Enabling End-User Datawarehouse Mining
Contract No. IST-1999-11993
No. TR 12-02

Operator Specifications

Timm Euler

Dortmund, April 9, 2003

Contents
1 What this document is about

2 Compiler constraints on metadata
2.1 Naming conventions
2.1.1 Operator namesot
2.1.2 BaseAttributenameso
2.2 Relations

3 Operators and their parameters
3.1 Generalissueso
3.2 Concept Operatorso
3.2.1 MultiRelationalFeatureConstruction
3.22 JoinByKey
3.23 UnionByKey
3.2.4 SpecifiedStatistics oL
3.25 UnSegment
3.2.6 RowSelectionByQuery
3.2.7 RowSelectionByRandomSampling
3.2.8 DeleteRecordsWithMissingValues
3.2.9 SegmentationStratified
3.2.10 SegmentationByPartitioning
3.2.11 SegmentationWithKMean
3.212 Windowing oo
3.2.13 SimpleMovingFunction
3.2.14 WeightedMovingFunction
3.2.15 ExponentialMovingFunction
3.2.16 SignalToSymbolProcessing
3.217 Apriori
3.3 Feature selection operators
3.3.1 FeatureSelectionByAttributes
3.3.2 StatisticalFeatureSelection
3.3.3 GeneticFeatureSelection
3.3.4 SGFeatureSelection
3.3.5 FeatureSelectionWithSVM
3.3.6 SimpleForwardFeatureSelectionGivenNoOfAttributes . . .
3.3.7 SimpleBackwardFeatureSelectionGivenNoOfAttributes . .
3.3.8 FloatForwardFeatureSelectionGivenNoOfAtt
3.3.9 FloatBackwardFeatureSelectionGivenNoOfAtt
3.3.10 UserDefinedFeatureSelection
3.4 TFeature construction operators
3.4.1 AssignAverageValue
3.4.2 AssignModalValue
3.4.3 AssignMedianValue
3.44 AssignDefaultValue.,

3.5

3.4.5 AssignStochasticValue L. 20
3.4.6 MissingValuesWithRegressionSVM 20
3.4.7 LinearScaling 21
34.8 LogScaling 21
3.4.9 SupportVectorMachineForRegression 22
3.4.10 SupportVectorMachineForClassification 23
3.4.11 MissingValueWithDecisionRules 24
3.4.12 MissingValueWithDecisionTree 24
3.4.13 PredictionWithDecisionRules 24
3.4.14 PredictionWithDecisionTree 25
3.4.15 AssignPredictedValueCategorial 25
3.4.16 GenericFeatureConstruction 25
3.4.17 TimelntervalManualDiscretization 26
3.4.18 NumericIntervalManualDiscretization 27
3.4.19 EquidistantDiscretizationGivenWidth 27
3.4.20 EquidistantDiscretizationGivenNoOfIntervals 27
3.4.21 EquifrequentDiscretizationGivenCardinality 28
3.4.22 EquifrequentDiscretizationGivenNoOfIntervals 28
3.4.23 UserDefinedDiscretization 28
3.4.24 ImplicitErrorBasedDiscretization 29
3.4.25 ErrorBasedDiscretizationGivenMinCardinality 29
3.4.26 ErrorBasedDiscretizationGivenNoOfInt 30
3.4.27 GroupingGivenMinCardinality 30
3.4.28 GroupingGivenNoOfGroups 31
3.4.29 UserDefinedGrouping 31
3.4.30 UserDefinedGroupingWithDefaultValue 31
3.4.31 ImplicitErrorBasedGrouping 32
3.4.32 ErrorBasedGroupingGivenMinCardinality 32
3.4.33 ErrorBasedGroupingGivenNoOfGroups 33
Other Operators it 33
3.5.1 ComputeSVMError 33
3.5.2 SubgroupMining oo 34

1 What this document is about

This document explains two things in detail: Firstly, section 2 describes some
details about how the MiningMart compiler expects the metadata for a case
description to be set up. Secondly, section 3 describes the current operators and
their parameters.

2 Compiler constraints on metadata

This section explains in detail some issues in describing a case in such a way
that it is operational for the MiningMart compiler.

2.1 Naming conventions
2.1.1 Operator names

The name of an operator (entry op_name in M4 table Operator_T) corresponds
exactly (respecting case!) to the Java class that implements this operator in the
compiler. This is only important to know if you want to implement additional
operators. What is more generally important is that the names of the parameters
of an operator are also fixed, because the compiler recognizes the type of a
parameter by its name. This is described in more detail in section 3.1.

2.1.2 BaseAttribute names

Some operators have as their output on the conceptual level a Concept rather
than a BaseAttribute (see section 3.1). This output Concept will generally be
similar to the input Concept, in the sense that it copies some of the input
BaseAttributes without changing them. To find out which BaseAttribute in the
output Concept corresponds to which BaseAttribute in the input concept, their
names are used. They must match exactly, ignoring case. This also means that it
is necessary to give the output BaseAttribute in a feature construction operator
(see section 3.1) a name which is different from all BaseAttribute names in the
input Concept, so that no names are mixed up. If the output of the operator
is a Concept, and a BaseAttribute in this output concept has no corresponding
BaseAttribute in the input concept, it will be ignored by the compiler, because
it may be needed for later steps. Ignoring means that no Column is created for
it.

A similar mechanism is applied when Relations are used (see following sec-
tion 2.2).

2.2 Relations

Relations are defined by the user between the initial Concepts of a case. In a case,
the Concepts may then be modified. If later in the chain an operator is applied
that makes use of relations, it must be able to find the Columns that realize the

keys. To this end, again the names of the BaseAttributes are used. Currently
only MultiRelationalFeatureConstruction (MRFC; see section 3.2.1) uses
relations. This means that in the Concepts used by MRFC, the BaseAttributes
that correspond to the key BaseAttributes in the initial Concepts must have the
same name (ignoring case).

Example: Suppose there are initial Concepts Customer and Product linked by
a relation buys which is realized by a foreign link from the Customer to the
Product table. The foreign key Column in the Customer table is named fk_prod
and its BaseAttribute is named CustomerBuys. The Concept Customer may
be the input to a chain which results in a new Concept PrivateCustomer. This
new Concept must still have a BaseAttribute named CustomerBuys, which must
not be the result of a feature construction, but must be copied from Concept
to Concept in the chain'. Then the compiler can find the Column fk_prod by
comparing the BaseAttributes of the current input concept PrivateCustomer
and of the Concept which is linked to the relation buys (this relation is an input
to the MRFC operator). The Column can be used to join the two Concepts
PrivateCustomer and Product, although the first is a subconcept of Customer.

3 Operators and their parameters

This section explains the current MiningMart operators and the exact way of
setting their parameters.

3.1 General issues

There are two kinds of operators, distinguished by their output on the con-
ceptual level: those that have an output Concept (Concept Operators, listed in
section 3.2), and those that have an output BaseAttribute (Feature Construction
Operators, listed in section 3.4).

All operators have parameters, such as input Concept or output BaseAt-
tribute. The name of such a parameter is fixed, for instance ThelnputConcept is
used for the input Concept for all operators. This means that the entry for this
parameter in par name in the M4 table Parameter_T must be ThelnputCon-
cept, respecting case. The parameter specification for each operator is stored
in the M4 table OP_PARAMS_T (see MiningMart technical report TR18.1 and
TR18.2).

Some operators have an unspecified number of parameters of the same
type. For example, the learning operators take as input a number of BaseAt-
tributes of the same concept and use them to construct their training examples.
All these BaseAttributes use the same prefix for their parameter name (here
ThePredictingAttributes) in Parameter_T. Since all parameters for one step are
expected to have different names (for HCI use), number suffixes are added to
these prefixes (ThePredictingAttributes, ThePredictingAttributes2, etc). The

ICopying is done by simply having a BaseAttribute of this name in every output Concept
in the chain.

compiler uses ORDER BY par nr when reading them. Such parameters, which
may contain a list, are marked with the word List in the operator descriptions
in sections 3.2 and 3.4.

Special attention is needed if an operator is applied in a loop. All feature con-
struction operators are loopable; further, the concept operator RowSelectionBy-
Query is loopable. Feature construction operators are applied to one target at-
tribute of an input concept and produce an output attribute. Looping means
that the operator is applied to several target attributes (one after the other)
and produces the respective number of output attributes, but the input concept
is the same in all loops.

To decide whether an operator must be applied in a loop, the compiler checks
the field st_loopnr in the M4 table Step_T, which gives the number of loops to
be executed. If 0 or NULL is entered here, the operator is still executed once!
If a number z (greater than 0) is entered here, the compiler looks for z sets of
parameters for this operator in Parameter_ T, excluding the parameters that are
the same for all loops, which need to be entered only once. Thus, the parameter
ThelnputConcept must be declared only once, with the field par_stloopnr in
the table Parameter T set to 0, while the other parameters are given for every
loop, with the respective loop number set in the field par_stloopnr, starting
with 1. If no looping is intended, this field must be left NULL or 0. Note: Again,
all parameters that are given for more than one loop must have a number suffix
to their name, like the List parameters, to ensure that parameter names are uni
que within one step.

For the concept operator RowSelectionByQuery, looping means that several
query conditions are formulated using the parameters of this operator (one set
of parameters for each condition), and that they are connected with AND. See
the description of this operator.

In the following sections, all current operators are listed with their exact
name (see section 2.1.1), a short description and the names of their parameters.
In general, all input BaseAttributes belong to the input Concept, and all output
BaseAttributes belong to the output Concept.

3.2 Concept operators

All Concept operators take an input Concept and create at least one new
ColumnSet which they attach to the output Concept. The output Concept must
have all its Features attached to it before the operator is compiled. All Concept
operators have the two parameters ThelnputConcept and TheOutputConcept,
which are marked as inherited in the following parameter descriptions.

3.2.1 MultiRelationalFeatureConstruction

Takes a list of concepts which are linked by relations, and selects specified
Features from them which are collected in the output Concept, via a join on
the concepts of the chain. To be more precise: Recall (section 2.2) that Rela-
tions are only defined by the user between initial Concepts of a Case. Suppose

there is a chain of initial Concepts C4,...,C, such that between all C; and
Cit1,1 <i < mn, C; is the FromConcept of the i-th Relation and C;41 is its To-
Concept. These Concepts may be modified in the Case being modelled, to result
in new Concepts Cj, ..., C},, where some C] may be equal to C;. However, as ex-
plained in section 2.2, the BaseAttributes that correspond to the Relation keys
are still present in the new Concepts C}. By using their names, this operator
can find the key Columns and join the new Concepts Cj.

The parameter table below refers to this explanation. Note that all input
Concepts are the new Concepts C}, but all input Relations link the original
Concepts Cj.

ParameterName ObjectType Type | Remarks
ThelnputConcept CON IN | Concept C] (inherited)
TheConcepts CON List IN | Concepts C3,...,C),
TheRelations REL List IN they link C1,...,C,
TheChainedFeatures | BA or MCF List | IN | from Cj,...,C),
TheOutputConcept CON OUT | inherited

3.2.2 JoinByKey

Takes a list of concepts, plus attributes indicating their primary keys, and joins
the concepts. In TheOutputConcept, only one of the keys must be present. Each
BaseAttribute specified in TheKeys must be a primary key of one of TheCon-
cepts; thus, the number of entries in TheConcepts and TheKeys must be equal.

If several of the input concepts contain a BaseAttribute (or a MultiColumn-
Feature) with the same name, a special mapping mechanism is needed to re-
late them to different features in TheOutputConcept. For this, the parameters
MapInput and MapQutput exist. Use MapInput to specify any feature in one
of TheConcepts, and use MapQutput to specify the corresponding feature in
TheOutputConcept. To make sure that for each MapInput the right MapOutput
is found by this operator, it uses the looping mechanism. Although the param-
eter is not looped, the loop numbers in the parameter table in M4 are used to
ensure the correspondence between MapInput and MapQOutput. However, these
two parameters only need to be specified for every pair of equally-named fea-
tures in TheConcepts. So there are not necessarily as many “loops” as there are
features in TheOutputConcept.

The field par_stloopnr in the M4 parameter table must be set to the number
of pairs of MapInput/ MapQOutput parameters (may be 0). Each of these pairs
gets a different loop number while all the other parameters get loop number 0.

ParameterName ObjectType | Type | Remarks
TheConcepts CON List IN | no ThelnputConcept!
TheKeys BA List IN

MaplInput BA or MCF IN “looped”!
MapQOutput BA or MCF | OUT | “looped”!
TheOutputConcept CON OUT | inherited

3.2.3 UnionByKey

Takes a list of concepts, plus attributes indicating their primary keys, and unifies
the concepts. In contrast to the operator JoinByKey (section 3.2.2), the output
columnset is a union of the input columnsets rather than a join. For each value
occuring in one of the key attributes of an input columnset a tuple in the output
columnset is created. If a value is not present in all key attributes of the input
columnsets, the corresponding (non-key) attributes of the output columnset are
filled by NULL values.

In TheOutputConcept, only one of the keys must be present. Each Base-
Attribute specified in TheKeys must be a primary key of one of TheConcepts;
thus, the number of entries in TheConcepts and TheKeys must be equal.

If several of the input concepts contain a BaseAttribute (or a MultiColumn-
Feature) with the same name, a special mapping mechanism is needed to re-
late them to different features in TheOQutputConcept. For this, the parameters
MapInput and MapOutput exist. Use MapInput to specify any feature in one
of TheConcepts, and use MapQutput to specify the corresponding feature in
TheOutputConcept. To make sure that for each MapInput the right MapQOutput
is found by this operator, it uses the looping mechanism. Although the param-
eter is not looped, the loop numbers in the parameter table in M4 are used to
ensure the correspondence between MapInput and MapQOutput. However, these
two parameters only need to be specified for every pair of equally-named fea-
tures in TheConcepts. So there are not necessarily as many “loops” as there are
features in TheOQutputConcept.

The field par_stloopnr in the M4 parameter table must be set to the number
of pairs of MapInput/ MapOutput parameters (may be 0). Each of these pairs
gets a different loop number while all the other parameters get loop number 0.

ParameterName ObjectType | Type | Remarks
TheConcepts CON List IN | no ThelnputConcept!
TheKeys BA List IN

MapInput BA or MCF | IN “looped”!
MapOutput BA or MCF | OUT | “looped”!
TheOutputConcept CON OUT | inherited

3.2.4 SpecifiedStatistics

An operator which computes certain statistical values for the ThelnputConcept.
The computed values appear in a ColumnSet which contains exactly one row
with the statistical values, and which belongs to TheOutputConcept.

The sum of all values in an attribute can be computed by specifying a
BaseAttribute with the parameter AttributesComputeSum. There can be more
such attributes; the sum is computed for each. The QutputConcept must contain
a BaseAttribute for each sum which is computed; their names must be those
of the input attributes, followed by the suffix “_SUM”.

The total number of entries in an attribute can be computed by specifying
a BaseAttribute with the parameter AttributesComputeCount. There can be

more such attributes; the number of entries is computed for each. TheOutput-
Concept must contain a BaseAttribute for each count which is computed; their
names must be those of the input attributes, followed by the suffix “_COUNT”.

The number of unique values in an attribute can be computed by specifying
a BaseAttribute with the parameter AttributesComputeUnique. There can be
more such attributes; the number of unique values is computed for each. The-
OutputConcept must contain a BaseAttribute for each number of unique values
which is computed; their names must be those of the input attributes, followed
by the suffix “_UNIQUE”.

Further, for a BaseAttribute specified with AttributesComputeDistrib, the
distribution of its values is computed. For example, if a BaseAttribute contains
the values 2, 4 and 6, three output BaseAttributes will contain the number
of entries in the input where the value was 2, 4 and 6, respectively. For each
BaseAttribute whose value distribution is to be computed, the possible values
must be given with the parameter DistribValues. One entry in this parameter
is a comma-separated string containing the different values; in the example, the
string would be “2,4,6”. Thus, the number of entries in AttributesComputeDis-
trib and Distrib Values must be equal. TheOutputConcept must contain the corre-
sponding number of BaseAttributes (three in the example); their names must
be those of the input attributes, followed by the suffix “_<value>”. In the ex-
ample, TheOutputConcept would contain the BaseAttributes “inputBaName 2’

) s

, “inputBaName 4” and “inputBaName 6”.

ParameterName ObjectType | Type | Remarks
ThelnputConcept CON IN | inherited
AttributesComputeSum BA List IN | numeric
AttributesComputeCount BA List IN (see
AttributesComputeUnique BA List IN
AttributesComputeDistrib BA List IN text)
DistribValues V List IN
TheOutputConcept CON OUT | inherited

3.2.5 UnSegment

This operator is the inverse to any segmentation operator (see 3.2.9, 3.2.10,
3.2.11). While a segmentation operator segments its input concept’s ColumnSet
into several ColumnSets, UnSegment joins several ColumnSets into one. This
operator makes sense only if a segmentation operator was applied previously
in the chain, because it exactly reverses the function of that operator. To do
so, the parameter UnsegmentAttribute specifies indirectly which of the three
segmentation operators is reversed:

If a SegmentationStratified operator is reversed (section 3.2.9), this parame-
ter gives the name of the BaseAttribute that was used for stratified segmenta-
tion. Note that this BaseAttribute must belong to TheOQutputConcept of this
operator, because the re-unified ColumnSet contains different values for this at-
tribute (whereas before the execution of this operator, the different ColumnSets

did not contain this attribute, but each represented one of its values).

If a SegmentationByPartitioning operator is reversed (section 3.2.10), this
parameter must have the value “(Random)”.

If a SegmentationWithKMean operator is reversed (section 3.2.11), this pa-
rameter must have the value “(KMeans)”.

Note that the segmentation to be reversed by this operator can be any
segmentation in the chain before this operator.

ParameterName ObjectType | Type | Remarks
ThelnputConcept CON IN | inherited
UnsegmentAttribute BA OUT | see text

TheOutputConcept CON OUT | inherited

3.2.6 RowSelectionByQuery

The output Concept contains only records that fulfill the SQL condition formu-
lated by the parameters of this operator. This operator is loopable! If applied
in a loop, the conditions from the different loops are connected by AND. Every
condition consists of a left-hand side, an SQL operator and a right-hand side.
Together, these three must form a valid SQL condition. For example, to specify
that only records (rows) whose value of attribute sale is either 50 or 60 should
be selected, the left condition is the BaseAttribute for sale, the operator is IN,
and the right condition is (50, 60).

If this operator is applied in a loop, only the three parameters modelling the
condition change from loop to loop, while input and output Concept remain the
same.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited (same in all loops)
TheLeftCondition BA IN any BA of input concept
TheConditionOperator A% IN an SQL operator: <, =, ...
TheRightCondition A% IN

TheOutputConcept CON OUT | inherited (same in all loops)

3.2.7 RowSelectionByRandomSampling

Puts atmost as many rows into the output Concept as are specified in the
parameter HowMany. Selects the rows randomly.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
HowMany \% IN | max. no. of rows
TheOutputConcept CON OUT | inherited

3.2.8 DeleteRecordsWithMissingValues

Puts only those rows into the output Concept that have an entry which is NOT
NULL in the Column for the specified TheTargetAttribute.

10

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | may have NULL entries
TheOutputConcept CON OUT | inherited

3.2.9 SegmentationStratified

A MultiStep operator (creates several ColumnSets for the output Concept). The
input Concept is segmented according to the values of the specified attribute,
so that each resulting Columnset corresponds to one value of the attribute.
For numeric attributes, intervals are built automatically (this makes use of the
statistics tables and the functions that compute the statistics).

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttribute BA IN

TheOutputConcept CON OUT | inherited

3.2.10 SegmentationByPartitioning

A MultiStep operator (creates several ColumnSets for the output Concept). The
input Concept is segmented randomly into as many Columnsets as are specified
by the parameter HowManyPartitions.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
HowManyPartitions v IN positive integer
TheOutputConcept CON OUT | inherited

3.2.11 SegmentationWithKMean

A MultiStep operator (creates several ColumnSets for the output Concept). The
input Concept is segmented according to the clustering method KMeans (an ex-
ternal learning algorithm). The number of ColumnSets in the output concept
is therefore not known before the application of this operator. However, the
parameter HowManyPartitions specifies a maximum for this number. The pa-
rameter OptimizePartitionNum is a boolean that specifies if this number should
be optimized by the learning algorithm (but it will not exceed the maximum).
The parameter SampleSize gives a maximum number of learning examples for
the external algorithm. The algorithm (KMeans) uses ThePredictingAttributes
for clustering; these attributes must belong to ThelnputConcept.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
HowManyPartitions A% IN | positive integer
OptimizePartitionNum A% IN | true or false
ThePredictingAttributes | BA List IN

SampleSize v IN | positive integer
TheOutputConcept CON OUT | inherited

11

3.2.12 Windowing

Windowing is applicable to time series data. It takes two BaseAttributes from
the input Concept; one of contains time stamps, the other values. In the output
Concept each row gives a time window; there will be two time stamp BaseAt-
tributes which give the beginning and the end of each time window. Further,
there will be as many value attributes as specified by the WindowSize; they con-
tain the values for each window. Distance gives the distance between windows
in terms of number of time stamps.

While TimeBaseAttrib and ValueBaseAttrib are BaseAttributes that be-
long to ThelnputConcept, Output TimeStartBA, OutputTimeEndBA and the Win-
dowedValuesBAs belong to TheQutputConcept.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TimeBaseAttrib BA IN | time stamps
ValueBaseAttrib BA IN | values

WindowSize \% IN | positive integer
Distance \% IN | positive integer
OutputTimeStartBA BA OUT | start time of window
OutputTimeEndBA BA OUT | end time of window
WindowedValuesBA | BA List | OUT | as many as WindowSize
TheOutputConcept CON OUT | inherited

3.2.13 SimpleMovingFunction

This operator combines windowing with the computation of the average value
in each window. There is only one OutputValueBA which contains the average
of the values in a window of the given WindowSize; windows are computed
with the given Distance between each window. See also the description of the
Windowing operator in section 3.2.12.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
InputTimeBA BA IN
InputValueBA BA IN

WindowSize A% IN

Distance A% IN
OutputTimeStartBA BA ouT
OutputTimeEndBA BA ouT
OutputValueBA BA ouT
TheOutputConcept CON OUT | inherited

3.2.14 WeightedMovingFunction

This operator works like SimpleMovingFunction (section 3.2.13), but the weighted
average is computed. The window size is not given explicitly, but is determined
from the number of Weights given. The sum of all Weights must be 1.

12

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
InputTimeBA BA IN

InputValueBA BA IN

Weights V List IN | sum must be 1
Distance A% IN | positive integer
OutputTimeStartBA BA ouT
OutputTimeEndBA BA OouT

OutputValueBA BA ouT
TheOutputConcept CON OUT | inherited

3.2.15 ExponentialMovingFunction

A time series smoothing operator. For two values with the given Distance, the
first one is multiplied with TailWeight and the second one with Head Weight.
The resulting average is written into OutputValueBA and becomes the new tail

value. HeadWeight and Tail Weight must sum to 1.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
InputTimeBA BA IN

InputValueBA BA IN

HeadWeight A% IN

TailWeight A% IN

Distance A% IN | positive integer
OutputTimeBA BA ouT
OutputValueBA BA ouT
TheOutputConcept CON OUT | inherited

3.2.16 SignalToSymbolProcessing

A time series abstraction operator. Creates intervals, their bounds are given
in OutputTimeStartBA and OutputTimeEndBA. The average value of every
interval will be in AverageValueBA. The average increase in that interval is in
IncreaseValueBA. Tolerance determines when an interval is closed and a new one
is opened: if the average increase, interpolated from the last interval, deviates
from a value by more than Tolerance, a new interval begins.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

InputTimeBA BA IN

InputValueBA BA IN

Tolerance \% IN | non-negative real number
AverageValueBA BA ouT

IncreaseValueBA BA ouT

OutputTimeStartBA BA ouT

OutputTimeEndBA BA ouT

TheOutputConcept CON OUT | inherited

13

3.2.17 Apriori

An implementation of the well known Apriori algorithm for the data mining
step. It works on a sample read from the database. The sample size is given by
the parameter SampleSize.

The input format is fixed. There is one input concept (ThelInputConcept)
having a BaseAttribute for the customer ID (parameter: CustID), one for the
transaction ID (TransID), and one for an item part of this customer/transaction’s
itemset (Item). The algorithm expects all entries of these BaseAttributes to
be integers. No null values are allowed.

It then finds all frequent (parameter: MinSupport) rules with at least the
specified confidence (parameter: MinConfidence). Please keep in mind that these
settings (especially the minimal support) are applied to a sample!

The output is specified by three parameters. TheOutputConcept is the con-
cept the output table is attached to. It has two BaseAttributes, PremiseBA for
the premises of rules and ConclusionBA for the conclusions. Each entry for one
of these attributes contains a set of whitespace-separated item IDs (integers).

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

CustID BA IN | customer id (integer, not NULL)
TransID BA IN | transaction id (integer, not NULL)
Item BA IN | item id (integer, not NULL)
MinSupport A% IN | minimal support (integer)
MinConfidence v IN | minimal confidence (in [0, 1])
SampleSize \% IN | the size of the sample to be used
PremiseBA BA OUT | premises of rules

ConclusionBA BA OUT | conclusions of rules
TheOutputConcept CON OUT | inherited

3.3 Feature selection operators

Feature selection operators are also concept operators in that their output is a
Concept, but they are listed in their own section since they have some common
special properties. All of them (except FeatureSelectionByAttributes, see 3.3.1)
use external algorithms to determine which features are taken over to the output
concept. This means that at the time of designing an operating chain, it is not
known which features will be selected. How can a complete, valid chain be
designed then, since the input of later operators may depend on the output of
a feature selection operator, which is only determined at compile time?

The answer is that conceptually, all possible features are present in the out-
put concept of a feature selection operator, while the compiler creates Columns
for only some of them (the selected ones). This means that in later steps, some of
the features that are used for the input of an operator may not have a Column.
If the operator depends on a certain feature, the compiler checks whether a
Column is present, and shows an error message if no Column is found. If the
operator is executable without that Column, no error occurs.

14

All feature selection operators have a parameter TheAttributes which speci-
fies the set of features from which some are to be selected. (Again this is not true
for FeatureSelectionByAttributes, see 3.3.1.) The parameter is needed because
not all of the features of ThelnputConcept can be used, as they may include a
key attribute or the target attribute for a data mining step, which should not
be deselected. This means that all attributes from ThelnputConcept that are
not listed as one of TheAttributes will be present in TheOutputConcept both on
the conceptual and on the relational level.

3.3.1 FeatureSelectionByAttributes

This operator can be used for manual feature selection, which means that the
user specifies all features to be selected. This is done by providing all and only
the features that are to be selected in TheOutputConcept. The operator then
simply copies those features from ThelnputConcept to TheOutputConcept which
are present in TheOutputConcept. It can be used to get rid of features that are
not needed in later parts of the operator chain. All features in TheOQutputConcept
must have a corresponding feature (with the same name) in ThelInputConcept.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheOutputConcept CON OUT | inherited

3.3.2 StatisticalFeatureSelection

A Feature Selection operator. This operator uses the stochastic correlation mea-
sure to select a subset of TheAttributes. All of TheAttributes must be present in
TheQutputConcept. The parameter Threshold is a real number between 0 and 1
(default is 0.7). SampleSize specifies a maximum number of examples that are
fed into the external algorithm.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttributes BA list IN | see section 3.3
SampleSize A% IN | positive integer
Threshold A% IN | real between 0 and 1
TheOutputConcept CON OUT | inherited

3.3.3 GeneticFeatureSelection

A Feature Selection operator.This operator uses a genetic algorithm to select a
subset of TheAttributes. It calls C4.5 to evaluate the individuals of the genetic
population. TheTargetAttribute specifies which attribute is the target attribute
for the learning algorithm whose performance is used to select the best fea-
ture subset. PopDim gives the size of the population for the genetic algorithm.
StepNum gives the number of generations. The probabilities of mutation and
crossover are specified with ProbMut and ProbCross.

15

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheAttributes BA list IN | see section 3.3

SampleSize \% IN | positive integer

PopDim \% IN positive integer; try 30
StepNum \% IN | positive integer; try 20
ProbMut A% IN | real between 0 and 1; try 0.001
ProbCross A% IN | real between 0 and 1; try 0.9
TheOutputConcept CON OUT | inherited

3.3.4 SGFeatureSelection

A Feature Selection operator. This operator is a combination of StochasticFea-
tureSelection (see 3.3.2), which is applied first, and GeneticFeatureSelection (see
3.3.3), applied afterwards. The parameter descriptions can be found in the sec-
tions about these operators (3.3.2 and 3.3.3).

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttributes BA list IN | see section 3.3
SampleSize v IN

PopDim \% IN

StepNum v IN

ProbMut \% IN

ProbCross \% IN

Threshold \% IN | real, between 0 and 1
TheOutputConcept CON OUT | inherited

3.3.5 FeatureSelectionWithSVM

A Feature Selection operator. This operator uses the {a-estimator as computed
by a Support Vector Machine training run to compare the classification perfor-
mance of different feature subsets. Searching either forward or backward, it finds
the best feature subset according to this criterion. Thus it performs a simple
beam search of width 1.

TheTargetAttribute must be binary as Support Vector Machines can only
solve binary classification problems. (The a-estimator can only be computed
for classification problems.) The parameter PositiveTargetValue specifies the
class label of the positive class. There are some SVM-specific parameters; the
table gives reasonable values to choose if nothing is known about the data or
SVMs. For the KernelType, only the following values (Strings) are possible: dot,
polynomial, neural, radial, anova. Dot is the linear kernel and can be taken as
default.

This operator can use two different versions of the Support Vector Machine
algorithm. One runs in main memory; it needs the parameter SampleSize to
determine a maximum number of training examples. The other runs in the
database; it is used if the optional parameter UseDB_SVM is set to the String

16

true. When this version is used, an additional parameter TheKey is needed
which gives the BaseAttribute whose column is the primary key of Theln-
putConcept. (TheKey can be left out only if the ColumnSet that belongs to
TheInputConcept represents a table rather than a view.) The database algo-
rithm restricts the possible kernel types to dot and radial. It can also use the
parameter SampleSize.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheAttributes BA list IN | see section 3.3
TheTargetAttribute BA IN | must be binary
PositiveTargetValue A% IN | the positive class label
KernelType A% IN | see explanation above
SampleSize v IN | see explanation above

C A% IN | positive real; try 1.0
Epsilon v IN | positive real; try 0.1
UseDB_SVM A% IN | optional; one of true, false
TheKey BA IN | optional

SearchDirection A% IN | one of forward, backward
TheOutputConcept CON OUT | inherited

3.3.6 SimpleForwardFeatureSelectionGivenNoOfAttributes

A Feature Selection operator. This operator adds one feature a time start-
ing from the empty set until the required number of features NoOfAttributes
is reached. The attributes are selected with respect to TheClassAttribute, the
group optimises the information dependence criterion. Use this operator if only
a small number of original attributes is to be selected. The selection is done
from the set of TheAttributes, attributes not specified in this set are selected

automatically.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttributes BA list IN | see section 3.3
TheClassAttribute BA IN | must be categorial
NoOfAttributes \% IN positive integer
SampleSize A% IN | positive integer
TheOutputConcept CON OUT | inherited

3.3.7 SimpleBackwardFeatureSelectionGivenNoOfAttributes

A Feature Selection operator. This operator removes one feature a time start-
ing from all attributes until the required number of features NoOfAttributes
is reached. The attributes are selected with respect to TheClassAttribute, the
group optimises the information dependence criterion. Use this operator if a
large number of original attributes is to be selected. The selection is done from
the set of TheAttributes, attributes not specified in this set are selected auto-
matically.

17

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttributes BA list IN | see section 3.3
TheClassAttribute BA IN | must be categorial
NoOfAttributes A% IN | positive integer
SampleSize \% IN | positive integer
TheOutputConcept CON OUT | inherited

3.3.8 FloatForwardFeatureSelectionGivenNoOfAtt

A Feature Selection operator. This operator adds one feature a time starting
from empty set until the required number of features NoOfAttributes is reached.
The attributes are selected with respect to TheClassAttribute, the group opti-
mises the information dependence criterion. Unlike the simple operator, after
adding a feature a check is performed if another feature should be removed. Use
this operator if only a small number of original attributes is to be selected. The
selection is done from the set of TheAttributes, attributes not specified in this
set are selected automatically.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttributes BA list IN | see section 3.3
TheClassAttribute BA IN | must be categorial
NoOfAttributes A% IN | positive integer
SampleSize \% IN | positive integer
TheOutputConcept CON OUT | inherited

3.3.9 FloatBackwardFeatureSelectionGivenNoOfAtt

A Feature Selection operator. This operator removes one feature a time start-
ing from all attributes until the required number of features NoOfAttributes
is reached. The attributes are selected with respect to TheClassAttribute, the
group optimises the information dependence criterion. Unlike the simple oper-
ator, after removing a feature a check is performed if another feature should be
added. Use this operator if a large number of original attributes is to be selected.
The selection is done from the set of TheAttributes, attributes not specified in
this set are selected automatically.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttributes BA list IN | see section 3.3
TheClassAttribute BA IN | must be categorial
NoOfAttributes A% IN | positive integer
SampleSize \% IN | positive integer
TheOutputConcept CON OUT | inherited

18

3.3.10 UserDefinedFeatureSelection

A Feature Selection operator. This operator copies exactly those features from
ThelInputConcept to TheOutputConcept that are specified in TheSelectedAt-
tributes. It can be used for the same task as the operator FeatureSelection-
ByAttributes, see 3.3.1, namely when the user knows which features to select.
The difference is that FeatureSelectionByAttributes copies all features that are
present in TheQutputConcept, while this operator copies those that are specified
in the extra parameter TheSelectedAttributes.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheSelectedAttributes | BA list IN | the user’s selection
TheOutputConcept CON OUT | inherited

3.4 Feature construction operators

All operators in this section are loopable. For loops, ThelnputConcept remains
the same (par_stloopnr = 0) while TheTargetAttribute, TheOutputAttribute
and further operator-specific parameters change from loop to loop (loop numbers
start with 1).

3.4.1 AssignAverageValue

A MissingValue operator. Each missing value in The TargetAttribute is replaced
by the average value of that Column. The operator computes the column statis-
tics if they are not computed yet, which may take some time.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | must be numeric
TheOutputAttribute BA OUT | inherited

3.4.2 AssignModalValue

A MissingValue operator. Each missing value in The TargetAttribute is replaced
by the modal value of that Column. The operator computes the column statistics
if they are not computed yet, which may take some time.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN

TheOutputAttribute BA OUT | inherited

3.4.3 AssignMedianValue

A MissingValue operator. Each missing value in The TargetAttribute is replaced
by the median of that Column. The operator computes the column statistics if
they are not computed yet, which may take some time.

19

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN

TheOutputAttribute BA OUT | inherited

3.4.4 AssignDefaultValue

A MissingValue operator. Each missing value in The TargetAttribute is replaced

by the DefaultValue.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
DefaultValue A% IN

TheOutputAttribute BA OUT | inherited

3.4.5 AssignStochasticValue

A MissingValue operator. Each missing value in The TargetAttribute is replaced
by a value which is randomly selected according to the distribution of present
values in this attribute. For example, if half of the entries in TheTargetAttribute
have a specific value, this value is chosen with a probability of 0.5. The operator
computes the column statistics if they are not computed yet, which may take
some time.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
TheOutputAttribute BA OUT | inherited

3.4.6 MissingValuesWithRegressionSVM

A MissingValue operator. Each missing value in The TargetAttribute is replaced
by a predicted value. For prediction, a Support Vector Machine (SVM) is trained
in regression mode from ThePredictingAttributes (taking TheTargetAttribute
values that are not missing as target function values). All ThePredictingAt-
tributes must belong to ThelnputConcept. TheOQutputAttribute contains the orig-
inal values, plus the predicted values where the original ones were missing.

There are some SVM-specific parameters; the table gives reasonable values
to choose if nothing is known about the data or SVMs. For the KernelType,
only the following values (Strings) are possible: dot, polynomial, neural, radial,
anova. Dot is the linear kernel and can be taken as default.

This operator can use two different versions of the Support Vector Machine
algorithm. One runs in main memory; it needs the parameter SampleSize to
determine a maximum number of training examples. The other runs in the
database; it is used if the optional parameter UseDB_SVM is set to the String
true. When this version is used, an additional parameter TheKey is needed

20

which gives the BaseAttribute whose column is the primary key of Theln-
putConcept. (TheKey can be left out only if the ColumnSet that belongs to
TheInputConcept represents a table rather than a view.) The database algo-
rithm restricts the possible kernel types to dot and radial. It can also use the
parameter SampleSize.

With the parameters LossFunctionPos and LossFunctionNeg, the loss func-
tion that is used for the regression can be biased such that predicting too high
is more expensive (LossFunctionPos > LossFunctionNeg) or less expensive
(LossFunctionNeg > LossFunctionPos)than predicting too low. If both val-
ues are equal, no bias is used. The parameter C balances training error against
generalisation quality; positive values between 0.01 and 1000 have been used
successfully in the literature. Epsilon limits the allowed error an example may
produce; small values under 0.5 should be used.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | inherited
ThePredictingAttributes | BA List IN

KernelType A% IN | see explanation above
SampleSize A% IN | see explanation above
LossFunctionPos A% IN | positive real; try 1.0
LossFunctionNeg A% IN | positive real; try 1.0
C v IN | positive real; try 1.0
Epsilon \% IN | positive real; try 0.1
UseDB_SVM v IN | optional; one of true, false
TheKey BA IN | optional
TheOutputAttribute BA OUT | inherited

3.4.7 LinearScaling

A scaling operator. Values in TheTargetAttribute are scaled to lie between
NewRangeMin and NewRangeMax.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
NewRangeMin A% IN | new min value
NewRangeMax A% IN | new max value
TheOutputAttribute BA OUT | inherited

3.4.8 LogScaling

A scaling operator. Values in TheTargetAttribute are scaled to their logarithm
to the given LogBase.

21

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
LogBase A% IN

TheOutputAttribute BA OUT | inherited

3.4.9 SupportVectorMachineForRegression

A data mining operator. Values in TheTargetAttribute are used as target func-
tion values to train the SVM on examples that are formed with ThePredicting-
Attributes. All ThePredictingAttributes must belong to TheInputConcept. The-
OutputAttribute contains the predicted values.

There are some SVM-specific parameters; the table gives reasonable values
to choose if nothing is known about the data or SVMs. For the KernelType,
only the following values (Strings) are possible: dot, polynomial, neural, radial,
anova. Dot is the linear kernel and can be taken as default.

This operator can use two different versions of the Support Vector Machine
algorithm. One runs in main memory; it needs the parameter SampleSize to
determine a maximum number of training examples. The other runs in the
database; it is used if the optional parameter UseDB_SVM is set to the String
true. When this version is used, an additional parameter TheKey is needed
which gives the BaseAttribute whose column is the primary key of Theln-
putConcept. (TheKey can be left out only if the ColumnSet that belongs to
ThelnputConcept represents a table rather than a view.) The database algo-
rithm restricts the possible kernel types to dot and radial. It can also use the
parameter SampleSize.

With the parameters LossFunctionPos and LossFunctionNeg, the loss func-
tion that is used for the regression can be biased such that predicting too high
is more expensive (LossFunctionPos > LossFunctionNeg) or less expensive
(LossFunctionNeg > LossFunctionPos)than predicting too low. If both val-
ues are equal, no bias is used. The parameter C balances training error against
generalisation quality; positive values between 0.01 and 1000 have been used
successfully in the literature. Epsilon limits the allowed error an example may
produce; small values under 0.5 should be used.

22

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | inherited
ThePredictingAttributes | BA List IN

KernelType v IN | see explanation above
SampleSize v IN | see explanation above
LossFunctionPos A% IN | positive real; try 1.0
LossFunctionNeg A% IN | positive real; try 1.0
C v IN | positive real; try 1.0
Epsilon \% IN | positive real; try 0.1
UseDB_SVM v IN | optional; one of true, false
TheKey BA IN | optional
TheOutputAttribute BA OUT | inherited

3.4.10 SupportVectorMachineForClassification

A data mining operator. Values in TheTargetAttribute are used as target func-
tion values to train the SVM on examples that are formed with ThePredicting-
Attributes. The TargetAttribute must be binary as Support Vector Machines can
only solve binary classification problems. The parameter Positive Target Value
specifies the class label of the positive class. All ThePredictingAttributes must
belong to ThelnputConcept. TheOutputAttribute contains the predicted values.

There are some SVM-specific parameters; the table gives reasonable values
to choose if nothing is known about the data or SVMs. For the KernelType,
only the following values (Strings) are possible: dot, polynomial, neural, radial,
anova. Dot is the linear kernel and can be taken as default.

This operator can use two different versions of the Support Vector Machine
algorithm. One runs in main memory; it needs the parameter SampleSize to
determine a maximum number of training examples. The other runs in the
database; it is used if the optional parameter UseDB_SVM is set to the String
true. When this version is used, an additional parameter TheKey is needed
which gives the BaseAttribute whose column is the primary key of Theln-
putConcept. (TheKey can be left out only if the ColumnSet that belongs to
TheInputConcept represents a table rather than a view.) The database algo-
rithm restricts the possible kernel types to dot and radial. It can also use the
parameter SampleSize.

The parameter C balances training error against generalisation quality; pos-
itive values between 0.01 and 1000 have been used successfully in the literature.

Epsilon limits the allowed error an example may produce; small values under
0.5 should be used.

23

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | inherited; must be binary
ThePredictingAttributes | BA List IN

KernelType v IN | see explanation above
SampleSize v IN | see explanation above

C A% IN | positive real; try 1.0
Epsilon \% IN | positive real; try 0.1
UseDB_SVM v IN | optional; one of true, false
TheKey BA IN | optional
PositiveTargetValue A% IN | the positive class label
TheOutputAttribute BA OUT | inherited

3.4.11 MissingValueWithDecisionRules

A Missing value operator. Each missing value (NULL value) in TheTargetAt-
tribute is replaced by a predicted value. For prediction, a set of Decision Rules is
learned from ThePredictingAttributes, which must belong to ThelnputConcept.

The pruning confidence level is given in PruningConf as a percentage.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
ThePredictingAttributes | BA List IN

SampleSize A% IN | positive integer
PruningConf A% IN | between 0 and 100
TheOutputAttribute BA OUT | inherited

3.4.12 MissingValueWithDecisionTree

A Missing value operator. Each missing value (NULL value) in TheTargetAt-
tribute is replaced by a predicted value. For prediction, a Decision Tree is
learned from ThePredictingAttributes, which must belong to ThelnputConcept.
The pruning confidence level is given in PruningConf as a percentage.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
ThePredictingAttributes | BA List IN

SampleSize A% IN | positive integer
PruningConf A% IN | between 0 and 100
TheOutputAttribute BA OUT | inherited

3.4.13 PredictionWithDecisionRules

A Feature Construction operator. Decision rules are learned using ThePredicting-
Attributes as learning attributes and TheTargetAttribute as label. TheOutputAt-
tribute contains the labels that the decision rules predict. The operator may be

24

used to compare predicted and actual values, or in combination with the oper-
ator AssignPredictedValueCategorial (see section 3.4.15). All ThePredictingAt-
tributes must belong to ThelnputConcept. The pruning confidence level is given
in PruningConf as a percentage.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
ThePredictingAttributes | BA List IN

SampleSize \% IN | positive integer
PruningConf A% IN | between 0 and 100
TheOutputAttribute BA OUT | inherited

3.4.14 PredictionWithDecisionTree

A Feature Construction operator. A Decision Tree is learned using ThePredicting-
Attributes as learning attributes and TheTargetAttribute as label. TheOutputAt-
tribute contains the labels that the decision tree predicts. The operator may be
used to compare predicted and actual values, or in combination with the oper-
ator AssignPredictedValueCategorial (see section 3.4.15). All ThePredictingAt-
tributes must belong to ThelnputConcept. The pruning confidence level is given
in PruningConf as a percentage.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
ThePredictingAttributes | BA List IN

SampleSize v IN | positive integer
PruningConf A% IN | between 0 and 100
TheOutputAttribute BA OUT | inherited

3.4.15 AssignPredictedValueCategorial

A Missing Value operator. Any missing value of TheTargetAttribute is replaced
by the value of the same row from ThePredictedAttribute. The latter may have
been filled by the operator PredictionWithDecisionRules (3.4.13) or Prediction-

WithDecisionTree (3.4.14). It must belong to ThelnputConcept.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTargetAttribute BA IN | inherited
ThePredicted Attribute BA IN

TheOutputAttribute BA OUT | inherited

3.4.16 GenericFeatureConstruction

This operator creates an output attribute on the basis of a given SQL definition
(Parameter SQL_String). The definition must be well-formed SQL defining how

25

values for the output attribute are computed based on one of the attributes in
TheInputConcept. To refer to the attributes in ThelnputConcept, the names of
the BaseAttributes are used—and not the names of any Columns. For example,
if there are two BaseAttributes named “INCOME” and “TAX” in Thelnput-
Concept, this operator can compute their sum if SQL_String is defined as “(IN-
COME + TAX)”. Since the operator must resolve names of BaseAttributes,
it cannot be used if there are two or more BaseAttributesin ThelnputConcept
with the same name.

TheTargetAttribute is needed to have a blueprint for TheOutputAttribute.
The operator ignores TheTargetAttribute, except that it uses the relational
datatype of its column to specify the relational datatype for the column of
TheOQutputAttribute.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | inherited; specifies datatype
SQL_String A% IN | see text
TheOutputAttribute BA OUT | inherited

3.4.17 TimelntervalManualDiscretization

This operator can be used to discretize a time attribute manually. The looped
parameters specify a mapping to be performed from TheTargetAttribute, a
BaseAttribute of type TIME to a set of user specified categories. As for all
FeatureConstruction operators a BaseAttribute TheOQutputAttribute is added to
the ThelnputConcept.

The mapping is defined by looped parameters. An interval is specified by
its lower bound IntervalStart, its upper bound IntervalEnd and two additional
parameters StartIncExc and EndIncExc, stating if the interval bounds are in-
cluded (value: “I”) or excluded (value: “E”). The value an interval is mapped
to is given by the looped parameter MapTo. If an input value does not belong
to any interval, it is mapped to the value Default Value.

To be able to cope with various time formats (e.g. '"HH-MI-SS’) the operator
reads the given format from the parameter TimeFormat (ORACLE-specific).

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTargetAttribute BA IN | inherited, type: TIME
IntervalStart A% IN “looped”, lower bound of interval
IntervalEnd A% IN “looped”, upper bound of interval
MapTo \% IN | value to map time interval to
StartIncExc \% IN one of “I” and “E”

EndIncExc \% IN one of “I” and “E”

DefaultValue v IN | value if no mapping applies
TimeFormat v IN ORACLE specific time format
TheOutputAttribute BA OUT | inherited

26

3.4.18 NumericIntervalManualDiscretization

This operator can be used to discretize a numeric attribute manually. It is very
similar to the operator TimelntervalManualDiscretization described in 3.4.17.
The looped parameters IntervalStart, IntervalEnd, StartIncEzc, EndIncExc, and
Map To. again specify a mapping to be performed. If an input value does not be-
long to any interval, it is mapped to the value Default Value. The TargetAttribute
needs to be of type ordinal.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | inherited, type: ORDINAL
IntervalStart v IN “looped”, lower bound of interval
IntervalEnd A% IN “looped”, upper bound of interval
MapTo \% IN | value to map time interval to
StartIncExc \% IN one of “I” and “E”

EndIncExc A% IN one of “I” and “E”

Default Value A% IN | value if no mapping applies
TimeFormat A% IN ORACLE specific time format
TheOutputAttribute BA OUT | inherited

3.4.19 EquidistantDiscretizationGivenWidth

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute
into intervals with given width Interval Width starting at StartPoint. The first
and the last interval cover also the values out of range.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTargetAttribute BA IN | must be numeric
StartPoint A% IN | optional

Interval Width A% IN | a positive real number
ClosedTo A% IN | one of LEFT or RIGHT
TheOutputAttribute BA OUT | should be categorial

3.4.20 EquidistantDiscretizationGivenNoOfIntervals

A discretization operator. Numeric attributes are discretized and the output is a
categorial attribute. This operator divides the range of TheTargetAttribute into
the given number of intervals NoOfIntervals with the same width. The first and
the last interval cover also the values out of range. Values of TheOQutputAttribute
can be specified in the parameter Label.

27

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
NoOfIntervals A% IN | integer

ClosedTo v IN | one of LEFT or RIGHT
Label V List IN | optional
TheOutputAttribute BA OUT | should be categorial

3.4.21 EquifrequentDiscretizationGivenCardinality

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute
into intervals with given Cardinality (number of examples whose values are in
the interval). The first and the last interval cover also the values out of range.
CardinalityType decides how the parameter Cardinality is to be interpreted.
Values of TheOutputAttribute can be specified in the parameter Label (this makes
sense only if CardinalityType is RELATIVE).

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited
TheTargetAttribute BA IN | must be numeric
Cardinality Type A% IN | ABSOLUTE or RELATIVE
Cardinality A% IN | positive

ClosedTo A% IN | one of LEFT or RIGHT
Label V List IN | optional
TheOutputAttribute BA OUT | should be categorial

3.4.22 EquifrequentDiscretizationGivenNoOfIntervals

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute
into the given number of intervals NoOfIntervals. The intervals have the same
cardinality (number of examples with values within the interval). The first and
the last interval cover also the values out of range. Values of TheQutputAttribute

can be specified in the parameter Label.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
NoOfIntervals A% IN | positive integer > 1
ClosedTo A% IN | one of LEFT or RIGHT
Label V List IN optional
TheOutputAttribute BA OUT | should be categorial

3.4.23 UserDefinedDiscretization

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute

28

into intervals according to user given cutpoints TheCutpoints, which is a list of
values which each give a cutpoint for the intervals to be created. The cutpoints
must be given in ascending order. Values of TheOutputAttribute can be specified

in the parameter Label.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
TheCutpoints A% IN | see text

ClosedTo A% IN | one of LEFT or RIGHT
Label V List IN optional
TheOutputAttribute BA OUT | should be categorial

3.4.24 ImplicitErrorBasedDiscretization

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute
into intervals by merging subsequent values with the same majority class (or
classes) given in TheClassAttribute. TheClassAttribute contains the labels of an
example as in a Machine Learning setting. The resulting intervals minimize the
classification error. If FullMerge is set to YES, then an interval with two or more
majority classes is merged with its neighbour, if both intervals share the same
majority class. The parameter SampleSize gives a maximum number of learning
examples for the external algorithm.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
TheClassAttribute BA IN | must be categorial
ClosedTo A% IN | one of LEFT or RIGHT
FullMerge A% IN | one of YES or NO
SampleSize A% IN | optional; positive integer
TheOutputAttribute BA OUT | should be categorial

3.4.25 ErrorBasedDiscretizationGivenMinCardinality

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute
into intervals with cardinality greater or equal to MinCardinality. MinCardinal-
ity Type decides if MinCardinality values are read as absolute values (integers)
or relative values (real, between 0 and 1). TheTargetAttribute is divided into
intervals with respect to TheClassAttribute, but unlike the implicit discretiza-
tion, intervals with single majority class are further merged if they do not have
the required cardinality. This will increase the classification error. TheClassAt-
tribute contains the labels of an example as in a Machine Learning setting. The
parameter SampleSize gives a maximum number of learning examples for the
external algorithm.

29

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
TheClassAttribute BA IN | must be categorial
MinCardinalityType v IN | ABSOLUTE or RELATIVE
MinCardinality v IN | positive

ClosedTo \% IN | one of LEFT or RIGHT
SampleSize A% IN | optional; positive integer
TheOutputAttribute BA OUT | should be categorial

3.4.26 ErrorBasedDiscretizationGivenNoOfInt

A discretization operator. Numeric attributes are discretized and the output is a
categorial attribute. This operator divides the range of TheTargetAttribute into
at most NoOfIntervals intervals. TheTargetAttribute is divided into intervals
with respect to TheClassAttribute, but unlike the implicit discretization, if the
number of interval exceeds NoOfIntervals, intervals are further merged. This
will increase the classification error. TheClassAttribute contains the labels of an
example as in a Machine Learning setting. Values of TheOutputAttribute can be
specified in the parameter Label. The parameter SampleSize gives a maximum
number of learning examples for the external algorithm.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
TheClassAttribute BA IN | must be categorial
NoOfIntervals A% IN | positive integer > 1
ClosedTo v IN | one of LEFT or RIGHT
Label V List IN | optional

SampleSize \% IN | optional; positive integer
TheOutputAttribute BA OUT | should be categorial

3.4.27 GroupingGivenMinCardinality

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOQutputAttribute, which must be categorial. This
operator groups values of TheTargetAttribute by iteratively merging in each
step two groups with the lowest frequencies until all groups have the cardinality
(number of examples with values within the interval) at least MinCardinality.
The algorithm has been inspired by hierarchical clustering. MinCardinality Type
decides if MinCardinality values are read as absolute values (integers) or relative
values (real, between 0 and 1).

30

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
MinCardinality Type v IN | ABSOLUTE or RELATIVE
MinCardinality v IN | positive
TheOutputAttribute BA OUT | should be categorial

3.4.28 GroupingGivenNoOfGroups

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOQutputAttribute, which must be categorial. This
operator groups values of The TargetAttribute by iteratively merging in each step
two groups with the lowest frequencies until the number of groups NoOfGroups
is reached. The algorithm has been inspired by hierarchical clustering. Values

of TheOQutputAttribute can be specified in the parameter Label.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | must be numeric
NoOfGroups v IN | positive integer
Label V List IN | optional
TheOutputAttribute BA OUT | should be categorial

3.4.29 UserDefinedGrouping

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheQutputAttribute, which must be categorial. This
operator creates groups of TheTargetAttribute according to specifications given
by the user in TheGroupings, which is a list of values. Each of the values in
the list in turn is a String that lists values of TheTargetAttribute which should
be grouped together, separating them with a comma. Values not specified for
grouping retain their original values. Values of TheOutputAttribute can be spec-
ified in the parameter Label.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | must be numeric
TheGroupings V List IN | see text

Label V List IN optional
TheOutputAttribute BA OUT | should be categorial

3.4.30 UserDefinedGroupingWithDefaultValue

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOQutputAttribute, which must be categorial. This
operator creates groups of The TargetAttribute values according to specifications
given by the user in TheGroupings, which is a list of values. Each of the values in
the list in turn is a String that lists values of TheTargetAttribute which should

31

be grouped together, separating them with a comma. Values not specified for
grouping are grouped into default group Default. Values of TheOutputAttribute

can be specified in the parameter Label.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | must be numeric
Default A% IN | default group

Label V List IN | optional
TheOutputAttribute BA OUT | should be categorial

3.4.31 ImplicitErrorBasedGrouping

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOQutputAttribute, which must be categorial. This
operator merges the values of TheTargetAttribute into groups with the same
majority class (or classes) given in TheClassAttribute. If FullMerge is set to yes,
then a group with two or more majority classes is merged with a group that
has the same majority class. The resulting grouping minimizes the classifica-
tion error. TheClassAttribute contains the labels of an example as in a Machine
Learning setting. The parameter SampleSize gives a maximum number of learn-
ing examples for the external algorithm.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
TheClassAttribute BA IN | must be categorial
FullMerge A% IN | one of YES or NO
SampleSize A% IN | optional; positive integer
TheOutputAttribute BA OUT | should be categorial

3.4.32 ErrorBasedGroupingGivenMinCardinality

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOutputAttribute, which must be categorial. This
operator merges the values of TheTargetAttribute into groups with the cardi-
nality above the given threshold MinCardinality. MinCardinality Type decides if
MinCardinality values are read as absolute values (integers) or relative values
(real, between 0 and 1). The grouping is performed with respect to TheClas-
sAttribute, but unlike implicit grouping, groups with a single majority class are
further merged if they do not have the required cardinality. This will increase
the classification error. TheClassAttribute contains the labels of an example as
in a Machine Learning setting. The parameter SampleSize gives a maximum
number of learning examples for the external algorithm.

32

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
TheClassAttribute BA IN | must be categorial
SampleSize v IN | optional; positive integer
MinCardinalityType v IN | ABSOLUTE or RELATIVE
MinCardinality A% IN | positive
TheOutputAttribute BA OUT | should be categorial

3.4.33 ErrorBasedGroupingGivenNoOfGroups

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOutputAttribute, which must be categorial. This
operator merges the values of TheTargetAttribute into at most NoOfGroups
groups. The grouping is performed with respect to TheClassAttribute, but un-
like the implicit discretization, if the number of groups exceeds NoOfGroups,
groups are further merged. This will increase the classification error. Values of
TheOutputAttribute can be specified in the parameter Label. TheClassAttribute
contains the labels of an example as in a Machine Learning setting. The param-
eter SampleSize gives a maximum number of learning examples for the external
algorithm.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTargetAttribute BA IN | must be numeric
TheClassAttribute BA IN | must be categorial
NoOfGroups A% IN | integer > 1

Label V List IN | optional

SampleSize A% IN | optional; positive integer
TheOutputAttribute BA OUT | should be categorial

3.5 Other Operators
3.5.1 ComputeSVMError

A special evaluation operator used for obtaining some results for the regres-
sion SVM. Values in TheTarget ValueAttribute are compared to those in The-
PredictedValueAttribute. The average loss is determined taking the asymmet-
ric loss function into account. That is why the SVM parameters are needed
here as well. Note that they must have the same value as for the operator
SupportVectorMachineForRegression, which must have preceded this evalu-
ation operator in the chain.

33

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTargetValueAttribute BA IN | actual values
ThePredicted ValueAttribute BA IN | predicted values
LossFunctionPos A% IN (same values
LossFunctionNeg A% IN as in SVM-
Epsilon \Y IN ForRegression)

3.5.2 SubgroupMining

A special operator without output on the conceptual level. The output of the
algorithm is a textual description of discovered subgroups which will be printed
to the compiler output (log file). The operator is only applicable to a table which
is suitable for spatial subgroup discovery. Thus, ThePredictingAttributes must
only contain categorial data. Therefore only features with a finite (and small)
number of distinct values should be selected.

TheTargetAttribute and TheKey must belong to ThelnputConcept; TheKey
must refer to the primary key column. ThePredictingAttributes are used to learn
from. TargetValue is one value from TheTargetAttribute. SearchDepth limits the
search for generating hypotheses. MinSupport and MinConfidence give minimum
values between 0 and 1 for support and confidence of the generated subgroups.
NumHypotheses specifies the number of hypotheses to be generated. RuleClus-
ters is a boolean parameter specifying whether or not clustering should be per-
formed on the generated rules.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN

TheKey BA IN
ThePredictingAttributes | BA List IN

Target Value A% IN | from TheTargetAttribute
SearchDepth A% IN | positive integer
MinSupport \% IN | real between 0 and 1
MinConfidence A% IN | real between 0 and 1
NumHypotheses A% IN | positive integer
RuleClusters A% IN | one of YES, NO

34

