
Publishing Operational Models of Data Mining Case Studies

Timm Euler
University of Dortmund, Germany

Computer Science VIII
euler@ls8.cs.uni-dortmund.de

Abstract

This paper presents a method to publish executable
models of data mining case studies in a so-called Case
Base, where they can be inspected in detail by anyone
using a common web browser. The Case Base serves to
inspire and educate other developers of data mining
applications, in particular if they are not yet experts in
the field. A case study can be directly downloaded and
executed on new data if it is found to provide a useful
template. The approach is validated and exemplified
using two data mining case studies from an Italian and
a Polish telecommunications company. These case
studies are interesting in their own right in that they
involve complex data preparation issues. The paper
studies these issues and relates them to the knowledge
transfer opportunities that the Case Base offers.

1. Introduction

Software tools supporting common data mining or
knowledge discovery tasks have matured greatly in the
past decade, offering now basic graphical and
conceptual support for all phases of the knowledge
discovery process. This eases the daily work of data
mining experts and allows a growing number of non-
experts to try and start knowledge discovery projects.
Though both experts and inexperienced users may find
guidelines for their work in the CRISP-DM model [5],
they are still faced with two essential problems, those
of finding a suitable data representation and of
choosing and tuning a learning algorithm to give
acceptable results. Data preparation, as the subprocess
that leads to the desired data representation, still
consumes the largest part of the overall work,
according to [11] and a 2003 KDnuggets poll, despite
the existence of graphical, data flow oriented user
interfaces for this task in modern software tools. The
likely reason is that what is a good data representation

depends on the mining task and data at hand, which
poses a challenging problem, especially for
inexperienced users. Such users would benefit greatly
from sources of knowledge about how experts have
solved past KDD (Knowledge Discovery in Databases)
problems, especially from exemplary, executable KDD
solutions. Even the experts might find inspirations in
solutions from other business domains if these were
available to them. The need for an environment to
exchange and reuse KDD processes has long been
recognised in the KDD community, see section 3.

This paper uses a framework in which successful
KDD processes can be modelled, executed, and
published to different KDD users, to present two data
mining case studies. A web platform (the Case Base) to
publicly display the models in a structured way,
together with descriptions about their business
domains, goals, methods and results, is described. The
models are downloadable from the web platform and
can be imported into the system which executes them
(on a relational database).

The two case studies have been published in the
Case Base, and are presented in detail in this paper.
The descriptions here can be compared to the models
in the Case Base. Issues that were identified as relevant
by the authors of the two studies when evaluating the
framework are discussed. In particular, the first study
allowed a direct comparison of the effectiveness of
graphical process modelling as compared to manual,
low-level programming. Further, the second study
indicated that some advantages of graphical modelling,
as in the presented framework, can be disadvantageous
when used by non-experts in a naïve way. The second
study also allowed to compare the processing
performance of a relational database with that of a SAS
installation.

The paper is organised as follows: section 2
describes the MiningMart framework which provides
the metamodel in which the models of the case studies
are expressed. Section 3 gives related work. Sections 4

and 5 present the two case studies, each with some
discussion of relevant problems and lessons learned.
Finally, section 6 concludes the paper.

2. The MiningMart framework

MiningMart is an environment for the development of
KDD applications that makes use of a formal
metamodel (called M4) to model KDD processes. The
central ideas of MiningMart have been published in
[10]. They are summarised in this section and extended
by a more detailed discussion of the Case Base and its
technology, since this concerns publishing the case
studies which are presented in later sections of this
paper.

2.1. Overview

In MiningMart, both the data and the
processing/mining operations on the data are modelled
declaratively using M4, and translated to operational
SQL by a compiler module. A data model and a
process model together describe an instance of a KDD
process and are called a case.

The metamodel M4 can be expressed in various
ways, for example a relational database schema or an
XML DTD. MiningMart currently uses a database to
store the case models while working with them, but
uses XML for import and export of the models. A
database has the advantage that good support for the
consistency of the case models is given, as the
dependencies between model objects can be expressed
in database constraints such as foreign key links.

In order to facilitate the reuse of cases, a data model
in M4 consists of two levels. On the higher level, data
is modeled by concepts, which contain features, and
relationships. Every step of the KDD process is
described, in terms of input and output, on this level.
The lower level uses tables and columns to which the
higher-level elements are mapped. It can model both
database schemas and flat file data. This two-level
approach allows to reuse the higher level elements on
new data by simply changing the mapping. For the
mapping, each concept corresponds to one table or
view, a feature can correspond to one or more columns,
and relationships correspond to foreign key links
between tables.

The mapping between the levels is provided by the
user, if the case is developed for the first time; in the
MiningMart system, a graphical editor supports the
creation and manipulation of higher level elements and
their mapping to given data. However, if an existing
case is reused, a simple schema-matching algorithm

can be employed to find at least a partial mapping. The
matcher algorithm is based on comparing the names
and datatypes of the concepts and features (higher
level) of the existing case, and the tables and columns
(lower level) of the given data (compare [12]). Once
the mapping is done, all user work on the KDD process
continues using the higher data level. This provides a
more abstract, task-oriented view of the KDD process
than low-level programming would.

To model the data processing operations, the
metamodel allows to define characteristics of basic
processing operations by specifying operators. The
definition of an operator in the metamodel includes its
name, its input and output parameters and their types
(concept, feature, or simple values like strings or
numbers), and constraints on the parameters that must
be fulfilled. A typical constraint might specify, for
example, that a certain input feature must have a
certain conceptual datatype. The actual processing
behaviour of the operator is not specified in the
metamodel but in the system that interprets it. This is
the compiler functionality of the system. The output of
an operator can be used as the input to another
operator, so that the data flow induces a directed
acyclic graph of operators.
To ensure that a wide range of KDD processes can be
modeled, new operators can easily be added
declaratively to M4 and will then automatically be
available in the system; only the compiler has to be
extended by a new module for each new operator (a
Java API is available for this task).

2.2. The case base

This section describes the knowledge portal, called
Case Base (http://mmart.cs.uni-dortmund.de),
that serves to distribute successful KDD models (cases)
publicly. The core of this portal is a software called
InfoLayer [8] that translates structured information,
according to a given ontology, to HTML files. It can
also generate RDF files which can be read by software
agents. In MiningMart, the ontology is the metamodel
M4, and a collection of instances of this ontology
forms the central repository of KDD cases. Only the
higher level of the data model is published for
confidentiality reasons. These higher-level parts are
represented in UML, which is read by the InfoLayer
software. The UML classes are linked to a database
that contains the M4 schema. Whenever a web client
requests information about an M4 object (via HTTP),
the InfoLayer creates an HTML file for it, disregarding
caching for this discussion (M4 objects are operators,
concepts etc.). The HTML files are generated using

templates that provide the layout for the information to
be displayed. There can be zero or one layout template
for each type of M4 object. If no template is given, the
contents of an HTML file for an M4 object are
automatically determined by the InfoLayer software
from the UML model. A template can be used to
provide only parts of the default contents, or to arrange
them in a particular way, for example by using HTML
tables. By default, the M4 object is displayed with its
name, its properties, and the names of M4 objects it is
directly linked to. The linked M4 objects appear as
HTML links so that a web user can browse through a
case model according to the structure of M4. For
instance, an operator is displayed together with its
name and its parameters, and a click on any parameter
shows the realisation of that parameter, which is in turn
an M4 object, for example a concept used as an input
parameter for the operator. The following is a
screenshot showing the case base as it displays an
example case.

When setting up a case with the MiningMart system,

every object from the case itself to operators,
parameters, concepts and features can be documented
using free text. These comments serve users for their
own orientation in complex models. They are stored in
M4 and appear on the web pages when a case is
published, so that other users browsing the case have a
good orientation as to the purpose of each step in the
KDD model and the use of their parameters. If such
comments are missing, they can be added by the
operators of the case base.

However, users who search for a case which they
might use as an inspiration for their own KDD

problem, or even as a blueprint of a solution, need
some additional, more general information about each
case. The most important types of information are (i)
the business domain, (ii) the business problem that was
attempted to solve, (iii) the kind of data that was used,
(iv) the mining task and other KDD methods that were
employed, and (v) the results, both in terms of KDD
and the original business problem. Hence, exactly this
information is provided together with every case that is
presented in the case base. To this end there is a
template with five slots for free text, corresponding to
the five types of information above, which is to be
filled by every case publisher (a sixth slot with contact
information enables further inquiries by interested
users). The filled template is displayed in the case base
as the first page of information about each case. From
there users who are motivated by the descriptions can
start to browse the case model, beginning with the
chains of operators or the input data. In this way, the
case model is related to the context in which it was set

up, which allows to judge its
suitability for a new business
problem. Finally, each case model
is linked to a file that can be
imported into a MiningMart client.

2.3. Case retrieval

This section briefly discusses a

few ideas for case retrieval, that is,
how to find a MiningMart case
that can serve as a template for an
own solution from the case base. A
suitable starting point is the
additional documentation
published in the case base for
every case. Assuming a low
number of published cases, this
information can be searched
manually, but as the case base

grows, automatic search methods should be added to
allow at least keyword search. Another useful way of
approaching the case base can be offered by sorting the
cases according to various topics extracted from the
additional case documentation. The five slots of the
documentation template provide five useful topics for
indexing the case base. Further topics (such as type of
business/institution where the application was realised)
can be added by extracting this information from the
free text descriptions in the slot.

The business-related information will often not be
enough to determine whether a published solution is
suitable for adaptation to own data sets. A second

method of approaching the case base is by looking for
data models in it, called target models hereafter, that
are similar to the own (local) data sets. The automatic
schema matcher included in MiningMart can be used
for this. It searches among all data models in the case
base for models similar to the local data.

This online method has an important advantage. All
cases use a particular data model as input, then
preparation operations are applied to the data. Each
preparation operation produces intermediate data
models. These intermediate models can be included
into the search for target models, so that the most
suitable entry point into a case can be found. Since
preparation is actually a method to adapt data
representations, it would make no sense to restrict the
search for target data models to the initial data that the
original KDD process started out on. Schema matching
is a useful tool in this setting as the number of target
data models is high, making manual search for the best
entry point a cumbersome task.

A unique option that the case base offers is to search
it for common subtasks that have been solved using
identical processing structures. A simple subgraph
detection algorithm can be used for this (since the
nodes of the graphs are typed, efficient algorithms
exist). More cases are needed before this will lead to
interesting results, however.

3. Related work

MiningMart was mainly described in [10]; see also

related work cited there. The technology of the case
base was updated recently; this and case retrieval issues
are a contribution of this paper. The idea of collecting
and publishing KDD solutions was mentioned (though
not realised) early in [15] and [9]. The importance of
the reusability of KDD models is also stressed in [16]
and [2].

To document and store KDD processes requires a
modeling language, or metamodel. A well-known but
informal standard to model the KDD process is Crisp-
Dm [5]. The new PMML version 3.0, a standard to
describe machine-learned models in XML [13],
includes facilities to model the data set and data
transformations executed on it before mining.
However, it is not process-oriented, thus it does not
allow to model a data flow through a complex KDD
process, and the data model is restricted to one table.
Other standards around data mining are Java Data
Mining and SQL/MM Data Mining. Though extensible,
they currently provide interfaces to modeling
algorithms rather than to complete KDD processes.
Similarly, in [3] a data mining ontology is presented to

enable grid-based services, but is currently restricted to
the modeling phase of the KDD process.

Recently, some new research attempts to employ
grid infrastructures for knowledge discovery; a good
overview is given in [4]. To enable the execution of
KDD processes on a grid, these processes have to be
modeled independently from the machines that execute
them, and heterogenous data schemas and sources have
to be modeled. In [1], a Discovery Process Markup
Language (DPML) is used, based on XML, to model
the complete KDD process. Unfortunately, from the
available publications it is not clear how
comprehensive and detailed DPML is.

4. Case study 1: Churn prediction

This section describes a data mining application that

was developed in an Italian telecommunications
institute. An overview of it was given in [7] and [14];
the present paper adds important details as regards the
data preparation and the lessons learned.

A major concern in customer relationship
management in telecommunications companies is the
ease with which customers can move to a competitor, a
process called “churning”. Churning is a costly process
for the company, as it is much cheaper to retain a
customer than to acquire a new one [14]. Churn
prediction is the task of predicting which types of
customers are likely to churn, and more challenging,
when they will churn. These business problems can be
translated to data mining or KDD problems in various
ways. One successful translation to a classification task
that predicts a class of customers likely to churn within
a given month in the near future is described in this
paper. The task was solved using decision trees which
achieved a predictive accuracy of 82%. This good
result was only possible due to the introduction of
relevant derived features for prediction which were not
available in the original data, and due to a re-
representation of the data so that temporal aspects
could be included. Thus data preprocessing was a key
success factor in this application.

One interesting aspect of this case study is that it
was implemented twice, based on manual programming
on the one hand, and on graphical modelling on the
other. This allowed to compare the amounts of work
spent by highly paid KDD experts on the application in
both scenarios (see section 4.6).

4.1. Overview

As said above, the objectives of the application to
be presented here were to find out which types of

customers of a telecommunications company are likely
to churn, and when. To this end, the available data
tables were transformed so that a classification
algorithm could be applied. In the resulting data set,
each row (that is, each example for classification)
corresponded to one customer of the company, and
contained many features describing their
telecommunication behaviour for each of five
consecutive months. Whether or not the customer left
the company in the sixth month determined the
classification label or target. Thus a binary
classification problem was formed that could directly
be addressed using several classification algorithms.
Once a learned classifier is available it can be applied
every month on data from the current and past four
months, to predict churn for the following month. A
longer prediction horizon (to predict churn not for the
following month but, say, the second or third month)
can be realised easily by changing a few parameters in
the graphical model of the application.

4.2. The data

The available data sets were: (i) call detail records,

recording for each phone call a customer made the time
and date, called number, tariff, type of call etc.; (ii)
billing data from the accounts department, containing
revenues generated by each customer in a given month;
(iii) and customer services data from the customer
registry, containing the gender and address of a
customer as well as the dates of entering and leaving
their contract with the company. Those customers still
with the company serve as negative examples for
churn, while for those who have left the company, the
data from the last five months they stayed with the
company is used to form positive examples.

4.3. Data preparation

The first table to be prepared is the call detail
records table. The transformation of the original data
starts by extracting an Id for each month from the date
of each call, because monthwise statistics are needed.
This month Id has to be the same as the one used in the
billing data. A new column with the month Id is added
to the call detail records. Additionally, the type of
phonecall (internet provider, local, distance, abroad,
mobile phone etc.) is derived from the number called,
with the aim of creating a telecommunication profile
for each customer.

 Next, the time span to be used for mining (the five
consecutive months) must be selected from the
complete table. Those customers who happened to have

left the company at the end of the time span are
positive examples for churning. However, selecting
only one particular time span does not deliver a
sufficient number of positive examples. Also it might
introduce a learning bias. For these reasons, six
different spans were selected. Notice that the six
resulting data sets are likely to contain overlapping
customer sets, since many customers (who have not left
the company) participate in all time spans.

 Now the six subsets must be mapped to the same
time index (e.g. 1 to 5 for the five months), so that the
six time spans can be matched. After creating the
common time index, the six data sets are further
processed in exactly the same way. Rather than setting
up the same transformation process six times, one
might set it up once and use it on six different inputs.
However, the overall mining process should be
executable automatically every month to predict new
groups of churners. Not every KDD system supports
automatic execution of a modelled process on different
input tables. In this application, a different approach
was taken that simplifies the automatic execution by
exploiting a Segmentation operator available in
MiningMart. One additional, nominal column is added
to each of the six data sets that contains only one value
which is different for each data set. Then the data sets
are unified (using a union operation like in SQL). Now
the segmentation operator takes the additional column
as the segmentation index, and ensures that all
following operators are applied to each segment in
parallel. This means that the process can be described
hereafter as if it was applied to only one input table,
though there are six segments to be processed. This
input table now contains one row per phonecall made,
and four columns: the customer Id; the month Id; the
calllength; and the type of call. Using aggregation as in
SQL (forming a data cube), the sum of calllengths
spent by every customer in each month for each type of
phonecall can be computed. The resulting table
contains the data that is needed for mining; however,
the format is not suitable yet: it is not a table with a
single row for every customer, but with 35 rows per
customer: the number of months, five, times the
number of different call types, seven. What is needed
now are 35 new attributes: one per month and per call
type. Each new attribute will contain the calllengths
spent by every customer in that month making that type
of phonecall.

These attributes can be created using 35 derivation
operations. However, exploiting the special
MiningMart operators Segmentation and Pivotisation,
the process becomes much simpler. Segmentation is
applied a second time, this time using the call types as

the segmenting attribute. Now again the further process
can be described and set up as if there was only one
input table, although in reality there are 42 tables with
the same data format: seven, the number of call types,
times six, the number of time spans.

At this point the operator pivotisation can be used to
gain the final representation of this part of the data in
one single step. Conceptually, pivotisation creates a
table with six columns, one per month plus one
customer Id, so that each row corresponds to exactly
one customer. Behind this conceptual view are 42 data
tables, six time spans for each of the seven call types.
In the next step, the union of all data tables
corresponding to the same call type can be formed,
leaving seven tables. Finally, the seven tables (each
with five non-key attributes) are joined, resulting in one
real data table with the customer Id column and 35
telecommunication profile columns, where each row
contains all of the information for exactly one
customer.

All of the above concerned only one of the three
original data tables, the call detail records table. The
second table contains the revenues per month and per
customer. This table is transformed in a similar way,
using selection of the six time spans and one
pivotisation so that the resulting table contains one
column per each of the five months, indicating the
revenue generated by every customer during that
month. The third table with the individual customer
information contributes the target attribute: those
customers who left the company in one of the six end
months of the six time spans are positive examples for
churning, all others are negative examples. All three
preprocessing results can then be joined to form a final
table with 41 columns to be used for prediction, plus
the target and the key column.

4.4. Data mining

By following the rather complex preparation process

above, it was possible to transform the data from a
“transactional” format, containing information for
every single customer transaction (phonecall), to an
aggregated format from which the time-related
information was still available, but which provided
each customer as a single learning example.

 On this table a decision tree was trained to predict
the binary target. However, the first results were not
satisfactory. A possible reason was presumed to be the
fact that the five months that form a time span were not
related to each other from the view of the learning
algorithm. It was felt that changes in
telecommunication behaviour might be a good

indicator for churning, but that these changes could
obviously not be found by the decision tree. Therefore
additional columns were derived. As an indicator of
change, the differences in the calllengths between
consecutive months were tested as well as the slope of
a line connecting the first and fifth month's calllengths
on a graph (in this case, the sum of calllengths of all
call types). This latter indicator in particular helped to
increase the predictive accuracy to a satisfactory level.
Note that it was only possible to use this indicator
based on the complex data preprocessing phase
described above.

Another factor that increased the predictive
accuracy was the differentiation of customer groups
according to the overall revenue that the company
generated from them. More precisely, four different
decision trees were trained on four groups of customers
ranging over low, medium, high and very high
profitability, where profitability was indicated by the
sum of revenues in the five months considered. This
turned out to be a successful differentiation, in that the
average predictive accuracy of the four trees was 2%
higher than that of one global tree trained on all
customers.

4.5. The published case study

The reader is invited to compare the above
descriptions to the browsable model of the case study,
which is available in the MiningMart Case Base (URL
see section 2.2) under “Model Case Telecom”.

4.6. Lessons learned

An interesting aspect of the case study above is that
the application was implemented twice, once manually
in SQL and once using MiningMart. Thus it was
possible to quantify the amount of work saved by using
a high-level modelling software with a GUI, compared
to low-level programming. While programming the
application required 12 person days, modelling it
graphically could be achieved in 2 person days of
work. Especially the availability of rather advanced
preprocessing opertors for segmentation and
pivotisation eased the task greatly in the graphical
approach. Further advantages of graphical modelling
that were attested are simplified documentation,
especially for in-house education, simplified changing
and testing of parameters (for example to change the
prediction horizon, by no means a trivial change given
the complex preprocessing phase), and versioning of
the developing process model.

It was also confirmed in experiments that the
overhead caused by parsing and translating the
declarative model is negligible for real-world data sets
(in this application, two million records were
processed). Since MiningMart translates the process
model to SQL, this approach scales as far as the
underlying database scales. However, an interesting
counterpart to this situation is encountered in the
second case study, compare section 5.3.

This data mining application led the company that
commissioned it to execute a trial campaign on a
sample of the customers, to reduce churn. The results
justified the investment in the project. The application
was therefore integrated into other measures for CRM
in the front-back office automation of that company.

5. Case study 2: Targeting a marketing
campaign

This section describes a marketing application in the
Polish telecommunications institute NIT. A technical
report about it is available [6].

5.1. Overview

The task that was solved in the application was

customer profiling, for the purpose of adapting a
marketing strategy to introduce a new voice mail
product. Three sources of data were available: call
detail records, listing information about each phone
call each customer has made; contract data, listing
information about the type of contract each customer
has signed with the company; and data from a call
center that contacted a number of customers initially to
see if they would buy the new product.

From this data, after a long process involving
dozens of atomic data transformations, the input to the
mining algorithm was constructed. Here only the key
points of the process are described.

The biggest part of the data preparation was
consumed by processing the call detail records, rather
like in the first case study (section 4). This table
contains the start time, date, length in minutes, number
of tariff units, the number called and some other
information about each phonecall of each customer.
This large amount of detailed data had to be aggregated
to meaningful single statistics for each customer. This
was done in a similar fashion as in the other case study.
However, the first attempt to do so involved
segmenting the data such that each customer
corresponded to a single segment. Conceptually, in the
graphical model that MiningMart provides, this is a
neat way of setting up a short processing chain to solve

the given problem. Technically, however, this means to
create as many SQL views on the original table as there
are customers stored in it. This approach does not scale
so well to larger amounts of data. In particular, the
overhead caused by compiling the declarative process
model into SQL, which was found to be negligible in
the first case study (section 4.6), was very high in this
study under this approach, due to the high number of
views that had to be created and, in progress,
evaluated. Changing the conceptual setting such that
first some aggregation tasks were performed, and only
then the segmentation took place, was therefore
beneficial.

The customer profiles built in this way were used to
predict the customers’ response to the new product,
based on the call center data. This data provided the
target attribute for prediction: whether the customers
responded positively or negatively to the product offer.
Since only a small sample of customers could be
contacted by the call center, mining was used to
generalise from the sample to the whole group of
customers, in order to save marketing costs. Detailed
results are unfortunately kept confidential.

5.2. The published case study

The reader is invited to compare the above
descriptions to the browsable model of the case study,
which is available in the MiningMart Case Base (URL
see section 2.2) under “Call Center Case – NIT”.

5.3. Lessons learned

Two interesting aspects of this case study were

identified. The first one is described above, and
concerns the scalability problem encountered using the
naïve segmentation approach. It shows that although
many tools provide rather high-quality, high-level
support for data processing, still one needs experts who
know the underlying procedures well enough to
develop efficient models. This emphasises the need for
a public repository of successful KDD solutions, such
as the Case Base presented in section 2, to provide
templates or blueprints that help new developers of
KDD applications to avoid traps that others have
already discovered. As powerful KDD tools are
becoming increasingly available and easy to use,
knowledge about good KDD solutions must not stay
behind, but needs an efficient means of distribution
such as the public Case Base.

The second interesting aspect of this study is that it
was implemented also both in MiningMart and in
another system, namely SAS. Since MiningMart

translates its models to SQL, this allowed to compare
the data processing performance of the underlying
relational database (Oracle) with that of SAS. Sound
claims about the relative performances of these two
environments cannot be made because they were
installed on different hardware. However, data
processing was about two times faster in the SAS
system, which is not surprising given that relational
database management systems must perform overhead
tasks such as consistency and rollback management. On
the other hand, SAS required manual programming of
many tasks that could be realised easily in the GUI
using MiningMart. Further, having intermediate
processing results available in the database allows
simpler examination of such results by querying and
searching. These contrasting issues have to be
prioritised based on the intended application when
choosing a suitable data mining workbench.

6. Conclusions

This paper has presented two case studies in data

mining from the area of telecommunications. The focus
was on data preparation, where usually the bulk of
efforts in a mining project is spent. In both studies it
was possible to reduce these efforts greatly using a
powerful, graphical preprocessing environment.
However, the second study showed that such
environments do not render experts in the field
superfluous, but that detailed knowledge of underlying
processes is necessary to develop a successful
application.

This, in turn, motivates the introduction of a
declarative metamodel for modelling such successful
applications; using the metamodel, the (annotated)
application models can be published to be inspected in
detail by anyone. This serves to distribute knowledge
about successful case studies to less experienced users,
and helps them to avoid hidden traps. Of course, also
unsuccessful applications can be documented in the
Case Base.

The two studies also show that a choice of the most
suitable environment to conduct an application in is
dependent on several criteria, which may be prioritised
differently in different applications. Scalability of the
underlying processing software is important, but the
possibility to use graphical modelling in a suitable user
interface can help to save developing time (compared
to low-level programming), and developing time is
usually more expensive than computing time.

7. References

[1] S. AlSairafi, F. Emmanouil, M. Ghanem, N. Giannadakis,
Y. Guo, D. Kalaitzopoulos, M. Osmond, A. Rowe, J. Syed,
and P. Wendel, “The Design of Discovery Net: Towards
Open Grid Services for Knowledge Discovery”, High-
Performance Computing Applications, 17(3), pp. 297-315,
2003.

[2] A. Bernstein, S. Hill, and F. Provost, “Toward Intelligent
Assistance for a Data Mining Process: An Ontology-Based
Approach for Cost-Sensitive Classification”, IEEE
Transactions on Knowledge and Data Engineering, 17(4),
pp. 503-518, 2005.

[3] M. Cannataro and C. Comito, “A Data Mining Ontology
for Grid Programming”, 1st Workshop on Semantics in Peer-
to-Peer and Grid Computing at the 12th International World
Wide Web Conference, 2003.

[4] M. Cannataro, A. Congiusta, C. Mastroianni, A. Pugliese,
T. Domenico, and P. Trunfio, “Grid-Based Data Mining and
Knowledge Discovery”, in N. Zhong and J. Liu (eds.),
Intelligent Technologies for Information Analysis, Springer,
2004.

[5] P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T.
Reinartz, C. Shearer, and R. Wirth, “CRISP-DM 1.0“,
Technical Report, The CRISP-DM Consortium, 2000.

[6] C. Chudzian, J. Granat, and W. Tracyk, “Call Center
Case”, Deliverable D17.2b, IST Project MiningMart, IST-
11993, 2003.

[7] T. Euler, “Churn Prediction in Telecommunications Using
MiningMart”, Proceedings of the Workshop on Data Mining
and Business (DMBiz) at the 9th European Conference on
Principles and Practice in Knowledge Discovery in
Databases (PKDD), 2005.

[8] S. Haustein and J. Pleumann, “Easing Participation in the
Semantic Web”, Proceedings of the International Workshop
on the Semantic Web at WWW2002, 2002.

[9] R. Kerber, H. Beck, T. Anand, and B. Smart, “Active
Templates: Comprehensive Support for the Knowledge
Discovery Process”, in R. Agrawal, P. Stolorz, and G.
Piatetsky-Shapiro (eds.), Proceedings of the Fourth
International Conference on Knowledge Discovery and Data
Mining, 1998.

[10] K. Morik and M. Scholz, “The MiningMart Approach to
Knowledge Discovery in Databases”, in N. Zhong and J. Liu
(eds.), Intelligent Technologies for Information Analysis,
Springer, 2004.

[11] D. Pyle, Data Preparation for Data Mining, Morgan
Kaufmann Publishers, 1999.

[12] E.Rahm and P. Bernstein, “A Survey of Approaches to
Automatic Schema Matching”, The VLDB Journal, 10, pp.
334-350, 2001.

[13] S.Raspl , “PMML Version 3.0 – Overview and Status”,
in R. Grossman (ed.), Proceedings of the Workshop on Data
Mining Standards, Services and Platforms at the 10th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), 2004.

[14] M. Richeldi and A. Perrucci, “Churn Analysis Case
Study”, Deliverable D17.2, IST Project MiningMart, IST-
11993, 2002.

[15] R. Wirth, C. Shearer, U. Grimmer, T. Reinartz, J.
Schlösser, C. Breitner, R. Engels, and G. Lindner, “Towards
Process-Oriented Tool Support for KDD“, Proceedings of the
1st European Symposium on Principles of Data Mining and
Knowledge Discovery, 1997.

[16] N. Zhong, C. Liu, and S. Ohsuga, “Dynamically
Organizing KDD Processes”, International Journal of
Pattern Recognition and Artificial Intelligence, 15(3),
pp.451-473, 2001.

	1. Introduction
	1. Introduction
	2. The MiningMart framework
	2. The MiningMart framework
	2.1. Overview
	2.1. Overview
	3. Related work
	3. Related work
	4. Case study 1: Churn prediction
	4. Case study 1: Churn prediction
	6. Conclusions
	6. Conclusions
	7. References
	7. References

