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ABSTRACT

Increasing the battery lifetime of power-hungry mobile devices has become a major research target for mobile operators.
Based on extensive measurement campaigns with the most recent Long Term Evolution (LTE) devices, we introduce a
new Markovian power consumption model, which takes into account the chosen system parameters (such as the number
of physical resource blocks) as well as the context of a user in terms of radio channel conditions and service character-
istics (non-real-time vs. real time). One key advancement of this generic model is its stochastic nature, which allows for
determining the average power consumption of a device based on usage profiles including location information and ser-
vice statistics. We have conducted comprehensive system simulations using realistic channel characteristics derived from
ray-tracing analyses and validated the new model. Finally, we show that the proposed context-aware power consumption
model enables quantitative analyses of the trade-off between network resource allocation and enhanced battery lifetime.
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1. INTRODUCTION

The overall energy efficiency of mobile networks has
become a major research focus for designing and imple-
menting the current and next generations of wireless net-
works. The power consumption of user devices has been an
ongoing design issue with solutions such as power manage-
ment algorithms [1, 2] and dedicated embedded hardware
platforms [3]. Recently, the reduction of the power con-
sumption of radio network infrastructure components has
also been addressed in the context of green energy deploy-
ments and operational expenditures reduction plans [4, 5].
Beyond that, novel applications of cellular networks such
as Machine-to-Machine communication pose additional
requirements on the energy efficiency of mobile devices
[6–8]. Despite these efforts, current smartphones and note-
books still suffer from short battery lifetime when used
intensively in mobile networks [9]. In [10], it is empha-
sised that the battery lifetime of mobile communication
devices is one of the most important decision parame-
ters for customers. Mobile operators may actively con-
trol and differentiate the battery lifetime of user devices
as an adaptable Quality of Experience (QoE) parameter

(cf. Figure 1) by deploying network resource allocation
strategies based on power consumption models of mobile
devices. In this paper, we introduce a new context-aware
Markovian power consumption model that enables quanti-
tative analyses of the trade-off between network resource
allocation and enhanced battery lifetime.

The accurate modelling and forecasting of the power
consumption of embedded devices has recently received
increased attention. Table I provides a summary of selected
power consumption modelling approaches, which we have
classified based on system parameters as well as con-
text parameters. The classification also distinguishes if a
parameter was considered as deterministic (marked ‘D’)
or if the model takes into account stochastic characteris-
tics (marked ‘S’). The overview shows that the previous
work has limitations in addressing only selected determin-
istic system-dependent and/or context-dependent impacts
on the power consumption.

To overcome the limitations of existing models, we
introduce, to the best of our knowledge, for the first time,
a stochastic Context-Aware Power Consumption Model
(CoPoMo) with multiple LTE system parameters. The key
contributions of CoPoMo are the following:
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Figure 1. CoPoMo-enabled control loops for energy-efficiency
optimization.

Table I. Overview of current power consumption models.

� A reliable battery lifetime forecast taking into account
stochastic context parameters (e.g. traffic and chan-
nel) as well as system parameters (e.g. allocated phys-
ical resource blocks (PRBs), modulation and coding
scheme (MCS)),

� a Markovian-based power consumption model to
incorporate different traffic characteristics (in the con-
text of real-time and non-real-time applications) and

� the consideration of empirically derived power con-
sumption models for actual, commercially available
user equipments (UEs).

Although in this paper we focus on most recent LTE
devices, the modelling approach is also applicable to other
network technologies, such as LTE Advanced.

The rest of the paper is structured as follows: after
discussing the related work (Section 2) and the problem
statement (Section 3), we introduce an overview of the
components of CoPoMo (Section 4). Then, the LTE device

energy model (Section 5), the stochastic Markovian state
model (Section 6) and its close to reality parameterisation
(Section 7) are presented. To validate CoPoMo, we intro-
duce in Section 8 an independent system simulation, in
which the analytical Markovian model has been replaced
by a stochastic movement of UE through a realistic cell
environment. In Section 9, we present a detailed case
study, in which the results of CoPoMo are validated by the
simulation.

2. RELATED WORK

Table I provides an overview of selected research results
in which various power consumption models have been
presented. In [11] and [12], constant power consumption
values for a Universal Mobile Telecommunication System
(UMTS) UE for idle and active connections are assumed,
without the consideration of dynamic system and context
parameters. In [13], the traffic parameter throughput is cor-
related with the emitted power by introducing the through-
put power consumption. But Saleh et al.[13] do not quan-
tify the relationship between emitted and consumed power,
which would be necessary for battery lifetime forecasts.
In [14], the optimal relationship between the number of
allocated resources, and the average power consumption
of an LTE UE is determined by applying a system simula-
tion. The model assumes a traffic pattern with a fixed file
size. The duration of the transfer is calculated dependent
on the throughput (determined by the number of allocated
PRBs and the signal-to-noise ratio (SNR)), leading to vari-
able power consumption values. For the determination of
the SNR, an urban single cell scenario is simulated. As
LTE devices were not available, a UMTS power consump-
tion model was adopted in combination with LTE system
parameters. The first actual measurement of the impact of
the uplink transmission power and other system parame-
ters on the power consumption of an LTE UE has been
presented in [15]. However, there is no detailed informa-
tion given on the type of the UE and in how far the results
are universally valid for other UE.

Our own previous work presented in [16] firstly intro-
duces a closed-form power consumption model that incor-
porates empirically derived device parameters together
with the uplink transmission power. The presented exam-
ple application of the model is the suitable dimensioning
of batteries for deterministic communication scenarios.

In [17], the power consumption of a device in an idle
mode is investigated by means of a Markovian model.
The model is leveraged for a performance evaluation of
the discontinuous reception (DRX) algorithm in LTE. The
stochastic analysis of the scheme allows for realistic fore-
casting of the possible energy savings dependent on the
DRX parameterisation. The achievable gain is provided
in terms of ratios without providing quantitative power
consumption values.

The overview highlights the need for a holistic, stochas-
tic modelling approach. The analytical CoPoMo model
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addresses the full set of parameters introduced in Table I
and incorporates stochastic models for the radio channel
and the traffic characteristics as a particular novelty of
our work. Thereby, quantitative optimizations of the bat-
tery lifetime under dynamically changing environments
and usage profiles may be enabled.

3. PROBLEM STATEMENT

The overall aim of the proposed model is to quantify the
impact of a given system parameter set S on the expected
value of the battery lifetime TBatt for a given set of con-
text parameters C (cf. Figure 1). Assuming a battery energy
EBatt, the expected value of TBatt is given by

E ŒTBatt�D
EBatt

P†
(1)

with P˙ being the expected value of the power consump-
tion where

P† D E
�
NP
�
D

Z 1
0

NP .S/ � f NP .S;C/ d NP : (2)

It is worth noting that the probability distribution f NP .S;C/
of the instantaneous power consumption NP .S/ depends not
only on the system parameterisation but also on the context
parameter set C that consists of, for example the applica-
tion characteristic and the cell environment. The system
parameter set S is given as

SD f•; P0;M ; ’; “; ”; fcg (3)

with the activity ratio •, the required uplink transmission
power per PRB P0, the number of allocated PRB M , the
device specific parameters ’, “ and ” as well as the carrier
frequency fc . The context parameter set is given by

CD fœ;D; ›; ¡g (4)

with the connection arrival rate œ, the average file size D,
the cell environment › that is characterised by a three-
dimensional map incorporating material properties (e.g. of
buildings and road) and base station locations as well as
the user mobility trajectories ¡.

4. CoPoMo APPROACH
AND METHODOLOGY

An overview of different components of CoPoMo is pro-
vided in Figure 2. The inputs of the model are the sys-
tem and context parameter sets S and C that have been
introduced in the previous section.

The parameters feed into several dedicated submodels
with different purposes. The empirical power consumption
model allows the derivation of power consumption val-
ues NPi for different power states in which a UE operates
(idle, low, high and max). The details of this model and its

parameterisation for various, most recent LTE devices are
described in Section 5. In order to derive the average power
consumption P†, we combine the NPi values in a dedi-
cated Markovian model (introduced in detail in Section 6)
with corresponding state probabilities pi , which are deter-
mined from context-dependent state-transition probabil-
ities in terms of arrival and service rates œi and �i
(cf. Section 7.1). In order to use close to reality values,
these probabilities are determined by taking the changing
physical channel characteristics into account. Whereas the
service rate depends on the physical channel-dependent
throughput R (derived from measurements described in
Section 7.2), the arrival rate leading to a transition into a
dedicated power state depends on the service usage pattern
œ as well as the cell environment dependent parameter ªi
(cf. Section 7.3 for details). This short overview underlines
a key characteristic of the proposed approach: a stochastic
Markovian model is combined with the measurement-
based parameterisation to produce accurate power con-
sumption results for system developers and operators to
design energy-optimised operation and resource allocation
schemes.

5. AN EMPIRICAL POWER
CONSUMPTION MODEL FOR LTE UE

The determination of the relationship between the emitted
transmission power PTx (dBm) and the power consump-
tion of an LTE-enabled UE NP (W) is crucial for any reliable
power consumption model. Therefore, extensive measure-
ments for different commercially available LTE UE (data
sticks and smartphones) have been performed based on a
Rohde & Schwarz, Munich, Germany, which allows for
full control of the uplink transmission powerPTx indepen-
dent of the radio channel. For measuring the power con-
sumption of the UE under different system parameterisa-
tions, the device is not directly connected to the battery but
via an interconnected measurement probe (Hitex Develop-
ment Tools, Karlsruhe, Germany Power Scale), which sam-
ples the consumed power in terms of voltage and current at
a frequency of up to 100 K samples/s (see measurement
setup in Figure 3 and the photo in Figure 4).

The results of the measurement for a (High Tech
Computer Corporation (HTC), Taoyuan, Taiwan) velocity
smartphone as well as for a Samsung Galaxy S3 (Samsung
Group, Seoul, South-Korea) phone are shown in Figure 5
for both supported frequency bands. One can see from the
plot that the power consumption curve can be divided into
two pieces: for a low transmission power, below a device
specific threshold ”, the graph is characterised by a small
slope. For higher values of PTx the slope is significantly
steeper. This specific characteristic can be observed for all
investigated UE (cf. Table II). This piecewise characteris-
tic reflects the different stages of the power amplifiers that
are used in the state-of-the-art mobile equipment [18]. Fur-
thermore, one can observe the impact of the LTE frequency
band on the power consumption. For the application of the
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Figure 2. Model parameters and dependencies for stochastic CoPoMo based power modelling (non-real-time case). TTI, Trans-
mit Time Interval; UL, uplink; UE, user equipment; PRBs, physical resource blocks; MCS, modulation and coding scheme; CCDF,

complementary cumulative distribution function.

Figure 3. Measurement setup for detailed power consumption measurements. LTE, long term evolution; RF, radio frequency; USB,
universal serial bus.
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Figure 4. Photograph of power consumption measurement for smartphone. LTE, long term evolution.

Figure 5. Tx-Power dependent average power consumption versus empirical model for two different smartphones (cf. Table II).
WCDMA, wideband code division multiple access.

empirically derived power consumption NP to CoPoMo, the
two curve pieces are independently approximated by linear
functions [16]:

NP .PTx/D

(
’L �PTx C “L for PTx 6 ”
’H �PTx C “H for PTx > ”

(5)

with the device specific parameters ’, “ and ” as given in
Table II and the uplink transmission power PTx . We derive
the value of PTx from the system parameters with the fol-
lowing considerations: neglecting the closed-loop compo-
nents of the Transmit Power Control (TPC) formula given
in [19] and applying full path loss compensation, PTx is
given by

PTx Dmin .Pmax; P0C 10 log10.M/CPL/ (6)

with the maximum transmission power allowed for LTE
Pmax (23 dBm for class 3 UE [20]), the transmission power
per PRB P0, the number of allocated PRB M and the

path loss PL. It is worth noting that the number of allo-
cated PRB has a direct impact on PTx and therefore, the
power consumption. The empirically derived values given
in Table II should be interpreted as follows: the parameter
“L determines the power consumption for PTx D 0 dBm,
which is a typical value for the low power state. For a
given value of PTx , the Samsung Galaxy S3 smartphone,
for example, consumes more power if it is operating at
2600 MHz (“L D 1:3 W) than in the 800 MHz case
(“L D 1:2 W). For higher values of PTx , the power con-
sumption of the smartphone increases along a slope that is
defined by ’H . Whereas for the 800 MHz case, the value
of ’H is relatively small (’H D 43 mW/dBm), the power
consumption is increasing much faster for the case of 2600
MHz (’H D 89 mW/dBm). The maximum error given in
Table II gives the maximum deviation of the model given
in Equation (5) from the actual measurements.

The measurements do furthermore show that the recep-
tion of data does not cause a significant additional energy
consumption if the UE is actively transmitting data in
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Table II. Empirical model parameters for different long-term evolution user equipments (extended version of table presented in [16]).

HTC Samsung Samsung Samsung

Velocity 4G Galaxy S3 GT-B GT-B Huawei Sierra Wireless

Model parameter (Smartphone) (Smartphone) 3740 3730 E 398 AC 330U

Frequency (MHz) 800 2600 800 2600 800 2600 1800 2600 2100 2600

˛L (mW/dBm) 4:8 4 1:6 7:2 7:7 7:2 10 12 5:6 5:4

“L (W) 1:6 1:2 1:2 1:3 1:6 1:6 1:7 2 1:6 1:9

’H (mW/dBm) 68 61 43 89 130 54 24 68 27 28

“H (W) 0:79 0:52 0:77 0:2 0:4 1:5 1:9 1:4 1:5 1:8

” (dBm) 12 12 11 16 11 10 16 16 16 16

Maximum error (per cent) 4.1 3.5 3.2 3.5 1.7 3.9 4.7 1.6 3.6 1.5

NP1 (mW) 40 40 36 36 175 44 236 236 63 63

NP2 (W) 1:6 1:2 1:2 1:3 1:6 1:6 1:7 2 1:6 1:9

NP3 (W) 1.98 1.59 1.5 1.94 2.61 2.39 2.37 2.73 2.03 2.35

NP4 (W) 2.35 1.92 1.76 2.25 3.3 2.74 2.45 2.96 2.12 2.44

parallel (full duplex). Nevertheless, for pure data recep-
tion, the UE must leave the idle state towards the Radio
Resource Control connected state. The power consump-
tion in this state is however independent of any external
parameter (cf. [15]) and can be modeled by “L.

6. A STOCHASTIC MODEL OF LTE
UE POWER CONSUMPTION BASED
ON MARKOV CHAINS

We assume that an LTE UE will enter different power states
while randomly moving through an LTE network depend-
ing upon the spatiotemporal variations of the radio channel.
To describe this stochastic process, we introduce a Markov
chain with a state space of four different power states
(cf. Figure 6):

(1) Idle: In this state, the UE is not transmitting any
data. The radio frequency components are disabled
(despite regular observation of the broadcast chan-
nel) and the energy consumption is reduced to a
device dependent minimum NP1. The power con-
sumption does not depend upon any external system
or context parameters.

(2) Low: In the low power state of the UE for data
transmission, the TPC algorithm of LTE adjusts the

transmission power in a way that a predefined target
SNR SNRT at the base station can be achieved. The
power consumption is chosen to be NP2 D NP .PTx D
0 dBm) (cf. Equation (5)).

(3) High: If the overall transmission power PTx obtains
higher than a device specific threshold ”, the high
power state of the UE is entered. The power con-
sumption is chosen to be NP3 D NP .PTx D .Pmax C

”/=2). This simplification will be validated by sim-
ulation in Section 9.

(4) Max: If the TPC algorithm can no longer achieve the
target SNR by compensating for the path loss,
the maximum power state is entered. In this state,
the UE is transmitting at the maximum allowed
transmission power Pmax, which comes along with
a high average power consumption NP4 D NP .PTx D
Pmax).

The device specific values of P1, P2, P3 and P4 used for
the model are given in Table II. Knowing the state probabil-
ities pi together with the average deterministic state power
NPi , one can calculate the long-term average power P† as

P† D
X
i

NPi � pi (7)

© 2013 The Authors.Transactions on Emerging Telecommunications Technologies
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Figure 6. A Markovian model for power consumption of long-term evolution user equipment.

from that the approximated average battery lifetime TBatt
is

TBatt D
EBatt

P†
(8)

with the available battery energy EBatt (Wh). For this pur-
pose we assume that EBatt is independent of the actual
power consumption NPi [21].

In order to keep the model as simple as possible, we
deliberately omitted the direct state transitions between the
different active states (cf. Figure 6). This can be carried
out without loss of generality because, referring the Little’s
Law [22], the ultimate parameter that influences the battery
lifetime TBatt is the offered traffic œ=� (cf. Equations (9)–
(12)). This allows us to virtually cut one large transmission
into a sequence of smaller pieces for which the channel
conditions can be assumed to be stationary. Therefore, the
simplified Markovian model allows for quite simple math-
ematical expressions for the state probabilities pi that are
derived by solving the equilibrium condition [23] based on
the transition probabilities œi and �i :

p1 D
1

1C œ2
�2
C œ3
�3
C œ4
�4

(9)

p2 D

œ2
�2

1C œ2
�2
C œ3
�3
C œ4
�4

(10)

p3 D

œ3
�3

1C œ2
�2
C œ3
�3
C œ4
�4

(11)

p4 D

œ4
�4

1C œ2
�2
C œ3
�3
C œ4
�4

(12)

One concrete application example of the Markovian
model is presented in Figure 7 where the stacked bars
show a context-dependent distribution of state probabilities
pi together with the corresponding average power con-
sumption P†. How the context parameters can actually be
incorporated by the state-transition probabilities, and there-
fore, the state probabilities will be described in detail in the
following section.

Figure 7. Examples of state probability distribution and corre-
sponding power consumption split (HTC Velocity 4G).

7. CONTEXT-DEPENDENT
PARAMETERISATION BY
MEASUREMENTS AND
RAY-TRACING

Without loss of generality, the previously described generic
model is parameterized based on measurements and spe-
cialised simulations. For the determination of every single
parameter, extensive investigations based on commercially
available hardware, close to reality mobile radio channels
and sophisticated ray-tracing simulations have been per-
formed. In this section, the parameterisation methods as
well as the results and the implications for the model are
described in detail.

7.1. Determining context-dependent
state-transition probabilities

In this subsection, we determine – for non-real-time and
real-time applications – first the transition probabilities
œi for a UE entering a specific power state and then
the state-transition probabilities �i for leaving the state
(cf. Table III).

© 2013 The Authors.Transactions on Emerging Telecommunications Technologies
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Table III. Application-context-dependent state-transition
probabilities.

Model Real time Non-real-time
parameter application application

1=œ Avg. inter-arrival time Avg. inter-arrival time

of, for example, of files

voice calls

1=� Avg. call Avg. transmission duration

duration (state dependent)

œi œ\ ªi œ\ ªi

�i � Ri=D

Avg., average.

The overall probability that a transmission (data or voice
call) starts, and therefore, the model is leaving the idle state
towards any of the other states follows a negative exponen-
tial distribution with a mean value œ [24]. The scenario-
dependent probability that the UE has to be operated in
a specific power consumption state (low, high or max) is
given by ªi . The state-transition probabilities œi follow the
compound probability of œ and ªi and are given by

œi D œ\ ªi D œ � ªi with
X
i

ªi D 1; i D 2:::4:

(13)
A challenge in this context is the suitable choice of
ªi considering the specific radio channel conditions as
well as cell specific parameters such as the target SNR
(cf. Section 7.3).

For the determination of suitable values of �i , one has
to be aware of the different Quality of Service require-
ments of different kinds of applications. For rt applications
such as Voice over Internet Protocol (VoIP), the service rate
is negative exponentially distributed with a mean value �
[24] but independent of any other parameters. Therefore,
�i D �. On the other hand, for data transfer applica-
tions, the service rate is calculated by dividing the avail-
able throughput Ri , which depends on the SNR-dependent
MCS used as well as the number of allocated PRBs (cf.
Figure 2) by the file size, which is negative exponentially
distributed with a mean value D. If the channel quality in
terms of the SNR decreases (e.g. in the maximum power
state), less PRBs are assigned, which leads to a longer file
transfer duration and therefore, a decreased value of �i .
Table III summarises the interdependencies for real-time
and non-real-time applications.

7.2. Radio channel-aware
throughput measurements

In the previous section, we have shown that the achievable
throughput in the different states Ri has a major impact

on the service rate �i for non-real-time applications. For
the quantification of the impact of the mobile radio chan-
nels on the throughput, laboratory measurements using a
radio channel emulator were performed (cf. Figure 3). In
[25], we presented detailed results based on this setup. For
the low power state or high power state, the throughput
R2 or R3 is determined by the target SNR, whereas for
the maximum power state, the throughput R4 is reduced
because the path loss cannot be completely compensated
by the TPC algorithms due to the maximum transmission
power restriction [26].

7.3. Ray-tracing simulations of close to
reality SNR distributions

The probability ªi that a UE at a randomly chosen posi-
tion inside the cell will enter state i for data transmission is
significantly influenced by the environment. This includes
the cell radius as well as the frequency band, building den-
sity, antenna patterns and many more cell specific parame-
ters. Figure 8 illustrates the spatial distribution of the three
active states of the UE (low, high and max) for one example
environment. An UE moving through the cell cuts across
different areas, whereas the probability ªi corresponds to
the relative ratio of the three different zones in Figure 8.

To determine the position-dependent transmission
power PTx.x; y/, we use ray-tracing simulations for a
fixed SNRT . In Figure 9, the complementary cumulative
distribution function (CCDF) of the location-dependent

Figure 8. An illustration of the spatial power mode distribution
in an example environment. UE, user equipment.
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Figure 9. Complementary cumulative distribution function of the transmission power for various cell environments and different
physical resource block (PRB) allocations.

uplink transmission power is shown for different exam-
ple scenarios. One can see that the slope does strongly
depend on the scenario. The steeper the slope is the higher
becomes the probability that the transmission state changes
even for minor variations of the radio channel conditions.
From the CCDF, one can derive the probabilities ªi that a
transmitting UE has to enter state i for achieving SNRT :

ª2 D 1�P ŒPTx > ”�

ª3 D P ŒPTx > ”��P ŒPTx > Pmax�

ª4 D P ŒPTx > Pmax�

(14)

It is worth noting that the ªi depend on the number of
actually allocated PRBs M .

The CCDF derived from the ray-tracing simulation is
furthermore used to determine the impact of the maxi-
mum power state on the achievable throughput T4 (non-
real-time) as well as the needed number of PRBs (real
time). For such purpose, the virtual transmission power Pv
(dBm) that would be needed for achieving SNRT (dB) in
the maximum power state is taken from the CCDF as a
weighted average. As Pv cannot be used because of the
power limitation of the UE, in the maximum power state,
the actual SNR is no longer the target SNR but decreased
to SNRmax D SNRT � .Pv � Pmax/. For non-real-time
services, this effect is usually compensated by assigning a
lower number of PRBs Mmax [14, 26]. For CoPoMo, this
behaviour is achieved by calculating Mmax as

Mmax D

666664M �
0B@10

 
SNRT � SNRmax

10

!1CA
�1
777775 (15)

For real-time applications the actual value of SNRmax is
directly used for the determination of the needed MCS and
the corresponding number of PRBs needed for maintaining
the required data rate.

7.4. Consideration of uplink interferences

In the previous section, it has been shown how ray-tracing
simulations can be used to incorporate the impact of the
cell environment on the battery lifetime. Nevertheless, this
particular method is not capable to reliably model the
impact of inter-cell interferences in the uplink. The rea-
son for this is that the extent of this particular impair-
ment does strongly depend on the applied interference
avoidance schemes [27] as well as on the user distribu-
tion. In case that uplink inter-cell interferences cannot be
neglected (e.g. because the same frequencies are used in
neighbouring cells), they affect the distribution of the trans-
mission power that is required for maintaining the desired
SNRT . More precisely, a larger amount of interferences
leads to an increased probability for a higher transmis-
sion power as well as to a decreased throughput for those
users that are operating their UE in the maximum power
state (cf. Equation (15)). As CoPoMo reflects the impact
of interferences on the UE power consumption entirely
by the respective CCDF of the transmission power, only
this distribution needs to be adapted. As one can see from
Figure 2, the ray tracing can be bypassed for this purpose,
that is, a CCDF of the transmission power can directly
be fed to the model. Suitable methods on how to derive
interference-aware transmission power distributions, incor-
porating the user distribution as well as the applied interfer-
ence avoidance schemes, are presented in [28] (simulation)
and [29] (analytic model).

8. SYSTEM SIMULATION
FOR VALIDATION

The results of the Markovian model are validated by an
independent system simulation. In Figure 10, the model
parameters and dependencies for simulation based power
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Figure 10. Parameters and dependencies for system simulation based model validation (non-real-time case). TTI, Transmit Time
Interval; UL, uplink; UE, user equipment; PRBs, physical resource blocks; MCS, modulation and coding scheme; SNR,

signal-to-noise ratio.

consumption modelling can be found. Here, the same con-
text and system parameters are used as in Figure 2. It can
be seen that we replaced the stochastic component of the
model to validate the determination of the average power
consumption.

For this purpose, we use the same ray-tracing scenarios
(urban, suburban and rural) that are used for the stochastic
model, but instead of characterising the channel conditions
by a CCDF, a user is moving through the environment
following an user defined mobility model.

For the user mobility, the scenarios are divided into
square cells with the same grid size as that in the
ray-tracing simulation. For each step of the mobility, it
is checked whether the neighbour-grid cells are open

areas. The simulated user then moves to one of the free
neighbour-grid cells according to the mobility model. After
a walking duration TIDLE a transmission begins. The con-
nection duration Tj for transmission j and the transmis-
sion power PTx (from ray-tracing results) are determined
individually for calculating the energy of a single trans-
mission Ej D NPx;y �Tj . Thereby, NPx;y is gained from the
continuous power consumption model (cf. Equation (5))
with device parameters from Table II. At the end of the
simulation, the average consumed power P†;sim can be
calculated through dividing the total energy, including the
mean value of all single data transmissions’ energy con-
sumption and idle time energy consumption, by the total
simulation duration:
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P†;sim D

A�BP
jD1

�
Ej CPIDLE � TIDLE;j

�
A�BP
jD1

.Tj C TIDLE;j /

(16)

The primary goal of the simulation is to validate
the assumption needed for the analytical CoPoMo. The
three most important differences between the two solution
approaches are that the analytical model

� discretises the power consumption model to only
three active states (cf. Figure 5),

� assumes a perfectly uniform user distribution repre-
sented by only statistic parameters and

� uses only one constant value of Mmax (cf. Equation
(15)) for the number of actually assigned PRB in the
maximum power state.

The following case study illustrates that in spite of
these differences, the power consumption estimation by
CoPoMo matches with the simulation result very well.

9. CASE STUDY: SCALABLE POWER
CONSUMPTION BY
CONTEXT-AWARE RESOURCE
ALLOCATION

In this section, an example application of CoPoMo is
described, which focuses on context-dependent resource
allocation for battery lifetime extension as well as a
suitable system parameter optimization. Specifically, the
impact of the context parameters on the average power con-
sumption is investigated for real-time and non-real-time
applications independently.

9.1. Example scenario and
parameterisation

For the concrete quantitative results presented in this
case study, the device models for a HTC Velocity LTE
smartphone and a Samsung Galaxy S III smartphone
(cf. Table II) are used. The impact of the cell environ-
ment is incorporated by applying ray tracing results for the
following:

� three different cell environments (cf. Figure 11) rep-
resenting urban, suburban and rural scenarios in terms
of cell size and building density and

� two different carrier frequencies (LTE Band 7 @
2600 MHz and LTE Band 20 @ 800 MHz).

The parameterisation of the environments is based on
the 3rd Generation Partnership Project (3GPP) reference
scenarios given in [31]. The most important ray-tracing
parameters are summarised in Table IV.

The throughput that is achievable for different radio
channel conditions has been measured in the laboratory
based on commercially available UE as described in [25].
For the case studies presented in this paper, we use the
so derived SNR dependent throughput for a pure addi-
tive white Gaussian noise (AWGN) channel as well as the
Extended Pedestrian A multipath fading channel presented
in [32].

In all of the plots presented in the following subsec-
tions, the results of CoPoMo are shown together with the
results derived from corresponding system simulations.
The mobility model applied to the system simulation is a
multiple start-point random walk approach (cf. Figure 12).
This model performs a variety of independent random
walks starting in different areas of the overall map. For this

Figure 11. Uplink signal-to-noise ratio distribution for different cell scenarios at 800 MHz carrier frequency and 40 dB transmission
power.
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Table IV. Ray-tracing parameters and their values.

Ray-tracing parameter Value

Ray-tracing model 3D intelligent ray-tracing [30]
Propagation class Double reflection,

single diffraction
UE antenna gain 1 dBi
UE noise figure 6 dB
BS antenna opening angle 120ı

Antenna downtilt 5ı

Inter-site distance urban 500 m [31]
Inter-site distance suburban 1732 m [31]
Inter-site distance rural 5000 m
Noise Thermal noise

UE, user equipment; BS, base station.

particular mobility pattern, the standard deviation of the
simulation has been determined to be below 0.5 per cent
for 106 simulation steps realised by A D 1000 indepen-
dent random walks incorporating B D 1000 transmissions
each.

9.2. Power efficient non-real-time
applications

9.2.1. Quantifying the context-dependent

battery lifetime.

A major advantage of CoPoMo compared with the
models presented in literature is the precise quantifi-
ability of the expected context-dependent battery life-
time TBatt. The impact of the cell environment, the
carrier frequency and the traffic on the battery lifetime
has been reflected by the variable state probabilities pi
(cf. Section 6). Figure 13 shows how the context influ-
ences the probabilities that the UE operates in the idle,
low, high or maximum power state for two different sce-
narios (derived by CoPoMo estimations and system simu-
lation independently). Although for low traffic (e.g. œ D
1=1000 min), the idle state dominates in both scenarios;
there is a significantly differing characteristic observable
for higher values of œ (e.g. œ D 10=min). Although,
for example, in the urban/pedestrian/800 MHz scenario,
the maximum power state is the most probable one; this
phenomenon changes towards the high power state for a
rural/AWGN/800 MHz scenario. These context-dependent
values of pi directly influence the average power consump-
tion P† (cf. Equation (7)) and therefore, TBatt.

This impact can be observed in Figure 14 where P†
as well as the approximated battery lifetime for an HTC
Velocity 4G smartphone are shown for different application
arrival rates. For this purpose, the available energy EBatt of
the smartphone battery is assumed to be EBatt D 6 Wh.
The system parameterisation (50 continuously allocated
PRB) is chosen for a worst case scenario from a power
consumption perspective. One can see that for low traffic
(cf. Figure 14 (1)), the average power consumption P†
converges towards NPIDLE for œ ! 0. This is because the

Figure 12. Multiple start-point random walk mobility used for
the case studies.

UE is in the idle state for most of the time (cf. Figure 13).
For very high values of œ (cf. Figure 14 (2)), the UE
is almost continuously active, and P† converges towards
a maximum, which contingents on the context-dependent
values of pi as well as the device parameters for the
specific LTE frequency band. For an average application
arrival rate of œ D 1=10 min (cf. Figure 14 (3)), which
could correspond to Web-surfing usages, for example,
via multimedia applications such as Instagram‡, one can
observe a significant impact of the context. Whereas in an
rural/AWGN/800 MHz scenario, a battery lifetime of about
60 h can be achieved, the battery needs to be recharged
after 9 h if the scenario is suburban/pedestrian/800 MHz
and after only 7 h in an urban/pedestrian/2600 MHz sce-
nario. However, for extremely high traffic and therefore, a
continuous data transmission, the 2.6 GHz system is more
power efficient than the 800 MHz system. This effect is
due to the higher efficiency of the considered HTC Veloc-
ity 4G smartphone at this frequency band (cf. Figure 5). In
addition to this, Figure 14 shows the output of the model
presented in [14] (PL D 100 dB, Noise bD �128 dBm).
Although the results by the wideband code division multi-
ple access model [14] are suitable for relatively low traf-
fic, significant differences can be observed for the wide
range of D shown in Figure 14. These are due to differ-
ent device models (cf. Figure 5), and the fact that CoPoMo
also encapsulates scenario specific context parameters.
Furthermore, Figure 14 illustrates the impact of interfer-
ences on the battery lifetime. For this purpose, the CCDF
bypass described in Section 7.4 has been applied with
the interference-enabled CCDF of the transmission power
from [28] (assuming fair allocation and slow power control
(FA-SPC)). From the results can quantify the significant

‡www.Instagram.com
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Figure 13. State probability (respectively relative frequency for system simulation) pi for different traffic characteristics and cell
environments (SNRT =13 dB, D = 108 Bit, M D 50).

Figure 14. Impact of the cell environment on the average power consumption for different traffic characteristics including validation
by system simulation (HTC Velocity 4G, D = 108 Bit, M D 50 (continuously allocated), SNRT =13 dB, EBatt D 6 Wh), comparison with
wideband code division multiple access (WCDMA) model [14] and impact of interferences (assuming device parameters for 800 MHz
and fair allocation and slow power control scheme [28]). CoPoMo, context-aware power consumption model; CCDF, complementary

cumulative distribution function.

negative impact of interferences on the expected battery
lifetime (cf. Figure 14 (4)).

9.2.2. Energy-saving PRB allocation.

With the knowledge of various impact factors on the UE
energy efficiency, we can now focus on possible energy-
saving approaches. As LTE incorporates orthogonal fre-

quency division multiple access as the multiple access
scheme, the available physical resources can be allocated
not only in the frequency domain but also in the time
domain. The number of simultaneously allocated PRBs in
the frequency domain is referred to as M (maximum 50
for 10 MHz LTE system). In the time domain, the smallest
assignable resource is one Transmit Time Interval (TTI) of
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1 ms [19] consisting of two consecutive PRB. Therefore, in
one radio frame of 10 ms an overall number of 1000 PRBs
is available (including control channels). Assuming that for
example a certain number of x D 400 PRBs is assigned to
one user in one frame, there are several possibilities to allo-
cate the resources in the time/frequency grid. In case of a
time continuous allocation, the user would obtain M D 20
PRBs in each of the 10 TTI. One alternative would be,
to allocate M D 40 PRBs in the frequency domain but
only in 5 out of 10 TTI. Figure 15 illustrates the different
possibilities.

The figure illustrates the effect that increasing the num-
ber of allocated PRB in the frequency domainM leads to a
higher throughput and therefore, a decreasing transmission
duration 1=�. If this effect should be compensated, that is,
because the overall number of resources assigned to the
UE should remain constant regardless the actual resource
allocation in the time/frequency grid, the fraction of active
TTI has to be reduced with respect to the increase of M .

Assuming that in the idle TTI, an average power of NP1
is consumed; the overall average power consumption is
given by

NP D
1

LCK
�

0@L � NP1 C KX
iD1

NP
�
PTx;i

�1A (17)

with K being the number of active TTI and L being the
number of idle TTI. The results presented in Figure 16
quantitatively illustrate the effect of different PRB alloca-
tions on the average power consumption. Using as many
PRBs as possible in one TTI and then, falling into the sleep
mode for a duration as long as possible is intuitively the
most energy efficient option. However, CoPoMo allows for
a quantitative analysis of the battery lifetime enhancements
and suggests resource allocation schemes for achievable
energy savings. Figure 16 (1), for example, shows that
power savings of up to 73 per cent are possible if four addi-
tional PRBs are spent in each active TTI. Nevertheless, this

Figure 15. Illustrations of resource allocation schemes and Markovian parameters for fixed (top) and variable (bottom) #PRB/Frame.
PRB, physical resource block; TTI, Transmit Time Interval.

Figure 16. Battery lifetime aware physical resource block (PRB) allocation in time and frequency domain for non-real-time applica-
tions (HTC Velocity 4G, urban cell environment, additive white Gaussian noise channel, fc D 800 MHz, D D 109 Bits, œ D 1=300 s,
SNRT =13 dB, EBatt D 6 Wh). TTI, Transmit Time Interval; LTE, long term evolution; CoPoMo, context-aware power consumption

model.
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approach is a suitable solution especially for a small num-
ber of PRBs per frame (e.g. 20 PRBs/frame in Figure 16).
Beyond that, Figure 16 illustrates the impact of the actual
cell environment on the results. One can observe that for
relatively low PRB allocations, the cell environment has
a negligible impact on the power consumption. This is
because for this particular case, the scenario independent
idle power is a dominating factor. However, for the case
of 400 PRBs per subframe, one can observe a signifi-
cant impact of the scenario (cf. (2) in Figure 16). More
precisely, the power consumption in a suburban environ-
ment is the highest, whereas the longest battery lifetime
can be achieved in a rural environment. This observation
correlates to the CCDF in Figure 9 as the suburban envi-
ronment is characterised by the highest possibility for the
disadvantageous maximum power state.

9.2.3. Impact of the device type on

battery lifetime.

Beside the system and context parameters, the hard-
ware specific device parameters ’, “ and ” (cf. Table II)
have a significant impact on the expected battery lifetime
as they are directly influencing the state-dependent power
consumption values NPi . For the devices that are support-
ing multiple frequency bands, it is furthermore impor-
tant which one of the supported frequency bands is the
more power efficient one. Figure 17 illustrates this influ-
encing factor for two smartphones with quite contrary
characteristics.

The most important difference is that the HTC Velocity
4G phone is more power efficient at a carrier frequency
of 2600 MHz, whereas the Samsung Galaxy S III per-
forms better at 800 MHz (cf. Table II). Combining this fact
with the much more advantageous radio channel condi-
tions at 800 MHz leads to the significantly differing battery
lifetimes for the device/frequency combinations shown in
Figure 17. Whereas the lower path loss at 800 MHz (i.e. a

lower average transmission power) is constructively inter-
acting with the already lower power consumption in case
of the Galaxy smartphone, a trade-off between the advan-
tageous propagation conditions and the disadvantageous
power efficiency at 800 MHz can be observed for the
Velocity phone. This trade-off leads to the result that for the
particular example scenario shown in Figure 17, the UE is
operated more efficiently at 800 MHz for lower traffic, that
is œ < 2=min, and at 2600 MHz for high traffic, that is, œ >
2=min (cf. (1) in Figure 17). The Samsung phone on the
other hand is significantly more efficient at 800 MHz for
any system load. The case study therefore illustrates one
additional application field of CoPoMo, which is a bench-
marking of commercially available smartphones in terms
of their battery lifetimes under fair and controllable con-
ditions while incorporating all relevant system and context
parameter.

9.2.4. Impact of the carrier frequency on

battery lifetime.

Compared with previous cellular systems, LTE is
deployed with a quite large set of different carrier frequen-
cies. Assuming that if more than one LTE band is available
at a certain location, a switching between the different car-
rier frequencies is possible. This procedure is called inter-
frequency handover. However, the decision which one of
the available frequencies is the optimal choice is nontrivial
and depends on the actual device type as well as the con-
text. As one can see from Figure 17, performing a handover
from 2600 to 800 MHz may allow for significant battery
lifetime enhancements of up to 40 per cent (in case of a
Samsung Galaxy S III UE, cf. (2) in Figure 17). Neverthe-
less, the same proceeding may cost up to 10 per cent battery
lifetime if another device type is used (i.e. HTC Velocity
4G). Applying this knowledge, a context-dependent opti-
mal system parameterisation can be dynamically chosen
by CoPoMo as depicted in Figure 1.

Figure 17. Impact of the user equipment on the average power consumption for different traffic characteristics including validation
by system simulation (suburban scenario, pedestrian radio channel, D D 108 Bit, M D 50 (continuously allocated), SNRT =13 dB,

EBatt D 6 Wh). CoPoMo, context-aware power consumption model.
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Figure 18. Trade-off between spectrum allocation and power consumption for real-time applications (Samsung Galaxy S III, urban
environment, additive white Gaussian noise channel, œ D 1=300 s, � D 1=120 s, EBatt D 6 Wh). PRB, physical resource block;

CoPoMo, context-aware power consumption model.

9.3. Power efficient real-time applications

Different than the non-real-time applications, real-time
applications such as VoIP or video streaming cannot ben-
efit from increasing data rates, as the data that needs
to be transferred becomes continuously generated by
the codec. Therefore, a continuously available fixed data
rate channel needs to be provided by the system. To
achieve a constant bit rate, a degradation of the radio
channel needs to be compensated by the allocation of
additional PRBs.

9.3.1. Trading PRBs for battery lifetime.

As it can be seen from Figure 18 (1), the average number
of PRBs that are needed for achieving a given through-
put of 500 kbit/s is controllable by the target SNR. For
lower values of SNRT , the average power consumption
P† decreases but at the expense of an increasing num-
ber of necessary PRBs. If there are unused PRBs avail-
able, for example, because the cell is not completely
occupied, a battery lifetime enhancement of up to 7 per
cent is possible by spending only one additional PRB
(cf. Figure 18).

9.3.2. Impact of different carrier frequencies.

On top of this, the battery lifetime can be further
enhanced by additional 24 per cent if the UE can han-
dover to the more power efficient 800 MHz LTE band
(cf. (2) in Figure 18). However, it is worth noting that the
energy-saving potential as well as the most energy efficient
proceeding does strongly depend on the actual UE (cf.
Section 9.2.3). The knowledge about this relationship and
quantitative analyses allow network operators to support
a trade-off between the cell capacity in different frequency
bands and the average battery lifetime of the particular user
device inside a cell.

10. CONCLUSION

The key contribution described in this paper is CoPoMo,
a context-aware stochastic power consumption model that
enables precise battery lifetime forecasts of LTE devices
in realistic scenarios. The following results highlight our
research about CoPoMo:

� The application of empirically derived device models
is necessary for an accurate battery lifetime forecast
(cf. Figures 5 and 14).

� The significant impact of physical layer character-
istics such as cell environment and radio channel
conditions on UE power consumptions has been
demonstrated (cf. Figure 14).

� The application of CoPoMo for concrete forecasts
of the context-dependent battery lifetime has been
illustrated (cf. Figures 14, 16 and 18).

� The Markovian-based power consumption modelling
including the differentiation between different appli-
cation types is important for the optimal system
parameterisation (cf. Figures 16 and 18).

� An example on how the battery lifetime can be greatly
enhanced by energy efficient PRB allocation in time
and frequency domains was given (cf. Figure 16).

All results have been validated by an independent sys-
tem simulation. Our future work will extend the generic
CoPoMo approach to other wireless communication net-
works, including LTE Advanced. Beyond that, we are
going to perform extensive field trials in public LTE net-
works for further validation of the CoPoMo.
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