consortium, August 2000.

2. Jörg-Uwe Kietz, Anca Vaduva, and Regina Zücker. MiningMart: Metadata-driven
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