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Abstract

Today many different software tools for Decision Support exist; the same is

true for Data Mining which can be seen as a particularly challenging sub-area

of Decision Support. Choosing the most suitable tool for a particular industrial

data mining application is becoming difficult, especially for industrial decision

makers whose expertise is in a different field. This paper provides a conceptual

analysis of crucial features of current data mining software tools, by establishing

an abstract view on typical processes in data mining. Thus a common termi-

nology is given which simplifies the comparison of tools. Based on this analysis,

objective decisions for the application of decision supporting software tools in

industrial practice can be made.

1 Introduction

Knowledge Discovery in Databases (KDD) and Data Mining are, in practice, complex
processes whose development requires advanced skills and precise data understanding.
Increasingly, however, software systems that support many aspects of data mining on
a high level are becoming available, which makes the development of industrial mining
applications easier even for less experienced users. Examples for such systems are SPSS
Clementine, SAS Enterprise Miner or MiningMart. For industrial decision makers,
the choice of the most suitable decision support software is becoming an important
challenge, as many software tools are available, but each has its own strengths and
weaknesses. This paper addresses the question of how the different technologies can
be compared with respect to their work-saving potentials. The main thesis is that
there are critical aspects of a mining process which must be explicitly supported on
a conceptual level by a high-quality data mining software. The paper contributes
a detailed, conceptual analysis of these critical aspects. This allows to establish a
common terminology for a broad range of functionalities, and thus to easily compare
different software solutions based on detailed, objective and quantitative criteria.



The general focus of the paper is data processing during data preparation and
mining. For the preparation of data, the conceptual analysis presented in section 3
yields a list of essential operators that must be available in order to be able to compute
arbitrary data representations. Arbitrary data representations may be needed for a
successful mining phase. During mining itself there are also central data processing
tasks that must be supported, such as cross validation and parameter tuning, which
is explained in section 3.4. Based on this conceptual view on critical aspects of the
process, criteria for existing software solutions in data mining and knowledge discovery
are derived in section 4. The criteria reveal the strengths and weaknesses of such
software solutions, allowing clear and objective decisions for the application of data
mining software tools in industrial practice.

2 Related Work

Conceptual models of knowledge discovery processes (of which data mining is the cru-
cial part) have mostly been developed in the context of data mining supporting tools.
In particular, [19] and [3] attempt to assist users during the development of discovery
processes by automatically exploring various options for the process. To this end, the
basic steps in a KDD process are realised by agents in [19]; meta-agents (planners)
organise them to a valid process using their input and output specifications. The au-
thors provide an ontology of KDD agents that distinguishes between three phases of the
process, namely preprocessing, knowledge elicitation (modeling) and knowledge refine-
ment. The particular choice of agents is not explicitly justified in the published articles;
compare the minimal and complete list of operators in section 3. Further, the present
work includes a conceptual view on the data which is missing in [19]. The same is true
for [3], where a system to systematically enumerate and rank possible KDD processes
is presented, given some input data and a mining goal. These authors have developed
a metamodel for KDD processes. In this respect, there system is somewhat similar to
MiningMart [15], which is the system that inspired much of the present work.

A well-known standard to model the KDD process is Crisp-Dm [6]. While it gives
an overview of different, interdependent phases in a KDD process and defines some
terminology, it is not detailed enough to model concrete instances of data preparation
and modeling operations, and does not include a data model. An early sketch of a
formal model of the KDD process was presented in [18]. The new PMML version 3.01,
a standard to describe machine-learned models in XML [17], includes facilities to model
the data set and data transformations executed on it before modeling. However, it is
not process-oriented, thus it does not allow to model a data flow through a complex
KDD process, and the data model is restricted to one table. Other standards around
data mining are Java Data Mining (JDM [12]), which includes web service definitions,
and SQL/MM Data Mining. Though extensible, they currently provide interfaces to
modeling algorithms rather than to complete KDD processes.

Recently, some new research attempts to employ grid infrastructures for knowledge
discovery; a good overview is given in [4]. To enable the execution of KDD processes

1http://www.dmg.org/pmml-v3-0.html



on a grid, these processes have to be modelled independently from the machines that
execute them, and heterogeneous data schemas and sources have to be modelled. In
[2], a Discovery Process Markup Language (DPML) is used, based on XML, to model
the complete KDD process. This language is used to formalise a conceptual view on
the data mining process. Unfortunately, from the available publications it is not clear
how comprehensive and detailed DPML is.

Criteria for the comparison of KDD and data mining tools have been listed in
several papers [1, 10, 7, 9], but have not been linked with the conceptual works above.
The criteria are therefore not consistent across publications and their selection is not
justified. The present paper attempts to support the choice of criteria by a conceptual
analysis of the essential data processing tasks in data mining for the first time.

3 Data Preparation

This section introduces the conceptual notions that are needed to describe a data
mining process. Section 3.1 introduces two description levels which are used to describe
the data (section 3.2) and the data processing (sections 3.3 and 3.4).

3.1 Two levels of KDD descriptions

It is generally possible to describe both the data and the preparation tasks on two
different levels: a more technical one and a more KDD-related one. The technical level
describes the data and any operations on the data independently of any application
purpose. The higher level deals with KDD concepts: the role that the data plays, and
the purpose of applying a preparation method, are seen in the context of the knowledge
discovery application. This level will therefore be called conceptual. The differentia-
tion of the two levels will be detailed below. One may relate the different levels to
different types of users of data collections: while for example database administrators
are concerned with the technical level, KDD experts and statisticians (data analysts)
tend to think and work on the conceptual level, as they cannot take the application
out of their focus.

One of the purposes of this work is to argue that the two levels should be explicitly
supported by KDD software. This has the following advantages:

• If the higher level is made explicit, the lower one can be hidden. A software that
hides the technical level can present the entire KDD process to a user in terms
of familiar concepts. This eases the development of and daily work on KDD
applications.

• By making the conceptual level explicit, it is automatically documented and can
be stored and retrieved for later reference [15].

• Independence of the conceptual level allows to reuse parts or all of a conceptual
process model on new data by simply changing the mapping to the technical level.
Though this may require conceptual adaptations, it saves much effort compared
to a development from scratch.



• The use of the conceptual level allows the comparison of different software tools
by abstracting from technical details. Criteria for comparison can be formulated
on the conceptual level, which makes their communication and application much
easier. See section 4.

3.2 Data description

Throughout the paper, the data is assumed to be in attribute-value format. On the
technical level, it is common to think of tables which are organised in columns and rows.
Conceptually, data is seen as representing objects from the real world; the objects are
described in terms of their attributes; and each attribute has a domain whose values it
can take. There can be different sets of data, with different attribute sets; it is common
to refer to the different sets as tables even on the conceptual level, though the term
concept will be used below. Thus there is a direct and simple mapping from attributes
to columns and representation of objects to rows. Whether the columns and rows are
gained from a flat file or a database system is unimportant on the conceptual level.

While attributes and concepts are used to describe the data schema—the organi-
sation of the data—on the conceptual level, a description of the data contents is also
very useful on this level, since the data processing operations in a KDD process depend
on both. Schema- and content-related information are usually referred to as metadata.
During processing, both the data schema and the data contents, the data itself, change.
To have the data characteristics listed below available on the conceptual level requires a
data scan, which typically consumes a substantial amount of time because the data sets
are large. Therefore, this analysis should be performed as rarely as possible, preferably
only once, on the input data (even then, it may have to be performed on a sample of
the data). Based on the characteristics of the input data, many characteristics of later,
intermediate data sets in the process can be inferred from the types of operations that
were applied, rendering new data scans superfluous.

The useful metadata for modelling a KDD process includes: the number of rows in
every table/concept; the minimum and maximum values of each attribute with ordered
values; the list of values each discrete attribute takes; and the number of occurrences
of each value of each discrete attribute.

One important task that can be solved based on this metadata is the estimation of
the storage size needed for storing the data set. This is important during the declarative
set-up of the KDD process, as it allows to decide before executing the process whether
and how to store intermediate data sets (due to limited main memory), because the
necessary metadata (the list above) can be inferred in many cases (though not always).
An intelligent administration of intermediate data processing results is important for
a smooth execution of the process.

The administration of the above metadata allows not only size estimation, but
also an easier declarative development of the KDD process model, as many operations
depend on the values that certain attributes take. For example, Value mapping (see
below) is an operator used to change these values, and a specification of an instance
of this operator is easy if the available values can be chosen in a graphical interface,
rather than be looked up elsewhere and typed in by hand.



Another useful kind of metadata is given by data types. On the technical level, the
common data types are numbers (integer or real), strings, and calendar dates/clock
times. Conceptually, however, one would distinguish types according to the way they
represent real-world objects. In this work, four conceptual data types are proposed as
essential because their distinction is needed during the development of a KDD process
using the processing operators listed below. These types are date/time, key, discrete
(further divided into binary and set), and continuous.

In principle, every conceptual domain type can be realised by any technical data
type. For example, keys can be realised by strings or by numbers; dates can be repre-
sented by strings; and so on. To hide the technical level, a flexible mapping is needed.
When new data is introduced, the mapping from the technical to the conceptual level
can be done automatically (by inspection of occurring values), but must also be man-
ually manipulable to allow uncanonical mappings, like strings representing dates. The
need for flexibility arises from the unpredictable ways in which data preparation oper-
ations may be combined. For example, one certain operator produces a binary output
consisting of the numbers 0 and 1, where from the view of this operator the output is
discrete (no ordering implied). Yet the next operator in a given application chain may
compute the mean of that output, interpreting the 0s and 1s as real numbers, which is
a neat way of computing the ratio of 1s. Even when such interpretation changes occur,
it is still possible to hide the technical level by adjusting it automatically, determined
by the kinds of manipulations that an operator defines. This is one example of how a
conceptual analysis leads to objective criteria for software.

Further information about attributes (beyond conceptual data type and data char-
acteristics) is given by the role it plays in the KDD process. Some attributes are used
as input for learning; one or more may contain the target (the label) for learning; still
others relate several tables to each other. Thus, four roles are distinguished on the
conceptual level (without a correspondence on the technical level): Predictor, Label,
Key and No role.

Changing the perspective now from (domains of) attributes to whole tables, their
contents, and how they relate to each other, it is easy to see that the two levels of
description can be applied in a similar fashion. Data represents objects from the real
world and describes them along several dimensions. Some objects share similarities,
which allows to subsume them in a class; the science of what classes exist and how
they should be described is called ontology. Leaving philosophical approaches aside, the
word ontology is used in computer science as a countable noun, where an ontology is
the description of a shared conceptualisation of an application domain [11]. Obviously,
a conceptual description of data sets could make use of ontologies. If an ontology exists
for the application domain from which the data is collected, it would be very helpful
to describe a KDD application on that data in terms of that ontology [8, 5]. However,
realising this idea is fraught with the difficulty that not all ontology formalisms are
suitable for supporting KDD-oriented data processing. Data for KDD comes in tables,
and the tables are the objects of the extensive modifications which are usual during
data preparation. A useful conceptualisation, from an operational point of view, should
therefore introduce a concept for each table, even though some concepts from the
application domain may, in a given data set, be described using several tables, or only



a part of one table. The latter problem can however be remedied by the availability of
data transformations in KDD to bring the tables into a suitable shape [8].

A mining process consists of a sequence of transformation operations, as explained
in section 3, and each operation introduces a new data set, or in the conceptual view,
a new concept. Thus a large number of intermediate concepts is created in a large
process, and the intermediate concepts are related by the data flow or process view.
However, they are also related in a different way, namely by the nature of their cre-
ation: some processing operations create subsets of the input data, while others create
specialisations. It will be seen in section 3.3 that several essential processing operations
produce such relations. Further, the intermediate concepts may be related by foreign
key links. The web of these relations allows an alternative view on the data mining
process which can help the user to keep an overview of it.

3.3 Data preparation operators

Usually, data preparation is seen as the execution of basic steps, each of which applies
some predefined data transformation to the output of the previous step(s), resulting
in dependency graphs of data preparation. The predefined data transformations are
defined through operators, which are specified by their input, their transformation task
and their output. It is important to note that input and output can be specified on
the higher, conceptual description level.

In [13], a list of atomic operations for data preparation was given for the first
time. One main contribution of the present work is the classification of these and
other operators into primitive and convenience operators. The former correspond
to the technical description level. They provide basic operations without which no
complex data preparation can be performed. For a tool that lacks one of the primitive
operators, representations of the original data exist that it cannot create. Thus the list
of primitive operators given here is minimal in the sense that it is easy to find, for every
primitive operator and any given data tables, a data table that cannot be computed
from the given tables if that operator is missing (but can be computed if all primitive
operators are available). If these operators can make arbitrary computations within
their functionality, the list is even complete in the sense that any attribute-value data
representation that is Turing-computable from any given tables, can be formed from
the tables using this list. For example, Attribute derivation (see below) includes the
application of machine learning algorithms to create predictions or cluster labels, and
Attribute selection and Row selection can use any computation for their selections.

The operator Model Learning has a special status; it is not a primitive operator for
data preparation, and does not produce output in terms of the data ontology, but is
indispensable for a complete KDD process.

The convenience operators describe data transformations in conceptual, KDD task-
related terms; they are mere combinations or special cases of the primitives. As an
example, the convenience operator Dichotomisation takes a discrete attribute and out-
puts several attributes, one for each value occurring in the given attribute, where the
output attributes contain a boolean flag indicating whether the value they correspond
to occurs in that row in the input. This convenience operator can be realised by a



repeated application of the primitive operator Attribute derivation. However, for a
KDD expert user, using the convenience operators where possible is more intuitive
than using many primitive operators, and provides an aggregated, high-level view of
the preparation graph. Thus again the claim that KDD can be extensively supported
on the conceptual level is justified.

In the following, brief descriptions of all primitive and some convenience operators
are given.

Attribute derivation (primitive) A very general operator to create a new attribute,
usually based on values of existing attributes. To allow this, extensive date, string
and numeric arithmetics must be offered by this operator. In fact, to make the list
of primitive operators complete in the above sense, arbitrary computations must be
allowed to derive a new attribute. This requires a computationally complete formalism
such as a programming language. The input for this operator is any concept; the
output is a concept that is a specialisation of the input concept.

Attribute selection (primitive) This operator removes attributes from the input
concept. The selection of attributes to be removed is either done by the user or, for
advanced applications, automatically, using redundancy criteria or the performance of
a modeling algorithm on different attribute sets. The input is any concept with at least
two attributes. The output is a concept of which the input concept is a specialisation.

Row selection (primitive) This operator copies certain rows from the input concept
to the output concept, according to some criteria. The input is any concept. The
output is a concept that is a subconcept of the input concept.

Join (primitive) This operator joins two or more input concepts according to the
values of a key attribute specified for each concept. All attributes from the input
concepts occur in the output concept without duplicating keys. The input are two
or more concepts, each of which has a key that relates it to one of the other input
concepts. The output is a concept that is a specialisation of all input concepts.

Union (primitive) This operator unifies two or more concepts that have the same
attributes. The extension of the output concept is the union of the extensions of
the input concepts. The input are two or more concepts, each with the same set of
attributes. The output is a concept with again the same attributes, of which every
input concept is a subconcept.

Aggregation (primitive) This operator aggregates rows of the input concept accord-
ing to the values of given Group By-attributes. Aggregation attributes are chosen in
the input concept; in the output concept, values that are aggregated over an aggrega-
tion attribute appear for each combination of values of the Group By-attributes. The
input is any concept with at least two attributes. The output is a new concept not
related to the input concept.

Row derivation (primitive) This operator is only included to make the list of prim-
itive operators minimal and complete for computing arbitrary representations of the
original data. In its primitive form, it is not useful for KDD, since the aim of KDD
is to discover knowledge from existing data but not to create extra data. Yet data
generation is sometimes used in KDD, but only in a special way, so that a convenience
operator should be used for this. The primitive operator adds one or more rows to the
input concept which are computed from one or more existing rows in an arbitrary way



(compare Attribute derivation). The input is any concept. The output is a concept of
which the input concept is a subconcept.

Model learning (special) This operator is a general place holder for model learning
algorithms. In predictive settings, the model gives a prediction function that can be
applied to other concepts in the Attribute derivation operator. In descriptive settings,
only the model itself is produced.

Discretisation (convenience) This operator discretises a continuous attribute. That
is, the range of values of the continuous attribute is divided into intervals, and a discrete
value is given to every row according to the interval into which the continuous value
falls.

Value mapping (convenience) This operator maps values of a discrete attribute to
new values. In this way, different values can be mapped to a single value, thus be
grouped together, if they should not be distinguished later in the process.

Dichotomisation (convenience) This operator takes a discrete attribute and pro-
duces one new attribute for each of its values. Each new attribute indicates the presence
or absence of the value associated with it by a binary flag.

Missing value replacement (convenience) This operator fills gaps left in an input
attribute (the target attribute) by missing or empty values.

3.4 Data Mining

During modeling, conceptual support is mainly needed for training, testing (evaluation
of models), and parameter tuning, as well as the visualisation of models. Conceptual
support here means again to present these tasks in suitable terms; for example, standard
operations should be offered to split a data set into training set and test set, to learn,
evaluate and apply a model, to automatically find optimal parameter settings, and so
on. Since modeling is in itself a complex process, in fact this often leads to a separate
graph of processing tasks. Following [14], trees of nestable operators are a suitable,
conceptual representation for these tasks. The leaves of the trees represent operations
such as the learning or application of a model, while the inner nodes correspond to
more abstract, control-oriented tasks such as cross validation or meta learning. This
representation provides great flexibility for the design of complex mining experiments,
which are independent of the data preparation in that they take a single, fixed data
table as input.

4 Criteria for Data Mining Tools

How can the conceptual analysis from section 3 be applied in practice? The analysis
focused on data processing during preparation and mining. According to [16] and a
2003 KDnuggets poll2, most of the efforts spent on a KDD project are consumed by
data preparation. Therefore the analysis above directly concerns work-intensive areas
of KDD. It provides the details for a declarative development of KDD processes on
the conceptual level, given a system that realises a translation to the technical level.

2http://www.kdnuggets.com/polls/2003/data preparation.htm



Various data mining systems, like Clementine, IBM Intelligent Miner, SAS Enterprise
Miner or MiningMart already realise certain parts of the notions from section 3, but
no “ideal” system exists (yet) that includes all of these notions.

The concepts can be directly translated to functional criteria for data mining sys-
tems that include data preparation facilities. As a simple example, all primitive opera-
tors from section 3.3 must be available in such systems, otherwise the data preparation
facilities are incomplete (the operator Row derivation is an exception). The more con-
venience operators are available, the better. Attribute roles must be supported as well
as the three types of relations between intermediate concepts (see section 3.2); for this,
concepts (representing tables) must be explicitly represented; and so on. These criteria
can be objectively and simply checked in any data mining tool. They can also be easily
quantified, as explained in the following.

Every notion from section 3 can be broken down into a number of boolean criteria.
For example, each operator from section 3.3 corresponds to one boolean flag indicating
its presence or absence in a given tool. The same is true for the four attribute roles.
Other ideas from section 3 can be set up as boolean lists as well: for example, the
explicit support for conceptual data types can be present or absent; the mapping from
conceptual data types to technical types may be adjusted automatically in a given tool
or not; and so on. This results in a set of detailed, boolean criteria for data mining
tools.

However, while a long list of boolean criteria is very detailed, it does not serve well to
gain a quick overview of the strengths and weaknesses of a tool. To make the evaluation
clearer, related criteria can be grouped. Assuming a group of m > 0 criteria, any given
data mining tool will fulfill 0 ≤ n ≤ m of them. This leads to the n-of-m metric for
evaluating KDD tools, or indeed any type of systems given functional criteria. The
size of the groups is variable; each group can have an own value of m. Further, the
grouping itself can be adjusted to different purposes. To gain a quick, broad overview,
larger groups (larger values of m) can be used, while for detailed inspections smaller
groups are recommended. So the n-of-m metric is adaptable to different evaluation
purposes and different audiences for the presentation of evaluation results. Based on
a single, detailed list of boolean criteria, humanly comprehensible quantitative scores
can be formed to compare and evaluate KDD tools.

5 Conclusions

This paper has addressed the important, time-consuming data processing phases of the
KDD process, namely data preparation and data mining. It was shown how these tasks
and the methods to solve them can be described on two levels, a higher, conceptual
one which is independent of the realisation of the KDD process, and a lower one that
realises the process. Critical aspects for declarative models of KDD processes were
identified, in the area of data descriptions (data models), preparation operators (with a
minimal and complete list of essential operators), and data processes around the actual
mining algorithm (such as cross validation or parameter tuning). Based on these critical
aspects, a methodology to set up objective and quantifiable criteria for the comparison



and evaluation of KDD tools was presented. The methodology is adaptable to different
evaluation purposes and audiences for the presentation of evaluation results.
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