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Abstract—FACT, the First G-APD Cherenkov Telescope, de-
tects air showers induced by high-energetic cosmic particles.
It is desirable to classify a shower as being induced by a
gamma ray or a background particle. Generally, it is nontrivial
to get any feedback on the real-life training task, but we can
attempt to understand how our classifier works by investigating
its performance on Monte Carlo simulated data. To this end, in
this paper we develop the SCaPE (Soft Classifier Performance
Evaluation) model class for Exceptional Model Mining, which is a
Local Pattern Mining framework devoted to highlighting unusual
interplay between multiple targets. In our Monte Carlo simulated
data, we take as targets the computed classifier probabilities
and the binary column containing the ground truth: which kind
of particle induced the corresponding shower. Using a newly
developed quality measure based on ranking loss, the SCaPE
model class highlights subspaces of the search space where the
classifier performs particularly well or poorly. These subspaces
arrive in terms of conditions on attributes of the data, hence
they come in a language a domain expert understands, which
should aid him in understanding where his/her classifier does
(not) work. Additional experiments are carried out on nine UCI
datasets. Found subgroups highlight subspaces whose difficulty
for classification is corroborated by astrophysical interpretation,
as well as subspaces that warrant further investigation.

Keywords—Astrophysics, Exceptional Model Mining,
Cherenkov radiation, soft classifier.

N.B.: A condensed version of this paper will appear as a
short paper at the 14th IEEE International Conference on Data
Mining [1].

I. INTRODUCTION

The FACT telescope ([2], [3]) is an Imaging Air Cherenkov
Telescope, designed to detect light emitted by secondary par-
ticles, generated by high-energetic cosmic particles interacting
with the atmosphere of the Earth. For astrophysical reasons,
it is important to classify the light as resulting from the
atmosphere being hit by a gamma ray or a proton; the latter
occur much more frequently, but the former are the more
interesting in gamma astronomy (which will be discussed later
in the paper). Currently, one of the used classifiers is a random
forest, whose performance needs our detailed attention.

The problem with training a classifier on real astrophysical
data is that there is no clear feedback. Based on the observed

light, we could deduce whether the inducing particle is a
gamma ray or a proton. Then, we can look in the direction from
which the particle originated, and strive to find an astrophysical
source generating gamma rays. But even if we find such a
source, there is no certain way of telling what kind of particle
induced the original observation. Effectively, we are dealing
with a feedbackless learning task, and it is typically hard to
finetune a classifier without feedback.

To study our learning performance, we turn to Monte Carlo
data. We simulate particle interactions with the atmosphere,
as well as reflections of the resulting Cherenkov light with
telescope mirrors on the one hand and the FACT camera
electronics on the other hand. Thus, we can simulate the
images in the FACT camera with known parameters, including
the type of inducing particle. This gives us a dataset of camera
images that is equivalent in form to a dataset we would
get from real astrophysical observations, except that we also
know the true label of our classification task. By training our
random forest on this dataset, we obtain the soft classifier
probabilities for each record. Through studying the interaction
between the binary ground truth that we already knew and the
soft classifier probabilities we learned from the data, we can
understand where our classifier performs exceptionally well or
exceptionally poorly.

We study this interaction with an Exceptional Model
Mining (EMM) ([4], [5]) approach. This is a Local Pattern
Mining framework, specialized in finding coherent subsets
of the dataset where multiple targets interact in an unusual
way. In this paper, we introduce the SCaPE (Soft Classifier
Performance Evaluation) model class for EMM, seeking sub-
groups for which a soft classifier represents a ground truth
exceptionally well or poorly. This should allow a domain
expert to understand where his/her classifier does (not) work.

II. PRELIMINARIES

Before we can introduce the new contributions of this
paper, we need to cover a lot of preliminary ground. The pre-
liminaries have been split up into three parts: an introduction
of astrophysical concepts, a short note on the alignment of soft
and hard classifiers, and a summary of Local Pattern Mining
methods including EMM. Feel free to skip the corresponding
subsections if you are familiar with these fields.



Fig. 1. The FACT telescope.

A. The FACT Telescope

An important task in astroparticle physics is observing dis-
tant astrophysical sources such as Supernova Remnants (SNR)
or Active Galactic Nuclei (AGN) in multiple energy ranges
(optical, radio, X-ray, gamma rays), since combining such
observations helps us understand (amongst others) the cosmic
particle acceleration and radiation emission mechanisms of
these sources [2]. Each energy range demands different de-
tector techniques, hence dedicated telescopes are required. In
the high-energy regime, we are interested in (ultra-)relativistic
cosmic particles such as gamma rays, neutrinos, and protons,
which are assumed to be accelerated by astrophysical sources
(such as SNR and AGN). Gamma rays are interesting because
of their neutral electric charge, which causes them to travel
undeflected by intergalactic magnetic fields. This means that
the direction from which the primary gamma rays are coming,
necessarily points directly to the astrophysical source.

The Earth’s atmosphere is only transparent in optical
and radio wavelengths. This prohibits observing low-energy
gamma rays on Earth, but we can make these observations with
dedicated satellites. Since the flux of gamma rays, which is the
amount of particles per area and time, decreases with higher
energy, the detection of gamma rays in higher energy ranges
would require either a bigger detection area (in the satellite)
or more time. Both solutions are not satisfying, as time and
bigger satellites are prohibitively cost-intensive. Instead, we
can exploit an effect caused by the, otherwise detrimental,
passage through the atmosphere a particle makes, which allows
to observe very high-energy (VHE) gamma rays by ground-
based telescopes.

When very high-energetic cosmic particles such as gamma
rays and protons interact with the atmosphere of the Earth,
they induce an extensive air shower consisting of secondary
relativistic particles, which can be charged. The charged parti-
cles emit Cherenkov radiation [6], a blueish light which can be
detected by Imaging Air Cherenkov Telescopes (IACT). One
such telescope is FACT, the First G-APD Cherenkov Telescope
(cf. Figure 1). It is located on La Palma, Canary Islands,
Spain at 2200m above sea level, and is operational since

Fig. 2. Camera images of real air showers. The distinctive shapes of different
showers helps to classify gamma- and proton-induced showers. The color scale
corresponds to the amount of the detected Cherenkov light in each pixel.

October 2011 [3]. With a total reflective surface of 9.5 m2,
it is a rather small telescope. FACT is the first IACT using
Geiger-mode Avalanche PhotoDiodes (G-APD) (also known as
silicon photomultipliers) as photosensors to detect Cherenkov
light. Contrary to conventional detector techniques of IACTs,
G-APDs allow to observe even during strong moonlight and
thus increase the effective observation time. This is especially
interesting for source detection by small telescopes, but also
very important for long-term monitoring of sources.

As we observe a variability in the gamma ray flux of
sources in multiple timescales (both seconds and years) [3],
long-term monitoring is required to understand the emis-
sion procedures and mechanisms within and surrounding the
sources. The primary physics goal of FACT is therefore to
observe the brightest known VHE sources on long timescales,
which becomes realizable by using G-APDs.

The common method in gamma astronomy to evaluate
analysis methods is to compare them with existing methods
on data from an astrophysical source called the Crab Nebula.
In the year 1054, Chinese astronomers observed a Supernova
explosion in the sky. Today, we see the remnant of this
explosion as the Crab Nebula. This SNR is one of the brightest
sources in gamma ray astronomy. With a distance of about
6,500 light years to Earth it is located near us and inside the
Milky Way, making it relatively easy to observe. In 1989 the
Whipple Observatory detected the first VHE gamma rays from
the Crab Nebula [7]. Since then the Nebula has been studied
in detail: the flux of gamma rays from the Crab Nebula was
carefully observed on a long timescale. The Crab Nebula is
an ideal candidate to calibrate the stability of the analysis of
other active sources, since nearly no variability was measured
in the flux of HE and VHE gamma rays [8] and serves as a
’standard candle’ in gamma astronomy.

The main goal of the analysis method whose results are
evaluated in this paper is to find gamma-induced showers.
Unfortunately, for the brightest sources, proton showers appear
a thousand to ten thousand times more frequently than gamma
showers in the source direction [9], which makes the light of
the proton-induced showers the biggest background. Therefore,
the separation of gamma- and proton-induced showers is very
important to be able to detect a source, to increase the
sensitivity of the telescope and thus the effective observation
time, and finally to measure the spectrum of the source. For



the separation, Monte Carlo simulations are necessary, which
simulate shower images in the FACT camera with known
parameters, such as type and energy of the primary particle
that induced the shower. The first step is to simulate particle
interactions in the atmosphere and the emission of Cherenkov
light with the program MMCS based on CORSIKA [10].
Further processing by a simulation and analyzing tool called
MARS [11] includes simulating the reflection of the light on
the mirrors of the telescope and the electronics inside the
camera. We end up with simulated camera images containing
gamma and proton showers. From these camera images the
image parameters of the showers are reconstructed. Since
gamma- and proton-induced showers have distinctive shapes
(cf. Figure 2), the image parameters describing the properties
of the shower images are used to distinguish between them.
As the information of the primary particles is known in the
simulation, the data are labeled as true or 1 for gamma showers
(signal) and false or 0 for proton showers (background).

As it is commonly done in IACT experiments, for in-
stance in the MAGIC [12] and H.E.S.S. [13] experiments,
the separation is done with a random forest (RF) algorithm
[14]. We employ an implementation available within the
RapidMiner analytics platform [15], in particular the one that
is equivalent to the implementation available in the WEKA
[16] machine learning software. The RF builds a model with
the image parameters of the labeled simulated data and tests
it on the remaining dataset in a five-fold cross-validation to
ensure a stable classification. For this dataset 500 trees were
grown, each considering a random subset of 8 out of the
11 available attributes. These 11 attributes contain parameter
distributions for gamma and proton showers, which are known
to be crudely separable by simple cuts on each parameter
relatively successfully. The fact that just a subset of attributes
is drawn contributes to the randomized trees needed for a good
random forest. Notice that this whole procedure is still under
development; these settings do not necessarily represent the
final settings of the separation. Each tree classifies an event
(one shower) as 1 for signal or 0 for background. Prediction
aggregation over all trees is done by averaging, and expressed
by the Signalness:

S =
1

ntrees

ntrees∑
i=1

Si with Si ∈ {0, 1}

This quantity describes the probability or the confidence of
the RF for an event to be classified as a gamma shower. For
the given FACT dataset the efficiency decreases with a higher
Signalness value, but at the same time the purity increases.
To separate gamma and proton showers sufficiently while not
losing too much data, a cut has to be found which fulfills both
conditions and depends on the physics task.

B. Soft and Hard Classifiers

Suppose that we have a binary classification problem: any
record of the dataset belongs to exactly one of the two available
classes. Let us denote those classes by 0 and 1. For such a
problem, two particular types of classification algorithms can
be distinguished. On the one hand, a hard classifier outputs for
each record in the test set a decision to which class it thinks
the record belongs: the output is either 0 or 1. On the other

hand, a soft classifier outputs for each record in the test set a
real-valued number, typically a probability: the output can be
any value in R, and higher values for the output correspond to
a higher confidence that the records should be assigned class 1.
These two types of classifiers stem from different philosophies;
both have their merits and drawbacks.

A soft classifier can be turned into a hard classifier by
thresholding. Denote the real-valued soft classifier output for
the ith record by ri. If we choose any value v ∈ R, we can
convert the soft classifier into a hard classifier by setting our
output for the ith record to 1I

{
ri > v

}
. Here, 1I denotes the

indicator function, which is equal to 1 if its argument is true
and 0 otherwise. In other words, records to which the soft
classifier assigns a value higher than v are assigned class 1,
and all other records are assigned class 0. By varying v, we
can generate as many different hard classifiers from the soft
classifier as the number of distinct values for ri.

Notice that in this process, the ordering imposed on the
records by the soft classifier outputs is much more important
than their actual values. Suppose that record x1 has a higher
soft classifier output than record x2. If the threshold value
causes x2 to be assigned class 1, it will also cause x1 to be
assigned class 1. Conversely, if it causes x1 to be assigned class
0, is will also cause x2 to be assigned class 0. This behavior
does not depend on how far the soft classifier outputs are
apart: rather, their ranking enforces these relations on the hard
classifier behavior. We will mirror this emphasis on ordering
when we develop our new quality measure, in Section V-B.

In the FACT telescope simulation data, we have the in-
formation of the primary particles, which can be viewed as
the predictions of a perfect hard classifier. We also learn the
signalness of each record, which can be viewed as the output of
a soft classifier. We will investigate unusual interplay between
these classifiers in an Exceptional Model Mining setting.

C. Exceptional Model Mining

Pattern mining ([17], [18]) is the broad subfield of data
mining where only a part of the data is described at a time,
ignoring the coherence of the remainder. One class of pattern
mining problems is theory mining [19], whose goal is finding
subsets S of the dataset Ω that are interesting somehow:

S ⊆ Ω ⇒ interesting

Typically, not just any subset of the data is sought after:
only those subsets that can be formulated using a predefined
description language L are allowed. A canonical choice for the
description language is conjunctions of conditions on attributes
of the dataset. If, for example, the records in our dataset
describe people, then we can find results of the following form:

Age ≥ 30 ∧ Smoker = yes ⇒ interesting

Allowing only results that can be expressed in terms of
attributes of the data, rather than allowing just any subset,
ensures that the results are relatively easy to interpret for a
domain expert: the results arrive at his doorstep in terms of
quantities with which he should be familiar. A subset of the
dataset that can be expressed in this way is called a subgroup.

In the best-known form of theory mining, frequent itemset
mining [20], the interestingness of a pattern is gauged in an



unsupervised manner. Here, the goal is to find patterns that
occur unusually frequently in the dataset:

Age ≥ 30 ∧ Smoker = yes ⇒ (high frequency)

In the FACT telescope setting, however, we strive to sep-
arate the gamma sources from the proton sources; there is
a clear target, hence this setting is supervised. The most
extensively studied form of supervised theory mining is known
as Subgroup Discovery (SD) [21], where one (typically binary)
attribute t of the dataset is singled out as the target. The goal
is to find subgroups for which the distribution of this target
is unusual: if the target describes whether the person develops
lung cancer or not, we find subgroups of the following form:

Smoker = yes ⇒ lung cancer = yes
Age < 30 ⇒ lung cancer = no

Exceptional Model Mining (EMM) ([4], [5]) can be seen as
the multitarget generalization of SD. Rather than singling out
one attribute as the target t, in EMM there are several target
attributes t1, . . . , tm. Interestingness is not merely gauged in
terms of an unusual marginal distribution of t, but in terms
of an unusual joint distribution of t1, . . . , tm. Typically, a
particular kind of unusual interaction between the targets is
captured by the definition of a model class, and subgroups are
deemed interesting when their model is exceptional, which is
captured by the definition of a quality measure. For example,
suppose that there are two target attributes: a person’s length
(t1), and the average length of his/her grandparents (t2). We
may be interested in the correlation coefficient between t1
and t2; we then say we study EMM with the correlation
model class [4]. Given a subset S ⊆ Ω, we can estimate the
correlation between the targets within this subset by the sample
correlation coefficient. We denote this estimate by rS . Now we
can define the following quality measure (tweaked from [4]):

ϕ(S) =
∣∣rS − rΩ

∣∣
EMM then strives to find subgroups for which this quality
measure has a high value: effectively, we search for subgroups
coinciding with an exceptional correlation between a person’s
length and his/her grandparents’ average length:

Lives near nuclear plant = yes ⇒
∣∣rS − rΩ

∣∣ is high

III. RELATED WORK

Previous work exists on discovering subgroups displaying
unusual interaction between multiple targets, for instance in
the previously developed model classes for EMM: correlation,
regression, Bayesian network, and classification (cf. ([4], [5]),
for the Bayesian network model class see also [22]). The
classification model class is particularly related to the SCaPE
model class, with two major differences. On the one hand, the
model class definitions imply a different relation between the
subgroup definitions and classifier search space. The classifica-
tion model class takes both classifier input and output attributes
as targets for the EMM run. This disallows those attributes to
show up in the descriptions of subgroups found with EMM;
exceptional subgroups are described in terms of attributes
unavailable to the classifier. By contrast, in the SCaPE model
class, all attributes available as input (but not as output!)
to the classifier are also available for describing subgroups.
Hence, the found unusual subgroups directly correspond to a

subspace in the classifier search space. On the other hand, the
model classes search for a different underlying concept in the
dataset. The classification model class investigates classifier
behavior in the absence of a ground truth. The SCaPE model
class evaluates classifier performance in the presence of a
ground truth. Hence, the two model classes are different means
to achieve different ends. The other existing model classes
for EMM, including the Bayesian network model class [22],
have in common with the SCaPE model class that they find
subgroups displaying exceptional interplay between targets.
Either the amount of involved targets, or the type of interplay
that is being detected (or both) is vastly different from the
exceptional interplay being gauged by the SCaPE model class.
Hence the resulting subgroups found with these model classes
are incomparable to each other, and to those found with the
SCaPE model class.

Local Pattern Mining tasks that are similar to SD are
Contrast Set Mining [23] and Emerging Pattern Mining [24].
Both these tasks do not consider multiple target attributes
simultaneously, and do not directly model unusual interactions.
Explicitly seeking a deviating model over a target is performed
in Distribution Rules [25], where there is only one numeric
target, and the goal is to find subgroups on which the target
distribution over the entire target space is the least fitting
to the same distribution on the whole dataset. This can be
seen as an early instance of EMM with only one target.
However, there is no multi-target interaction. Umek et al.
[26] do consider SD with multiple targets. They approach
the attribute partition in the reverse way of EMM: candidate
subgroups are generated by agglomerative clustering on the
targets, and predictive modeling on the descriptors strives to
find matching descriptions. This work does not allow freely
expressing when target interaction is unusual. Redescription
Mining [27] seeks multiple descriptions inducing the same
subgroup. This models unusual interplay, but on the descriptor
space rather than the target space. Furthermore, none of this
work concerns explicit evaluation of a classifier.

Automated guidance to improve a classifier has been stud-
ied in the data mining subfield of meta-learning. The exact
meaning of this term is subject to debate; see [28] for a
survey discussing some of the views. A constant factor is
that meta-learning hovers around the question how knowledge
about learning can be put to use to improve the performance
of a learning algorithm. A typical approach is to let the
machine compute meta-features characterizing the data, such
as correlations between attributes, attribute entropy, and mutual
information between class and attributes. These meta-features
are then considered in a new classifier training phase, and
the hope is that this improves predictive performance. This
process is depicted in the self-adaptive learning flow diagram
in [28, Figure 2]. The meta-features can also be employed
to compare learning algorithms. For instance, Henery [29]
provides a set of rules to determine when the one learning
algorithm is significantly better than the other. However, in
almost all of the existing meta-learning work, the focus is on
letting the machine learn how the machine can perform better.

By contrast, Vanschoren and Blockeel [30] express an inter-
est in understanding learning behavior. Their paper discusses
a descriptive form of meta-learning, proposing an integrated
solution (using experiment databases) that aims to explain



the behavior of learning algorithms. This explanation is again
expressed in terms of meta-features; no investigation takes
place of particular subspaces of the search space on which the
algorithm performs exceptionally. While Vilalta and Drissi [28,
Section 4.3.1] do devote a subsubsection to “Finding regions in
the feature space [. . . ]”, this is again in the context of algorithm
selection. Their innovation lies in allowing different learning
algorithms for different records of the dataset. Meta-learning is
related to the goals we strive to achieve with the SCaPE model
class for EMM, but two things set these approaches apart:
meta-learning focuses on meta-features, while the SCaPE
model class focuses on coherent subspaces of the original
search space, and meta-learning focuses on letting the machine
improve the predictive performance of the machine, while
the SCaPE model class focuses on providing understanding
to the domain expert where his/her classifier works well or
fails. As such, the SCaPE model class for EMM provides
progress on the path sketched by Vanschoren and Blockeel
in the conclusions of their paper [30, Section 5]: “We hope to
advance toward a meta-learning approach that can explain not
only when, but also why an algorithm works or fails [. . . ]”.

A very recent first inroad towards peeking into the classifier
black box is the method by Henelius et al. [31], who strive
to find groups of attributes whose interactions affect the
predictive performance of a given classifier. This is more akin
to the classification model class for EMM. While Henelius et
al. study hard classifiers, the SCaPE model class is designed
for soft classifiers.

IV. MAIN CONTRIBUTION

The main contribution of this paper is the development of
a new model class with associated quality measure for Excep-
tional Model Mining: the SCaPE (Soft Classifier Performance
Evaluation) model class. In this model class, two targets are
identified: a binary target b describing the ground truth, and a
real-valued target r containing the output of a soft classifier
that strives to approximate b. The goal in this model class is
to find subgroups for which this soft classifier represents the
ground truth exceptionally well or exceptionally poorly. Notice
that, SCaPE being an EMM model class, the focus is on easily-
interpretable subgroups. Hence, our primary goal is not to let
the machine improve the machine, but to let the domain expert
understand where his/her classifier does or does not work.

V. THE SCAPE MODEL CLASS FOR EMM

In the SCaPE model class for EMM, we assume a
dataset Ω, which is a bag of N records of the form x =
(a1, . . . , ak, b, r). We call {a1, . . . , ak} the descriptive at-
tributes, or descriptors, whose domain is unrestricted. The
remaining two attributes, b and r, are the targets. The first,
b, is the binary target; we will denote its values by 0 and 1.
The second, r, is the real-valued target, taking values in R.

The goal of the SCaPE model class is to find subgroups for
which the soft classifier outputs, as captured by r, represent
the ground truth, as captured by b. In Section V-A, we develop
measures that quantify how well b is represented by r, on the
entire dataset and on subsets of the dataset. In Section V-B, we
use these measures to define a quality measure for the SCaPE
model class, that gauges how exceptional the interplay between

TABLE I. EXAMPLE DATASET ΩE FOR THE ASL ILLUSTRATION

ΩE x1 x2 x3 x4 x5 x6 x7 x8 x9

a1 A B C A C B A C C
b 0 1 0 0 1 0 1 1 1
r 0.0 0.1 0.3 0.4 0.5 0.6 0.8 0.9 1.0

r and b is on a subgroup when compared to this interplay on
the entire dataset. First, however, we need to introduce the
following notation and conventions.

If we need to distinguish between particular records of the
dataset, we will do so by superscripted indices: xi is the ith

record, bi is its value for the binary target and aij is its value for
the jth descriptor. For the sake of notational convenience, we
assume that the records are indexed in non-descending order
by their values of r: i < j ⇒ ri ≤ rj . We call the records xi

in the dataset for which the binary target is true the positives,
and the other records the negatives.

A. Average (Sub-)Ranking Loss

To explain our reasoning we refer to the toy dataset ΩE

in Table I, featuring nine records consisting of the two targets
and only one descriptor. Recall that the binary target contains
the ground truth, and the real-valued target contains the output
of a soft classifier striving to represent this ground truth.

In Section II-B we have discussed how a soft classifier can
be converted into a hard classifier by imposing a threshold at
any chosen value v: the predicted label for record xi is set to
1 if and only if ri > v. One can read from the table that v
could be chosen such that the hard classifier based on r lines
up reasonably well with the ground truth as provided by b; by
and large, high values for the real-valued target coincide with
b = 1, and low values with b = 0. Notice that this capability
of r is primarily sensitive not to its precise values, but to the
ordering it implies on the records. Therefore, we capture the
alignment of r and b on the whole dataset by the Average
Ranking Loss [32]:

ARL(Ω) =

N∑
i=1

(
1I
{
bi = 1

}
·

N∑
j=i+1

1I
{
bj = 0

})
N∑
i=1

1I {bi = 1}
(1)

Essentially, for every positive in the dataset a penalty is
computed. The penalty for xi is equal to the number of
negatives xj that have a higher value for the real-valued target:
ri < rj (here, the formula for ARL uses the fact that the
dataset is ordered non-descendingly by ri, and conveniently
ignores for the moment that two consecutive r-values may be
equal). This ranking loss is then averaged over all positives in
the dataset, arriving at the ARL. Obviously, lower values of
the ARL correspond to a better representation of b by r.

For the example dataset in Table I, the penalty assigned to
x7, x8, and x9 is 0, since no negatives have a higher value
for r than they do. Since x5 has a lower value for r than
x6, we assign penalty 1 to x5, and x2 gets penalty 3 since it
has a lower value for r than x3, x4, and x6. Averaging these
penalties over all five positives, we arrive at ARL(ΩE) = 0.8.



To determine the degree of representation of b by r in
a given subgroup S of the dataset, we compute the ARL
again, but then restricted to just those records belonging to
the subgroup. We call this the Average Subranking Loss of
S, denoted by ASL(S). For the example dataset in Table I,
we would find ASL(a1 = B) = 1; its only positive has a
lower value for r than its only negative, so that positive gets a
penalty of 1, which is averaged over 1 positive in the subgroup.
Similarly, ASL(a1 = A) = 0 and ASL(a1 = C) = 0, since
within each of these subgroups, all positives have a higher
value for r than all negatives, so all positives get penalty 0.

1) Handling Ties: So far, we have assumed that all values
for the real-valued target r in the dataset are distinct. This
simplifies the formula in Equation (1), and allows for an
easier intuitive explanation in that section. In practice, of
course, such an assumption is not necessarily justified and
hence undesirable. In this section, we discuss how to handle
tied r-values in the dataset. Since we compute the Average
(Sub-)Ranking Loss as an average of penalties assigned to all
positives, we can focus on how to update the penalty assigned
to a positive when its r-value is replicated in the dataset.
Suppose that xi is such a positive: we know that bi = 1 and
ri = rj for some j 6= i. If xj is also a positive, then the
penalty does not need to change: the values for both the real-
valued and the nominal target agree, so the relative ranking
of these two records is not wrong. If, on the other hand, xj

is a negative, then we should increment the penalty by some
amount; a natural choice for this amount can be motivated.

We have two records with the same values for the real-
valued target, but opposing values for the binary target. As
discussed in Section II-B, a soft classifier can be converted
into a hard classifier by thresholding on the soft classifier
outputs. Such thresholding cannot distinguish between xi and
xj since ri = rj . Hence, whatever threshold value is chosen,
these records will both be assigned either class 0 or class
1. That means, that exactly one of these two records will be
misclassified. Since each tie between a positive and a negative
will necessarily lead to the misclassification of exactly half
the involved records, we will add 1/2 to the penalty for xi for
each such tie. Incorporating this penalty leads to the following
definitions of the ARL and ASL:

Definition (Average (Sub-)Ranking Loss). Given a dataset
Ω satisfying the stipulations of Section V, its Average Ranking
Loss, ARL(Ω), is given by:

ARL(Ω) =

∑N
i=1 1I

{
bi = 1

}
· PENN

i (Ω)∑N
i=1 1I {bi = 1}

where the penalty for the ith record, PENN
i (Ω), is given by:

PENN
i (Ω) =

N∑
j=i+1

1I
{
bj = 0 ∧ rj > ri

}
+

1

2

N∑
j=i+1

1I
{
bj = 0 ∧ rj = ri

}

Given a subgroup S of Ω, its Average Subranking Loss,
ASL(S), is given by:

ASL(S) = ARL(Ω′)

where Ω′ is the dataset constructed by taking from Ω only
those records belonging to S.

B. Quality Measure: Relative Average Subranking Loss

In Exceptional Model Mining, we strive to find subgroups
for which the target interaction captured by the model class
is exceptional. This exceptionality is evaluated by a quality
measure. We define a quality measure for the SCaPE model
class, whose maxima, minima, and extremities correspond to
three distinct goals:

Definition (Relative Average Subranking Loss). Given a
subgroup S of Ω, its Relative Average Subranking Loss, ϕrasl,
is given by:

ϕrasl(S) = ASL(S)−ARL(Ω)

To find subgroups for which r represents b poorly, i.e.,
subgroups for which the soft classifier does not work, one
should maximize ϕrasl; positive values for ϕrasl indicate that
the soft classifier performs worse than usual on this sub-
group. For instance, in our example dataset from Table I,
ϕrasl(a1 = B) = 0.2. To find subgroups for which r represents
b well, i.e., subgroups for which the soft classifier does work,
one should minimize ϕrasl; negative values for ϕrasl indicate
that the soft classifier performs better than usual on this
subgroup. For instance, in our example dataset from Table I,
ϕrasl(a1 = A) = −0.8.

Alternatively, one could find a list of subgroups for which
the soft classifier performs exceptionally in general, by max-
imizing |ϕrasl|. The resulting list of subgroups could be par-
titioned into poorly- and well-classified subgroups in a post-
processing step. In this paper, however, we maintain the strict
separation of bad and good subgroups by presenting results of
ϕrasl-maximizing and -minimizing runs separately.

VI. EXPERIMENTAL RESULTS

For the sake of reproducibility, we first present results
of artificial experiments performed on UCI datasets, before
moving to the astrophysical domain and the FACT data.

A. Artificial Experiments on UCI Datasets

We illustrate the SCaPE model class for EMM with artifi-
cial experiments on nine datasets taken from the UCI machine
learning repository [33]; properties of the selected datasets can
be found in Table II. As selection criterion, the dataset must
have a clear binary label, for use as the binary target b in
the SCaPE model class. The final dataset collection spans a
representative range in terms of number of records, number of
attributes, and types of attributes.

1) Generating the Real-Valued Target: The SCaPE model
class for EMM also requires the presence of a real-valued
target r, which strives to emulate the binary target. We gener-
ate this numeric target ourselves, employing the RapidMiner
analytics platform [15]. Each of the datasets (available to
us in ARFF format) is fed to RapidMiner’s out-of-the-box
Naive Bayes [34] classifier, with standard parameter settings.
This particular algorithm is selected because it can handle
all types of available attributes (binary, nominal, numeric),



as well as missing values. Moreover, the algorithm is a soft
classifier: output comes in the form of probabilities. The
resulting probabilities are written out to a new ARFF file,
containing the original dataset but with an additional column
containing the real-valued target r.

Now that both the binary target b and the real-valued
target r are available, we can compute the Average Ranking
Loss for each entire dataset, as defined in Section V-A1. The
resulting values can be found in the last column of Table II.
Note that for the Labor dataset the ARL is zero; the ordering
imposed on the binary target by the real-valued target perfectly
separates the zeroes from the ones. This means that there is a
threshold value for which the converted Naive Bayes classifier
makes no mistakes on this dataset. Particularly relevant to
us is the observation that this perfect ordering is maintained
when restricting the dataset to subgroups; every considered
subgroup will necessarily also have an Average Subranking
Loss of zero. Therefore, further experimentation on the Labor
dataset makes no sense; the SCaPE model class cannot learn
anything relevant about a classifier that makes no mistakes.

2) Parametrizing the EMM Algorithm: The SCaPE model
class itself is implemented in Cortana [35], a toolbox featuring
a plethora of Subgroup Discovery and Exceptional Model
Mining settings. The model class should become publicly
available in a future Cortana release; in the mean time, the
authors will gladly provide interested parties with an unofficial
jar file — please approach us via email. The central search
algorithm at the core of Cortana is highly parametrizable, so
for the sake of reproducibility we report the main parameter
settings in this section.

We restrict the search to a refinement depth of 1, i.e.,
we allow the resulting subgroups to be defined on only one
condition of one descriptor. This limits the expressive power
of the resulting subgroups, but enhances their potential for
interpretation by domain experts. Notice that nothing prevents
the user of the SCaPE model class from seeking subgroups
defined in terms of more attributes; we choose to limit our-
selves to only one in order to end up with easily-interpretable
subgroups, but mining deeper would not be a problem. The
search space is defined conditional on the types of attributes.
If an attribute ai is binary, we consider the subgroups ai = 0
and ai = 1. If ai is nominal with m different possible values
v1, . . . , vm, we consider the m subgroups of the form ai = vj .
If ai is real-valued, we consider all half-intervals with the
values present in the dataset as endpoints. Only two of these
subgroups are reported: the best-scoring subgroup of the form
ai ≤ vj , and the best-scoring subgroup of the form ai ≥ vj .
In the worst-case scenario, if a real-valued attribute has N
distinct values, we consider 2N half-intervals. Finally, in an
attempt to prevent overfitting, we only consider subgroups that
contain at least 1% of the records in the dataset.

We run Cortana twice for each dataset: once maximizing
ϕrasl in order to find subgroups on which the classifier performs
poorly, and once minimizing ϕrasl in order to find subgroups on
which the classifier performs well. In each run, we only report
subgroups whose ASL outperforms (in a bad or a good way,
depending on what we are looking for in this run) the baseline
set by the ARL of the whole dataset: the maximizing run
reports only subgroups with ϕrasl(S) ≥ 0, and the minimizing
run reports only subgroups with ϕrasl(S) ≤ 0.

TABLE II. UCI DATASETS USED IN THE ARTIFICIAL EXPERIMENTS,
WITH THE AVERAGE RANKING LOSSES FOR RAPIDMINER’S NAIVE

BAYES CLASSIFIER.

i Ωi N # attributes ARL(Ωi)
discrete numeric

1 Adult 48842 8 6 1266.415
2 Credit-a 690 9 6 36.047
3 Haberman 306 1 2 22.436
4 Ionosphere 351 0 34 8.256
5 Labor 57 8 8 0.0
6 Mushroom 8124 22 0 0.459
7 Pima-indians 768 0 8 87.841
8 Tic-tac-toe 958 9 0 76.792
9 Wisconsin 699 0 9 8.303

3) Experimental Results: For every dataset, the best sub-
group found while maximizing ϕrasl is reported in Table III,
along with its quality. On the Tic-tac-toe dataset, Ω8, no
subgroups satisfying the constraints were found: all considered
subgroups S had ϕrasl(S) ≤ 0, meaning that their Average
Subranking Loss was lower than the Average Ranking Loss on
the whole dataset. In other words, there is not one particular
coherent part of the search space where the soft classifier
performs poorly; the awfulness is distributed fairly over the
search space.

When we compare the final columns of Tables II and III,
the values for two datasets stand out: Credit-a and Mushroom.
For the subgroups S found on these datasets Ωi, we see
that ϕrasl(S) is larger than ARL(Ωi), which implies that the
Average Subranking Loss of the top-ranked subgroups is more
than twice as high as the Average Ranking Loss on the
whole dataset. To explain why the soft classifier performs so
extremely badly on these subspaces, we interpret the subgroups
on the domains of their datasets. Unfortunately, for the Credit-a
dataset, all attributes names and values have been scrambled to
protect their confidential source [36]. Hence, we concentrate
on the Mushroom dataset [37].

The Mushroom dataset details 23 species of gilled mush-
rooms in the Agaricus and Lepiota family [37, pp. 500–
525]. The task is to classify the mushrooms as edible or
poisonous; according to [37], there is no simple rule to make
this separation. The SCaPE model class for EMM teaches
us that the soft classifier has particular problems with the
subgroup of mushrooms without odor. This is congruent with
benchmark rules found in previous work [38]. Two particular
rules from that paper are relevant to us. On the one hand,
the authors report odor = almond ∨ anise ∨ none ⇒ edible
[38, p. 5, negation of rule R1]; this benchmark rule associates
odorless mushrooms with the edible class. On the other hand,
the authors report odor = none ∧ stalk-surface-below-ring =
scaly ∧ stalk-color-above-ring = ¬brown ⇒ poisonous [38,
p. 5, rule R3]; this benchmark rule associates odorless mush-
rooms with the poisonous class. Since this subspace of the
dataset is associated with conflicting classes, it makes sense
that the soft classifier finds this subspace tough to perform on,
and it makes sense that the SCaPE model class singles out this
subgroup as a part of the dataset that deserves more attention.

Table IV contains the best subgroup found while minimiz-
ing ϕrasl and associated quality for every dataset. Unlike the
run maximizing ϕrasl, in these experiments we find subgroups
satisfying the constraints on all datasets.

Comparing the final columns of Tables II and IV, we see



TABLE III. SUBGROUP PER UCI DATASET MAXIMIZING ϕRASL

Ωi Worst-classified subgroup S ϕrasl(S)
Ω1 Marital status = Married-civ-spouse 803.323
Ω2 A9 = 0 69.561
Ω3 Age of patient ≥ 33.0 0.142
Ω4 a09 ≤ 0.66938 2.179
Ω6 odor = n 14.508
Ω7 plas ≤ 154.0 16.147
Ω8 - -
Ω9 Cell shape uniformity ≤ 1.0 0.447

that for almost all datasets we find a subgroup with ϕrasl(S) =
−ARL(Ωi). This implies that the Average Subranking Loss of
the subgroup is zero; it is typically possible to find subspaces
in the dataset on which the soft classifier performs perfectly.

On the Mushroom dataset, the best subgroup identified
while minimizing ϕrasl is the group of mushrooms without
bruises; classification is an easy task on this subspace of the
data. This is backed by the fact that this subgroup appears in all
kinds of previously found rules identifying edible mushrooms
[39].

B. Real-World Experiments on FACT Data

The SCaPE model class for EMM also requires a binary
and a real-valued target for real-world experiments. For this
purpose we use the FACT Monte Carlo Simulation for gamma-
and proton-induced air showers, as the binary target is already
present by the information of the primary particle. The real-
valued target is generated in RapidMiner by the WEKA
random forest (RF) classifier, as it can produce probabilities of
being a gamma shower expressed by the Signalness (as defined
in Section II-A). The RF algorithm is implemented and used
as a separation method in other IACT experiments such as
MAGIC [12] and H.E.S.S. [13], where it has proven to be a
stable and robust method performing comparatively superior
to classical methods [12].

Disjoint Monte Carlo datasets were generated for training
and testing the RF. The training sets for the individual trees
containing gamma and proton showers were sampled in such
a way that they have the same size. The dataset contains
simulated reconstructed image parameters such as the area
of the shower ellipse, and source-dependent parameters which
allow to estimate a statistical signal of the astrophysical source
at which the telescope is pointing. Finally, the binary and the
real-valued target are added to the dataset.

On this FACT dataset, we again run Cortana twice (once
maximizing and once minimizing ϕrasl), using the same
parametrization as used in the artificial experiments of Section
VI-A2. The Average Ranking Loss on the whole dataset is
1,446.761. The dataset will be made available upon request
— please approach the authors via email.

1) Experimental Results — Maximizing ϕrasl: When maxi-
mizing ϕrasl, we strive to find subgroups on which the classifier
performs poorly. The top-eight found subgroups are listed in
Table V. As the last column shows, the first three subgroups
have a substantially worse Average Subranking Loss than the
rest, so they warrant further investigation. These three subsets
are described by two distinct attributes. Both are source-
dependent parameters, and between them they are strongly
correlated.

TABLE IV. SUBGROUP PER UCI DATASET MINIMIZING ϕRASL

Ωi Best-classified subgroup S ϕrasl(S)
Ω1 Capital gain ≥ 15020.0 -1266.415
Ω2 A15 ≥ 5777.0 -36.047
Ω3 Patients year of operation = 68 -22.436
Ω4 a26 ≥ 0.35696 -8.256
Ω6 bruises? = f -0.459
Ω7 skin ≥ 52.0 -87.841
Ω8 middle-middle-square = b -74.792
Ω9 Clump thickness ≥ 9.0 -8.303

The parameter ThetaSq describes the distance of the re-
constructed source position, deduced from the orientation of
the shower, to the real source position, known by source
coordinates written to files during data taking. Thus, near-
zero values express that the corresponding shower points to
the real astrophysical source. We see the same behavior for
the parameter dca, which describes the distance of the closest
approach of the shower to the source position with respect to
the x-axis. Again, showers with near-zero values have a higher
probability of coming directly from the real source.

In the Monte Carlo simulations, gamma showers are as-
sumed and simulated as if they were coming directly from
the source, since this is the case in the real world we are
interested in. In real data we also have a minor fraction of
diffuse gamma showers, coming from sources other than the
observed astrophysical source; these are not taken into account
in the simulations. By contrast, proton-induced showers are
assumed to be isotropically distributed in the sky.

Taking this information into account we can easily explain
why the classifier performs particularly poorly on the first
three subgroups in Table V. In both involved parameters, the
gamma showers are accumulated around low values, while
proton showers are equally distributed over the full parameter
value range. Thus, the gamma showers decrease in frequency
for higher values. For instance, the two subgroups for the dca
parameter encompass just ∼ 10−5 % of the gamma events in
the whole dataset. While training the RF, one source-dependent
parameter was used. This means that the classifier learned that
the probability of being a gamma shower is high with low
values in ThetaSq and dca. Conversely, the classification gets
tougher if we have only a small number of gamma showers
with high values in ThetaSq and dca.

This observation is corroborated by Figure 3. Each subfig-
ure displays the distributions of the positives and negatives
(normalized independently of each other; the figures give
no direct information on the relative occurrence of positives
and negatives!) related to the confidence level of the random
forest that said record is a positive. Figure 3a displays these
distributions over the entire dataset, while Figures 3b and 3d
depict these distributions over just the subgroups defined in
terms of dca. Here, the classifier has problems to distinguish
between some gamma and proton showers, indicated by the
confidence spikes around 0.5. For very small confidences
the classification gets worse, as the overall probability of
being a gamma shower is low in this subgroup and thus
the confidence for gamma showers decreases. On the other
hand, the proton shower classification is very good in these
subgroups, for the aforementioned reasons. Comparing the
distributions over the subgroup defined in terms of ThetaSq,
in Figure 3c, with the overall distributions, we see that the



TABLE V. SUBGROUPS ON THE FACT DATASET MAXIMIZING ϕRASL

Rank Worst-classified subgroups S ϕrasl(S)
1. dca ≥ 79.2745 1294.939
2. ThetaSq ≥ 0.136131 1116.781
3. dca ≤ -68.3173 1114.739
4. SizeArea ≤ 0.5564718 100.786
5. MCMomentumZ ≤ -1618.63 59.373
6. cut1 = 0 46.957
7. MCEnergy ≥ 1641.69 39.205
8. Conc1Size ≤ 39.874977 28.153

proton distributions are roughly equivalent, but the subgroup
encompasses substantially fewer high-confidence gamma rays.

The subgroups in Table V with less extreme values for ϕrasl,
such as the ones with rank 4 and 8, are less straightforward to
explain. The parameter SizeArea describes the compactness
of the deposited light of the showers and the parameter
Conc1Size describes the deposited light in the brightest pixel
of a shower. The higher these values are, the more likely it is
that we are dealing with a gamma shower. On first look, the
poor classification on these particular subgroups is surprising,
because the parameter distributions are clearly separated for
lower values of gamma and proton showers as well. However,
this result could be explained by internal cuts in the RF, which
affects the distributions and tends to misclassify events with a
lower probability of being a gamma.

2) Experimental Results — Minimizing ϕrasl: When mini-
mizing ϕrasl, we strive to find subgroups on which the classifier
performs well. The top-eight such subgroups are listed in Table
VI.

The first and eighth-ranked subgroup are described by
the same parameter cosdeltaalpha, which is again source-
dependent and roughly expresses the cosine of the angle
between the shower main axis and the source position. Thus,
values of cosdeltaalpha around 1 or -1 indicate that the shower
axis is pointing to the source, which also means a higher
probability for the shower to come directly from the source
and thus a higher probability of being a gamma shower.
Contrary to dca, which appears high-ranked in the poorly-
classified subgroups, these well-classified subgroups contain
a big fraction of gamma showers compared to the fraction
of proton showers. This means that the classifier learns that
showers which are contained in these subgroups are very likely
gamma showers and are better classified than in other ranges.

The third-ranked subgroup is the known source-dependent
parameter ThetaSq. It appears in the well-classified subgroups
with very low values as well as in the poorly-classified
subgroups with higher values. This behavior is perfectly ex-
plainable, as very low values indicate a higher probability of
being a gamma shower, and the probability decreases slowly
with higher ThetaSq values, until a value is reached where
gamma showers cannot be distinguished well from the proton
showers if only ThetaSq is taken into account.

We see the same effect with the seventh-ranked subgroup
described by SizeArea. The classifier performs well on higher
values but worse on lower values. Again, this result could be
explained by internal cuts in the RF.

TABLE VI. SUBGROUPS ON THE FACT DATASET MINIMIZING ϕRASL

Rank Best-classified subgroups S ϕrasl(S)
1. cosdeltaalpha ≥ 0.999994 -1446.259
2. SizeSinglePixels ≥ 372.953 -1445.761
3. ThetaSq ≤ 6.57561E-4 -1445.753
4. Length ≤ 9.70734 -1445.336
5. logLength ≤ 0.98710024 -1445.336
6. NumberSinglePixels ≥ 73.0 -1444.539
7. SizeArea ≥ 1.8111843 -1444.535
8. cosdeltaalpha ≤ -0.999995 -1444.275

VII. CONCLUSIONS

Motivated by a real-life astrophysics data scenario, we
introduce the SCaPE (Soft Classifier Performance Evaluation)
model class for Exceptional Model Mining (EMM). SCaPE
strives to find coherent subgroups displaying exceptional in-
teraction between the probabilities provided by a soft classifier
and a binary ground truth. This interaction is evaluated by the
Average (Sub-)Ranking Loss, a quantity expressing how well
the soft classifier probabilities can represent the binary ground
truth. The quality measure ϕrasl is designed to find coherent
subspaces of the dataset where the soft classifier performs
poorly (when maximizing ϕrasl), well (when minimizing ϕrasl),
or exceptionally (when maximizing |ϕrasl|). The focus of
EMM lies on finding easily interpretable subgroups. Hence,
as opposed to a meta-learning framework, which is focused
on letting the machine improve the machine, the primary goal
in the SCaPE model class for EMM is to provide a better
understanding to the domain expert. We want the expert to
be able to understand where his/her classifier does or does
not work well, by reporting the problem and success areas in
familiar terms.

We illustrate the findings one could expect from the SCaPE
model class by artificial experiments on nine UCI datasets.
On seven of those, subgroups are found proving troublesome
for our classifier, and on eight UCI datasets, subgroups are
found where our classifier has barely any problems (on the
ninth dataset, the classifier already performed perfectly, so
neither troublesome nor particularly benign areas could be
highlighted). The found subgroups on the Mushroom dataset,
whose learning task is well known to be nontrivial, are co-
herent with previously reported benchmark rules. The SCaPE
model class highlights as a particularly troublesome area a
subgroup whose characterizing feature is known to be asso-
ciated with both classes in the dataset, and as a particularly
benign area a subgroup that is associated with one particular
class. Overall, when minimizing ϕrasl one easily finds small
subgroups on which the soft classifier performs perfectly; the
subgroups on which the soft classifier performs badly are
typically less trivial, hence they demand further attention.

We also perform real-world experiments with the SCaPE
model class, on an astrophysics dataset concerned with the
classification of air showers induced by high-energetic cosmic
particles. The subgroups with the most deviating Average
Subranking Losses — both the poorly-classified ones and the
well-classified ones — have an astrophysical interpretation cor-
roborating their appearance as a particularly (un-)problematic
subspace of the search space. Subgroups with less extreme but
still high/low values for the quality measure are non-trivial to
explain and deserve a closer look. The results show that the
random forest classifier performs better when the incidence of



(a) Overall dataset (b) Subgroup “dca ≥ 79.2745”

(c) Subgroup “ThetaSq ≥ 0.136131” (d) Subgroup “dca ≤ -68.3173”

Fig. 3. Distribution of positives and negatives in the FACT dataset, for the whole dataset and for the three subgroups with highest ϕrasl-values. In each plot,
both distributions are normalized, independently of each other.

gamma showers is higher.

In gamma ray astronomy, the separation of gamma and
proton showers marks an important step in the analysis of
astrophysical sources. Better classifier performance leads to
less dilution of the interesting physics results and improves
the statement of results of the astrophysical source. The result
set will more frequently contain the infrequently appearing
gamma showers, which should increase the effective observa-
tion time. Due to the importance of the separation in this field,
understanding why the classifier does not perform as desired is
extremely valuable. The SCaPE model class for EMM helps to
understand the classification, which leads to ideas on how to
improve the overall classifier performance. The performance
of this particular RF could be improved by building separate
clusters in the training dataset and training a random forest for
each cluster; as future work we intend to investigate whether
the experimental results of this paper lead to a good starting
point for this clustering.
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