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Abstract 
 

This paper presents a method to publish executable 
models of data mining case studies in a so-called Case 
Base, where they can be inspected in detail by anyone 
using a common web browser. The Case Base serves to 
inspire and educate other developers of data mining 
applications, in particular if they are not yet experts in 
the field. A case study can be directly downloaded and 
executed on new data if it is found to provide a useful 
template. The approach is validated and exemplified 
using two data mining case studies from an Italian and 
a Polish telecommunications company. These case 
studies are interesting in their own right in that they 
involve complex data preparation issues. The paper 
studies these issues and relates them to the knowledge 
transfer opportunities that the Case Base offers. 
 
 
1. Introduction 
 

Software tools supporting common data mining or 
knowledge discovery tasks have matured greatly in the 
past decade, offering now basic graphical and 
conceptual support for all phases of the knowledge 
discovery process. This eases the daily work of data 
mining experts and allows a growing number of non-
experts to try and start knowledge discovery projects. 
Though both experts and inexperienced users may find 
guidelines for their work in the CRISP-DM model [5], 
they are still faced with two essential problems, those 
of finding a suitable data representation and of 
choosing and tuning a learning algorithm to give 
acceptable results. Data preparation, as the subprocess 
that leads to the desired data representation, still 
consumes the largest part of the overall work, 
according to [11] and a 2003 KDnuggets poll, despite 
the existence of graphical, data flow oriented user 
interfaces for this task in modern software tools. The 
likely reason is that what is a good data representation 

depends on the mining task and data at hand, which 
poses a challenging problem, especially for 
inexperienced users. Such users would benefit greatly 
from sources of knowledge about how experts have 
solved past KDD (Knowledge Discovery in Databases) 
problems, especially from exemplary, executable KDD 
solutions. Even the experts might find inspirations in 
solutions from other business domains if these were 
available to them. The need for an environment to 
exchange and reuse KDD processes has long been 
recognised in the KDD community, see section 3.  

This paper uses a framework in which successful 
KDD processes can be modelled, executed, and 
published to different KDD users, to present two data 
mining case studies. A web platform (the Case Base) to 
publicly display the models in a structured way, 
together with descriptions about their business 
domains, goals, methods and results, is described. The 
models are downloadable from the web platform and 
can be imported into the system which executes them 
(on a relational database). 

The two case studies have been published in the 
Case Base, and are presented in detail in this paper. 
The descriptions here can be compared to the models 
in the Case Base. Issues that were identified as relevant 
by the authors of the two studies when evaluating the 
framework are discussed. In particular, the first study 
allowed a direct comparison of the effectiveness of 
graphical process modelling as compared to manual, 
low-level programming. Further, the second study 
indicated that some advantages of graphical modelling, 
as in the presented framework, can be disadvantageous 
when used by non-experts in a naïve way. The second 
study also allowed to compare the processing 
performance of a relational database with that of a SAS 
installation. 

The paper is organised as follows: section 2 
describes the MiningMart framework which provides 
the metamodel in which the models of the case studies 
are expressed. Section 3 gives related work. Sections 4 



and 5 present the two case studies, each with some 
discussion of relevant problems and lessons learned. 
Finally, section 6 concludes the paper. 

 
2. The MiningMart framework 
 
MiningMart is an environment for the development of 
KDD applications that makes use of a formal 
metamodel (called M4) to model KDD processes. The 
central ideas of MiningMart have been published in 
[10]. They are summarised in this section and extended 
by a more detailed discussion of the Case Base and its 
technology, since this concerns publishing the case 
studies which are presented in later sections of this 
paper.  
 
2.1. Overview 
 

In MiningMart, both the data and the 
processing/mining operations on the data are modelled 
declaratively using M4, and translated to operational 
SQL by a compiler module. A data model and a 
process model together describe an instance of a KDD 
process and are called a case. 

The metamodel M4 can be expressed in various 
ways, for example a relational database schema or an 
XML DTD. MiningMart currently uses a database to 
store the case models while working with them, but 
uses XML for import and export of the models. A 
database has the advantage that good support for the 
consistency of the case models is given, as the 
dependencies between model objects can be expressed 
in database constraints such as foreign key links. 

In order to facilitate the reuse of cases, a data model 
in M4 consists of two levels. On the higher level, data 
is modeled by concepts, which contain features, and  
relationships. Every step of the KDD process is 
described, in terms of input and output, on this level. 
The lower level uses tables and columns to which the 
higher-level elements are mapped. It can model both 
database schemas and flat file data. This two-level 
approach allows to reuse the higher level elements on 
new data by simply changing the mapping. For the 
mapping, each concept corresponds to one table or 
view, a feature can correspond to one or more columns, 
and relationships correspond to foreign key links 
between tables.  

The mapping between the levels is provided by the 
user, if the case is developed for the first time; in the 
MiningMart system, a graphical editor supports the 
creation and manipulation of higher level elements and 
their mapping to given data. However, if an existing 
case is reused, a simple schema-matching algorithm 

can be employed to find at least a partial mapping. The 
matcher algorithm is based on comparing the names 
and datatypes of the concepts and features (higher 
level) of the existing case, and the tables and columns 
(lower level) of the given data (compare [12]). Once 
the mapping is done, all user work on the KDD process 
continues using the higher data level. This provides a 
more abstract, task-oriented view of the KDD process 
than low-level programming would. 

To model the data processing operations, the 
metamodel allows to define characteristics of basic 
processing operations by specifying operators. The 
definition of an operator in the metamodel includes its 
name, its input and output parameters and their types 
(concept, feature, or simple values like strings or 
numbers), and constraints on the parameters that must 
be fulfilled. A typical constraint might specify, for 
example, that a certain input feature must have a 
certain conceptual datatype. The actual processing 
behaviour of the operator is not specified in the 
metamodel but in the system that interprets it. This is 
the compiler functionality of the system. The output of 
an operator can be used as the input to another 
operator, so that the data flow induces a directed 
acyclic graph of operators. 
To ensure that a wide range of KDD processes can be 
modeled, new operators can easily be added 
declaratively to M4 and will then automatically be 
available in the system; only the compiler has to be 
extended by a new module for each new operator (a 
Java API is available for this task).  
 
2.2. The case base 
 
This section describes the knowledge portal, called 
Case Base (http://mmart.cs.uni-dortmund.de), 
that serves to distribute successful KDD models (cases) 
publicly. The core of this portal is a software called 
InfoLayer [8] that translates structured information, 
according to a given ontology, to HTML files. It can 
also generate RDF files which can be read by software 
agents. In MiningMart, the ontology is the metamodel 
M4, and a collection of instances of this ontology 
forms the central repository of KDD cases. Only the 
higher level of the data model is published for 
confidentiality reasons. These higher-level parts are 
represented in UML, which is read by the InfoLayer 
software. The UML classes are linked to a database 
that contains the M4 schema. Whenever a web client 
requests information about an M4 object (via HTTP), 
the InfoLayer creates an HTML file for it, disregarding 
caching for this discussion (M4 objects are operators,  
concepts etc.). The HTML files are generated using 



templates that provide the layout for the information to 
be displayed. There can be zero or one layout template 
for each type of M4 object. If no template is given, the 
contents of an HTML file for an M4 object are 
automatically determined by the InfoLayer software 
from the UML model. A template can be used to 
provide only parts of the default contents, or to arrange 
them in a particular way, for example by using HTML 
tables. By default, the M4 object is displayed with its 
name, its properties, and the names of M4 objects it is 
directly linked to. The linked M4 objects appear as 
HTML links so that a web user can browse through a 
case model according to the structure of M4. For 
instance, an operator is displayed together with its 
name and its parameters, and a click on any parameter 
shows the realisation of that parameter, which is in turn 
an M4 object, for example a concept used as an input 
parameter for the operator. The following is a 
screenshot showing the case base as it displays an 
example case. 

 
When setting up a case with the MiningMart system, 

every object from the case itself to operators, 
parameters, concepts and features can be documented 
using free text. These comments serve users for their 
own orientation in complex models. They are stored in 
M4 and appear on the web pages when a case is 
published, so that other users browsing the case have a 
good orientation as to the purpose of each step in the 
KDD model and the use of their parameters. If such 
comments are missing, they can be added by the 
operators of the case base. 

However, users who search for a case which they 
might use as an inspiration for their own KDD 

problem, or even as a blueprint of a solution, need 
some additional, more general information about each 
case. The most important types of information are (i) 
the business domain, (ii) the business problem that was 
attempted to solve, (iii) the kind of data that was used, 
(iv) the mining task and other KDD methods that were 
employed, and (v) the results, both in terms of KDD 
and the original business problem. Hence, exactly this 
information is provided together with every case that is 
presented in the case base. To this end there is a 
template with five slots for free text, corresponding to 
the five types of information above, which is to be 
filled by every case publisher (a sixth slot with contact 
information enables further inquiries by interested 
users). The filled template is displayed in the case base 
as the first page of information about each case. From 
there users who are motivated by the descriptions can 
start to browse the case model, beginning with the 
chains of operators or the input data. In this way, the 
case model is related to the context in which it was set 

up, which allows to judge its 
suitability for a new business 
problem. Finally, each case model 
is linked to a file that can be 
imported into a MiningMart client. 

 
2.3. Case retrieval 

 
This section briefly discusses a 

few ideas for case retrieval, that is, 
how to find a MiningMart case 
that can serve as a template for an 
own solution from the case base. A 
suitable starting point is the 
additional documentation 
published in the case base for 
every case. Assuming a low 
number of published cases, this 
information can be searched 
manually, but as the case base 

grows, automatic search methods should be added to 
allow at least keyword search. Another useful way of 
approaching the case base can be offered by sorting the 
cases according to various topics extracted from the 
additional case documentation. The five slots of the 
documentation template provide five useful topics for 
indexing the case base. Further topics (such as type of 
business/institution where the application was realised) 
can be added by extracting this information from the 
free text descriptions in the slot.  

The business-related information will often not be 
enough to determine whether a published solution is 
suitable for adaptation to own data sets. A second 



method of approaching the case base is by looking for 
data models in it, called target models hereafter, that 
are similar to the own (local) data sets. The automatic 
schema matcher included in MiningMart can be used 
for this. It searches among all data models in the case 
base for models similar to the local data. 

This online method has an important advantage. All 
cases use a particular data model as input, then 
preparation operations are applied to the data. Each 
preparation operation produces intermediate data 
models. These intermediate models can be included 
into the search for target models, so that the most 
suitable entry point into a case can be found. Since 
preparation is actually a method to adapt data 
representations, it would make no sense to restrict the 
search for target data models to the initial data that the 
original KDD process started out on. Schema matching 
is a useful tool in this setting as the number of target 
data models is high, making manual search for the best 
entry point a cumbersome task. 

A unique option that the case base offers is to search 
it for common subtasks that have been solved using 
identical processing structures. A simple subgraph 
detection algorithm can be used for this (since the 
nodes of the graphs are typed, efficient algorithms 
exist). More cases are needed before this will lead to 
interesting results, however. 

 

3. Related work 
 
MiningMart was mainly described in [10]; see also 

related work cited there. The technology of the case 
base was updated recently; this and case retrieval issues 
are a contribution of this paper. The idea of collecting 
and publishing KDD solutions was  mentioned (though 
not realised) early in [15] and [9]. The importance of 
the reusability of KDD models is also stressed in [16] 
and [2].  

To document and store KDD processes requires a 
modeling language, or metamodel. A well-known but 
informal standard to model the KDD process is Crisp-
Dm [5]. The new PMML version 3.0, a standard to 
describe machine-learned models in XML [13], 
includes facilities to model the data set and data 
transformations executed on it before mining. 
However, it is not process-oriented, thus it does not 
allow to model a data flow through a complex KDD 
process, and the data model is restricted to one table. 
Other standards around data mining are Java Data 
Mining and SQL/MM Data Mining. Though extensible, 
they currently provide interfaces to modeling 
algorithms rather than to complete KDD processes. 
Similarly, in [3] a data mining ontology is presented to 

enable grid-based services, but is currently restricted to 
the modeling phase of the KDD process. 

Recently, some new research attempts to employ 
grid infrastructures for knowledge discovery; a good 
overview is given in [4]. To enable the execution of 
KDD processes on a grid, these processes have to be 
modeled independently from the machines that execute 
them, and heterogenous data schemas and sources have 
to be modeled. In [1], a Discovery Process Markup 
Language (DPML) is used, based on XML, to model 
the complete KDD process. Unfortunately, from the 
available publications it is not clear how 
comprehensive and detailed DPML is.  

 
4. Case study 1: Churn prediction 

 
This section describes a data mining application that 

was developed in an Italian telecommunications 
institute. An overview of it was given in [7] and [14]; 
the present paper adds important details as regards the 
data preparation and the lessons learned.  

A major concern in customer relationship 
management in telecommunications companies is the 
ease with which customers can move to a competitor, a 
process called “churning”. Churning is a costly process 
for the company, as it is much cheaper to retain a 
customer than to acquire a new one [14]. Churn 
prediction is the task of predicting which types of 
customers are likely to churn, and more challenging, 
when they will churn. These business problems can be 
translated to data mining or KDD problems in various 
ways. One successful translation to a classification task 
that predicts a class of customers likely to churn within 
a given month in the near future is described in this 
paper. The task was solved using decision trees which 
achieved a predictive accuracy of 82%. This good 
result was only possible due to the introduction of 
relevant derived features for prediction which were not 
available in the original data, and due to a re-
representation of the data so that temporal aspects 
could be included. Thus data preprocessing was a key 
success factor in this application. 

One interesting aspect of this case study is that it 
was implemented twice, based on manual programming 
on the one hand, and on graphical modelling on the 
other. This allowed to compare the amounts of work 
spent by highly paid KDD experts on the application in 
both scenarios (see section 4.6). 

 
4.1. Overview 
 

As said above, the objectives of the application to 
be presented here were to find out which types of 



customers of a telecommunications company are likely 
to churn, and when. To this end, the available data 
tables were transformed so that a classification 
algorithm could be applied. In the resulting data set, 
each row (that is, each example for classification) 
corresponded to one customer of the company, and 
contained many features describing their 
telecommunication behaviour for each of five 
consecutive months. Whether or not the customer left 
the company in the sixth month determined the 
classification label or target. Thus a binary 
classification problem was formed that could directly 
be addressed using several classification algorithms. 
Once a learned classifier is available it can be applied 
every month on data from the current and past four 
months, to predict churn for the following month. A 
longer prediction horizon (to predict churn not for the 
following month but, say, the second or third month) 
can be realised easily by changing a few parameters in 
the graphical model of the application. 

 
4.2. The data 

 
The available data sets were: (i) call detail records, 

recording for each phone call a customer made the time 
and date, called number, tariff, type of call etc.; (ii) 
billing data from the accounts department, containing 
revenues generated by each customer in a given month; 
(iii) and customer services data from the customer 
registry, containing the gender and address of a 
customer as well as the dates of entering and leaving 
their contract with the company. Those customers still 
with the company serve as negative examples for 
churn, while for those who have left the company, the 
data from the last five months they stayed with the 
company is used to form positive examples. 

 
4.3. Data preparation 
 

The first table to be prepared is the call detail 
records table. The transformation of the original data 
starts by extracting an Id for each month from the date 
of each call, because monthwise statistics are needed. 
This month Id has to be the same as the one used in the 
billing data. A new column with the month Id is added 
to the call detail records. Additionally, the type of 
phonecall (internet provider, local, distance, abroad, 
mobile phone etc.) is derived from the number called, 
with the aim of creating a telecommunication profile 
for each customer. 

 Next, the time span to be used for mining (the five 
consecutive months) must be selected from the 
complete table. Those customers who happened to have 

left the company at the end of the time span are 
positive examples for churning. However, selecting 
only one particular time span does not deliver a 
sufficient number of positive examples. Also it might 
introduce a learning bias. For these reasons, six 
different spans were selected. Notice that the six 
resulting data sets are likely to contain overlapping 
customer sets, since many customers (who have not left 
the company) participate in all time spans. 

 Now the six subsets must be mapped to the same 
time index (e.g. 1 to 5 for the five months), so that the 
six time spans can be matched. After creating the 
common time index, the six data sets are further 
processed in exactly the same way. Rather than setting 
up the same transformation process six times, one 
might set it up once and use it on six different inputs. 
However, the overall mining process should be 
executable automatically every month to predict new 
groups of churners. Not every KDD system supports 
automatic execution of a modelled process on different 
input tables. In this application, a different approach 
was taken that simplifies the automatic execution by 
exploiting a Segmentation operator available in 
MiningMart. One additional, nominal column is added 
to each of the six data sets that contains only one value 
which is different for each data set. Then the data sets 
are unified (using a union operation like in SQL). Now 
the segmentation operator takes the additional column 
as the segmentation index, and ensures that all 
following operators are applied to each segment in 
parallel. This means that the process can be described 
hereafter as if it was applied to only one input table, 
though there are six segments to be processed. This 
input table now contains one row per phonecall made, 
and four columns: the customer Id; the month Id; the 
calllength; and the type of call. Using aggregation as in 
SQL (forming a data cube), the sum of calllengths 
spent by every customer in each month for each type of 
phonecall can be computed. The resulting table 
contains the data that is needed for mining; however, 
the format is not suitable yet: it is not a table with a 
single row for every customer, but with 35 rows per 
customer: the number of months, five, times the 
number of different call types, seven. What is needed 
now are 35 new attributes: one per month and per call 
type. Each new attribute will contain the calllengths 
spent by every customer in that month making that type 
of phonecall. 

These attributes can be created using 35 derivation 
operations. However, exploiting the special 
MiningMart operators Segmentation and Pivotisation, 
the process becomes much simpler. Segmentation is 
applied a second time, this time using the call types as 



the segmenting attribute. Now again the further process 
can be described and set up as if there was only one 
input table, although in reality there are 42 tables with 
the same data format: seven, the number of call types, 
times six, the number of time spans. 

At this point the operator pivotisation can be used to 
gain the final representation of this part of the data in 
one single step. Conceptually, pivotisation creates a 
table with six columns, one per month plus one 
customer Id, so that each row corresponds to exactly 
one customer. Behind this conceptual view are 42 data 
tables, six time spans for each of the seven call types. 
In the next step, the union of all data tables 
corresponding to the same call type can be formed, 
leaving seven tables. Finally, the seven tables (each 
with five non-key attributes) are joined, resulting in one 
real data table with the customer Id column and 35 
telecommunication profile columns, where each row 
contains all of the information for exactly one 
customer. 

All of the above concerned only one of the three 
original data tables, the call detail records table. The 
second table contains the revenues per month and per 
customer. This table is transformed in a similar way, 
using selection of the six time spans and one 
pivotisation so that the resulting table contains one 
column per each of the five months, indicating the 
revenue generated by every customer during that 
month. The third table with the individual customer 
information contributes the target attribute: those 
customers who left the company in one of the six end 
months of the six time spans are positive examples for 
churning, all others are negative examples. All three 
preprocessing results can then be joined to form a final 
table with 41 columns to be used for prediction, plus 
the target and the key column. 
 
4.4. Data mining 

 
By following the rather complex preparation process 

above, it was possible to transform the data from a 
“transactional” format, containing information for 
every single customer transaction (phonecall), to an 
aggregated format from which the time-related 
information was still available, but which provided 
each customer as a single learning example. 

 On this table a decision tree was trained to predict 
the binary target. However, the first results were not 
satisfactory. A possible reason was presumed to be the 
fact that the five months that form a time span were not 
related to each other from the view of the learning 
algorithm. It was felt that changes in 
telecommunication behaviour might be a good 

indicator for churning, but that these changes could 
obviously not be found by the decision tree. Therefore 
additional columns were derived. As an indicator of 
change, the differences in the calllengths between 
consecutive months were tested as well as the slope of 
a line connecting the first and fifth month's calllengths 
on a graph (in this case, the sum of calllengths of all 
call types). This latter indicator in particular helped to 
increase the predictive accuracy to a satisfactory level. 
Note that it was only possible to use this indicator 
based on the complex data preprocessing phase 
described above. 

Another factor that increased the predictive 
accuracy was the differentiation of customer groups 
according to the overall revenue that the company 
generated from them. More precisely, four different 
decision trees were trained on four groups of customers 
ranging over low, medium, high and very high 
profitability, where profitability was indicated by the 
sum of revenues in the five months considered. This 
turned out to be a successful differentiation, in that the 
average predictive accuracy of the four trees was 2% 
higher than that of one global tree trained on all 
customers. 
 
4.5. The published case study 
 

The reader is invited to compare the above 
descriptions to the browsable model of the case study, 
which is available in the MiningMart Case Base (URL 
see section 2.2) under “Model Case Telecom”.  
 
4.6. Lessons learned 
 

An interesting aspect of the case study above is that 
the application was implemented twice, once manually 
in SQL and once using MiningMart. Thus it was 
possible to quantify the amount of work saved by using 
a high-level modelling software with a GUI, compared 
to low-level programming. While programming the 
application required 12 person days, modelling it 
graphically could be achieved in 2 person days of 
work. Especially the availability of rather advanced 
preprocessing opertors for segmentation and 
pivotisation eased the task greatly in the graphical 
approach. Further advantages of graphical modelling 
that were attested are simplified documentation, 
especially for in-house education, simplified changing 
and testing of parameters (for example to change the 
prediction horizon, by no means a trivial change given 
the complex preprocessing phase), and versioning of 
the developing process model.  



It was also confirmed in experiments that the 
overhead caused by parsing and translating the 
declarative model is negligible for real-world data sets 
(in this application, two million records were 
processed). Since MiningMart translates the process 
model to SQL, this approach scales as far as the 
underlying database scales. However, an interesting 
counterpart to this situation is encountered in the 
second case study, compare section 5.3. 

This data mining application led the company that 
commissioned it to execute a trial campaign on a 
sample of the customers, to reduce churn. The results 
justified the investment in the project. The application 
was therefore integrated into other measures for CRM 
in the front-back office automation of that company. 

 
5. Case study 2: Targeting a marketing 
campaign 
 

This section describes a marketing application in the 
Polish telecommunications institute NIT. A technical 
report about it is available [6].  
 
5.1. Overview 

 
The task that was solved in the application was 

customer profiling, for the purpose of adapting a 
marketing strategy to introduce a new voice mail 
product. Three sources of data were available: call 
detail records, listing information about each phone 
call each customer has made; contract data, listing 
information about the type of contract each customer 
has signed with the company; and data from a call 
center that contacted a number of customers initially to 
see if they would buy the new product. 

From this data, after a long process involving 
dozens of atomic data transformations, the input to the 
mining algorithm was constructed. Here only the key 
points of the process are described. 

The biggest part of the data preparation was 
consumed by processing the call detail records, rather 
like in the first case study (section 4). This table 
contains the start time, date, length in minutes, number 
of tariff units, the number called and some other 
information about each phonecall of each customer. 
This large amount of detailed data had to be aggregated 
to meaningful single statistics for each customer. This 
was done in a similar fashion as in the other case study. 
However, the first attempt to do so involved 
segmenting the data such that each customer 
corresponded to a single segment. Conceptually, in the 
graphical model that MiningMart provides, this is a 
neat way of setting up a short processing chain to solve 

the given problem. Technically, however, this means to 
create as many SQL views on the original table as there 
are customers stored in it. This approach does not scale 
so well to larger amounts of data. In particular, the 
overhead caused by compiling the declarative process 
model into SQL, which was found to be negligible in 
the first case study (section 4.6), was very high in this 
study under this approach, due to the high number of 
views that had to be created and, in progress, 
evaluated. Changing the conceptual setting such that 
first some aggregation tasks were performed, and only 
then the segmentation took place, was therefore 
beneficial. 

The customer profiles built in this way were used to 
predict the customers’ response to the new product, 
based on the call center data. This data provided the 
target attribute for prediction: whether the customers 
responded positively or negatively to the product offer. 
Since only a small sample of customers could be 
contacted by the call center, mining was used to 
generalise from the sample to the whole group of 
customers, in order to save marketing costs. Detailed 
results are unfortunately kept confidential. 
 
5.2. The published case study 
 

The reader is invited to compare the above 
descriptions to the browsable model of the case study, 
which is available in the MiningMart Case Base (URL 
see section 2.2) under “Call Center Case – NIT”. 

 
5.3. Lessons learned 

 
Two interesting aspects of this case study were 

identified. The first one is described above, and 
concerns the scalability problem encountered using the 
naïve segmentation approach. It shows that although 
many tools provide rather high-quality, high-level 
support for data processing, still one needs experts who 
know the underlying procedures well enough to 
develop efficient models. This emphasises the need for 
a public repository of successful KDD solutions, such 
as the Case Base presented in section 2, to provide 
templates or blueprints that help new developers of 
KDD applications to avoid traps that others have 
already discovered. As powerful KDD tools are 
becoming increasingly available and easy to use, 
knowledge about good KDD solutions must not stay 
behind, but needs an efficient means of distribution 
such as the public Case Base. 

The second interesting aspect of this study is that it 
was implemented also both in MiningMart and in 
another system, namely SAS. Since MiningMart 



translates its models to SQL, this allowed to compare 
the data processing performance of the underlying 
relational database (Oracle) with that of SAS. Sound 
claims about the relative performances of these two 
environments cannot be made because they were 
installed on different hardware. However, data 
processing was about two times faster in the SAS 
system, which is not surprising given that relational 
database management systems must perform overhead 
tasks such as consistency and rollback management. On 
the other hand, SAS required manual programming of 
many tasks that could be realised easily in the GUI 
using MiningMart. Further, having intermediate 
processing results available in the database allows 
simpler examination of such results by querying and 
searching. These contrasting issues have to be 
prioritised based on the intended application when 
choosing a suitable data mining workbench. 

 
6. Conclusions 

 
This paper has presented two case studies in data 

mining from the area of telecommunications. The focus 
was on data preparation, where usually the bulk of 
efforts in a mining project is spent. In both studies it 
was possible to reduce these efforts greatly using a 
powerful, graphical preprocessing environment. 
However, the second study showed that such 
environments do not render experts in the field 
superfluous, but that detailed knowledge of underlying 
processes is necessary to develop a successful 
application. 

This, in turn, motivates the introduction of a 
declarative metamodel for modelling such successful 
applications; using the metamodel, the (annotated) 
application models can be published to be inspected in 
detail by anyone. This serves to distribute knowledge 
about successful case studies to less experienced users, 
and helps them to avoid hidden traps. Of course, also 
unsuccessful applications can be documented in the 
Case Base. 

The two studies also show that a choice of the most 
suitable environment to conduct an application in is 
dependent on several criteria, which may be prioritised 
differently in different applications. Scalability of the 
underlying processing software is important, but the 
possibility to use graphical modelling in a suitable user 
interface can help to save developing time (compared 
to low-level programming), and developing time is 
usually more expensive than computing time. 
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