Rule discovery from time series

Gautam Das
Department of
Mathematical Sciences
University of Memphis
Memphis, TN 38152
USA

dasg@msci.memphis.edu

Gopal Renganathan
Autozone Inc.,
123 So. Front St.,
Memphis, TN 38103
USA

Gopal .Renganathan@crv.autozone.com

Abstract

We consider the problem of finding rules relating pat-
terns in a time series to other patterns in that series,
or patterns in one series to patterns in another se-
ries. A simple example is a rule such as “a period
of low telephone call activity is usually followed by a
sharp rise in call volume”. Examples of rules relat-
ing two or more time series are “if the Microsoft stock
price goes up and Intel falls, then IBM goes up the
next day,” and “if Microsoft goes up strongly for one
day, then declines strongly on the next day, and on
the same days Intel stays about level, then IBM stays
about level.” Our emphasis is in the discovery of local
patterns in multivariate time series, in contrast to tra-
ditional time series analysis which largely focuses on
global models. Thus, we search for rules whose condi-
tions refer to patterns in time series. However, we do
not want to define beforehand which patterns are to be
used; rather, we want the patterns to be formed from
the data in the context of rule discovery. We describe
adaptive methods for finding rules of the above type
from time-series data. The methods are based on dis-
cretizing the sequence by methods resembling vector
quantization. We first form subsequences by sliding a
window through the time series, and then cluster these
subsequences by using a suitable measure of time-series
similarity. The discretized version of the time series is
obtained by taking the cluster identifiers correspond-
ing to the subsequence. Once the time-series is dis-
cretized, we use simple rule finding methods to obtain
rules from the sequence. We present empirical results
on the behavior of the method.

Copyright (©)1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

King-Ip Lin
Department of
Mathematical Sciences
University of Memphis
Memphis, TN 38152
USA

linki@msci.memphis.edu

Heikki Mannila
Department of
Computer Science
University of Helsinki
P.O. Box 26, FIN-00014 Helsinki,
Finland

mannila@cs.helsinki.fi

Padhraic Smyth
Department of
Information and Computer Science
University of California at Irvine

CA 92697-3425, USA

smyth@ics.uci.edu

Keywords: time series, rules, clustering, discretiza-
tion, vector quantization

Introduction

Time series data occurs frequently in business appli-
cations and in science. Well-known examples include
daily stock prices at the New York Stock Exchange,
hourly volumes of telephone calls between the United
States and Europe, and daily sea-surface temperature
readings in the Pacific. There has been a lot of in-
terest into querying time series on the basis of simi-
larity (see, e.g., (Agrawal, Faloutsos, & Swami 1993;
Shatkay & Zdonik 1996; Agrawal et al. 1995; Rafiei &
Mendelzon 1997; Yazdani & Ozsoyoglu 1996)).

In this paper we are interested in finding rules relat-
ing the behavior of patterns within a sequence over
time, or the relationship between two or more se-
quences over time. An example would be a rule such as
“a period of gradual increase in the value of sea-surface
temperature over the South Pacific is typically followed
by sharp increase in precipitation over the Western
United States.” Rules typically assume an underlying
symbolic (or propositional) representation, whereas our
specific interest here is in real-valued time series. The
novel contribution in this paper is in the extraction of
a discrete data-driven pattern representation from the
time-series, and then using this representation as the
basis for exploratory rule induction.

A time series can be converted into a discrete repre-
sentation by first forming subsequences (using a slid-
ing window) and then clustering these subsequences
using a suitable measure of pattern similarity. The

discretized version of the time series is obtained by
using the cluster identifiers corresponding to the sub-
sequence, in a manner which is similar to the data
compression technique of vector quantization. Rule-
finding algorithms (such as the “episode rule” meth-
ods) can then be used directly on the discretized se-
quence to uncover rules relating temporal patterns.
Thus our rule discovery method aims at finding local re-
lationships from the series, in the spirit of association
rules, sequential patterns, or episode rules (Agrawal,
Imielinski, & Swami 1993; Agrawal & Srikant 1995;
Mannila, Toivonen, & Verkamo 1997). Unlike tradi-
tional time series modeling, we do not seek a global
model for the time series, instead searching for local
patterns in a relatively non-parametric manner.

As an example of the results of the method, from
the daily closing share prices of 10 database compa-
nies traded on the NASDAQ we can find several in-
formative rules. For example consider the rule “if a
stock price follows the pattern s18 in figure 2 (a), then
within 20 days it will exhibit th epattern s4 shown in
the same figure.”. This can be interpreted as a pat-
tern of decline. In addition, we can find rules relating
the behavior of the stocks of individual companies. For
instance, our method discovered a number of rules re-
lating two database companies. Namely, if the stock of
one company has approximately the pattern 15 shown
in Figure 3 (a), then the stock of the other company
will exhibit similar behavior within a month. Examin-
ing the data, we find that the two companies are both
object-oriented database companies.

Time-series discretization by clustering
Basic method

Our method for discretizing a time-series by clustering
windows is as follows. Suppose we are given a sequence
s and a window width w. Given s = (z1,...,2,),
a window of width w on s is a contiguous subse-
quence (Zi,...,Tity—1). We form from s all win-
dows (subsequences) si,. .., Sp_w41 of width w, where
si = (®i,...,Ziyw-1). Denote W(s) = {s; | i =
1,...,n—w+1}.

Assume we have a distance d(s;, s;) between any two
subsequences s; and s; of width w. These distances can
be used to cluster the set of all subsequences W (s) into
sets C4,...,Cg. For each cluster C} we introduce a
symbol ap, and the discretized version D(s) of the se-
quence s will be over the alphabet ¥ = {ay,...,ar}.
The sequence D(s) is obtained by looking for each sub-
sequence s; the cluster C;(;) such that s; € Cj(;), and
using the corresponding symbol a; ;). Thus

D(S) = aj(1)7 Clj(z), ceey aj(n—w+1)

Essentially, each symbol aj; represents a primitive
“shape”, and we are interested in discovering rules that
involve patterns composed of these basic shapes. An
example is shown in Figure 1.

Original timeseries=(1,2,1,2,1,2,3,2,3,4,3,4)
Window width =3
Discretized series = (al, a2, al, a2, a3, al, a2, a3, al, a2)

Primitive shapes after
clustering

Figure 1: Example of rules based on basic shapes

The discretization process described above depends
on the choice of w, on the choice of the time-series dis-
tance function, and on the type of clustering algorithm
used.

The basic property of this method 1s that the alpha-
bet is derived from the data; it is not provided by a
domain expert (although our methods can be gener-
alized to allow such inputs). Using data-derived pat-
terns as “primitives” in a more abstract representation
of a signal is not a new idea. Essentially the same
method is used in the well-known vector quantization
(VQ) method of data compression (see, e.g., (Gersho
& Gray 1992)). VQ is based on the notion of replac-
ing local windows (of size w) (of signals or images)
by pattern centroids determined by an algorithm quite
similar to k-means clustering. For data compression,
only the indices of the centroids need to be transmit-
ted, permitting signal compression at the cost of some
fidelity. Thus, one can view the methods proposed in
this paper as the application of VQ (combined with
rule induction) to signal understanding rather than the
more typical VQ task of signal compression.

We are advocating a very general approach towards
rule discovery in time series databases. The user has
the choice of a variety of methods to employ. It can-
not be overemphasized that the rule discovery process
i1s an iterative activity. Each time the system discov-
ers certain rules, domain experts should analyze and
interpret the resulting rules. The discovery algorithms
should be run several times with different parameter
settings. Different runs provide different views of the
underlying dataset. For example, a small w may pro-
duce rules that describe short term trends, while a large
w may produce rules that give a more global view of the
dataset. One can also run the method at different scales
(by subsampling the data) allowing for multi-resolution
data exploration (these options are not explored in this
paper due to space constraints).

The running time of the algorithm is dominated by
the time needed to cluster the O(n) subsequences re-
sulting from the windowing method. It is also possible
to consider only every vth window for some integer v.

In the next subsections we describe the time-series

similarity notions used and the clustering methods em-
ployed.

Notions of time-series similarity

To cluster the set W (s) we need a distance notion for
time-series of length w. There are several possibilities,
and the specific choice for any given application should
depend on the specific manner the application environ-
ment is generating the observed time series. In this
section we describe some possible distance measures
and discuss their use in rule discovery.

The simplest possibility is to treat the subsequences
of length w as elements of R¥ and use the Euclidean
distance (i.e., the Ly metric). That is, for z =
(Z1,...,2y) and ¥ = (y1,...,Yw) we define d(z,y) =
O (x — yi)2)1/2 as the metric in clustering. Other

alternative metric includes the general L, metrics de-
1

fined by L,(z,y) = (Xi(x; — i)?) for p > 1 and
Lo = max; | z; — y; |-

For many applications one would like to see the shape
of the subsequence as the main factor in distance deter-
mination. Thus, two subsequences may have essentially
the same shape, although they may differ in their am-
plitudes and baselines. One way of achieving this is by
normalizing the subsequences and then using the Lo
metric on the normalized subsequences. Denoting the
normalized version of sequence Z by 7(Z); we define the
distance between z and y by d(z,y) = L2(n(Z), n(y)).

One possible normalization is n(z); = z; — EZ,
(where Ez is the mean of the value of the sequence)
which makes the mean of the sequence to be 0. An-
other possibility is /(z); = (z; — Ez)/Dz, (where Dz
is the standard deviation of the sequence) forcing the
mean to be 0 and the variance 1.

Recently, more sophisticated time series distance
measures have been investigated, such as the dynamic
time warping (Berndt & Clifford 1994) measure, the
longest common subsequence measure (Das, Gunopu-
los, & Mannila 1997; Bollobas et al. 1997), and var-
ious probabilistic distance measures (Keogh & Smyth
1997). Due to space limitations we omit the details of
their use but note that the results below can be easily
generalized to handle any such distance measures.

Clustering methods

The first step in the discretization process is the clus-
tering. Recall that w is one of the parameters to the
system; it is used to define the set W (s). In princi-
ple, any clustering algorithms can be used to cluster
the subsequences in W(s); see (Jain & Dubes 1988;
Kaufman & Rousseauw 1990) for overviews. We have
experimented with the following two methods.

The first method 1s a greedy method for producing
clusters with at most a given diameter. Treat each sub-
sequence in W(s) as a point in R¥, and let us use the
Ls metric as distance between the points. Let a small
constant d > 0 be another parameter to the clustering
algorithm.

For each point p in W (s), the method finds the clus-
ter center ¢ such that d(p, q) is minimum. If d(p, q) < d
then p is added to the cluster whose center is ¢, other-
wise a new cluster with center p is formed. Once the
algorithm has examined all the points in W(s), let the
cluster centers be q1,...,qx. It is easy to see that the
distance between two cluster centers is at least d, while
the radius of each cluster is at most d.

We also used the traditional k-means algorithm,
where cluster centers for k clusters are initially cho-
sen at random among the points of W(s). In each
iteration, each subsequence of W(s) is assigned to the
cluster whose center is nearest to it. After this, for
each cluster its center is recomputed as the pointwise
average of the sequences contained in the cluster. The
iterations are continued until the process converged.
This method is widely used; one disadvantage is that
the number of clusters has to be known in advance.

Once the clustering is complete, each cluster center
represents a basic “shape.” The alphabet of cluster cen-
ters is then used to encode the original time series, as
discussed above.

Remarks on the choice of parameters

Note that the entire discretization process depends on
several parameters. Amongthem are the window width
(w), the maximal cluster diameter (d) or the number
(k) of clusters. Other parameters may also be used
in the preprocessing stages (like window movement v).
How do we know whether a certain combination of pa-
rameters produces a “good” discretization?

The choice of the window width w (and window
movement v) depend on the time scale the user is inter-
ested in. Thus, no specific guidelines can be provided
in the general case, rather the user must choose his/her
values based on their own particular bias and applica-
tion considerations. One of the useful aspects of our
approach is that we can look at the sequence using
several granularities.

For the cluster diameter d or the number of clusters
k, there are some intuitive yardsticks that can be used.
The eventual goal is the discovery of interesting, in-
terpretable, and useful rules. Too many clusters will
not help in this: it will be almost impossible to asso-
ciate understandable interpretations to so many basic
abstract “shapes.” Likewise, too few clusters will not
help, as each cluster contains subsequences that are too
far away from each other.

A simpler strategy is to ignore the issue of whether
the discretization is good or not until after the rules
have been discovered. A good discretization is one
that produces interesting rules. One (but not the only)
criterion for interestingness is estimated informative-
ness, 1.e., whether the rule gives additional information
about the sequences. We can assign a measure of infor-
mativeness to the discovered rules using the J-measure
(Smyth & Goodman 1991; 1992).

One can also run the method for several choices of the
parameters and let the user browse the different rule

sets. The running time of the method is small enough
so that this is feasible. An extension of this idea is to
have the algorithm search over different value of w and
d and to return the most informative rules over these
values.

Rule discovery from discretized
sequences

Rule format

In this section we outline algorithms that discover sim-
ple rules from a set of discretized sequences. The sim-
plest rule format is:

if A occurs, then B occurs within time 7.

Here A and B are basic shapes, i.e., the are letters from
the alphabet produced by the discretization. We write

the above rule as A = B.
Given a sequence D(S) = (a1,as,...,ay), the fre-
quency F(A) of the rule A is the number of occurrences

of A € D(S), and the relative frequency f(A) of A is
F(A)/n. The confidence c¢(A =N B) of the rule A LB

is the fraction of occurrences of A that are followed by
a B within 7" units, i.e.,’
T _ F(A1 B: T)

¢(A= B) = W’

where
F(A,B,T) = | {Z | a; =ANBE€ {ai+1,...,ai+T_1}} |

is the number of occurrences of A that are followed by
a B within T

A slight modification is, however, often useful. Re-
call that the two consecutive letters ¢; and ¢;41 in the
discretized sequence D(s) come from two windows of
width w which have an overlap of w — v. Thus, con-
secutive letters are strongly correlated, and we tend to
get rules with high confidence that actually are just a
by-product of the discretization method. Therefore it
typically makes sense to define rule confidence by

F(A,B,T) =
| {i |ai = AN B € {aitwt1, .-, Gigwir-1}} |

i.e., to count only occurrences of B that occur after w
units of time.

Computing the frequencies and confidences of such
rules is easy, by a simple pass through the sequence.
The number of possible rules is mk?, where k is the
number of letters in the alphabet and m is the number
of different possibilities for T

'Note that this differs from the usage of frequency or
support for association rules (Agrawal, Imielinski, & Swami
1993; Agrawal et al. 1996), where frequency is defined as
the fraction of objects that satisfy the left and right hand
sides of the rule.

Informative Rules

The above method produces lots of rules, with vary-
ing confidences. For interactive knowledge discovery, a
good strategy is to allow the user to browse through
rule sets and provide tools for the selection of inter-
esting rules (Kloesgen 1995; Klemettinen et al. 1994;
Brin, Motwani, & Silverstein 1997). Nonetheless, no
single significance criterion can probably suffice to se-
lect the most valuable rules. Still, the user needs some
guidance in determining which rules have a confidence
that differs substantially from the expected.

There are a variety of metrics which can be used
to rank rules (e.g., see (Piatetsky-Shapiro 1991) for a
general overview of such methods). Here we use the
J-measure for rule-ranking (Smyth & Goodman 1991;
1992) defined as:

J(Br; A) = p(A) % <P(BT|A) log(%)
+(1 — p(Br|A)) log(%ﬁéﬁ))

where, in the context of sequence rules, p(A) is the
probability of symbol A occurring at a random location
in the sequence, p(Br) is the probability of at least one
B occurring in a randomly chosen window of duration ¢
and p(Br|A) is the probability of at least one B occur-
ring in a randomly chosen window of duration 7" given
that the window is immediately preceded by an A. In-
tuitively, the first term in the J-measure, namely p(A),
is a bias towards rules which occur more frequently.
The second term is well-known as the cross-entropy,
namely the information gained (or degree of surprise)
in going from a prior probability p(Br) to a posterior
probability p(Br|A). As shown in (Smyth & Good-
man 1992) the product of the two terms (the J-measure
above) has unique properties as a rule information mea-
sure and is in a certain sense a special case of Shannon’s
mutual information. From a practical viewpoint, the
measure provides a useful and sound method for rank-
ing rules in a manner which trades-off rule frequency
and rule-confidence. Note that in estimating the prob-
abilities in the equation for the J-measure (above) it is
helpful to use simple maximum a posteriori estimates
(“smoothed” counts) rather than maximum likelihood
estimates (see (Smyth & Goodman 1991) for further
discussion of this point).

Extensions

The basic method can be extended in various ways. We
describe briefly some possibilities.

Multiple time series It is straightforward to extend
the previous framework for rules between two series.
Given m sequences D(Sy) = (¢p1,Cha, ..., Chn) for h =
1,...,m, a rule still has the form of A N B, while A
and B might come from different discretizations. The

definition of frequency, confidence and significance is
the same as the previous definitions.

Extending the rule format The rule format above
can be extended to include rules of the form

if Ay and A5 and ... and Aj occur within V units
of time, then B occurs within time T,

denoted Ay A--- A Ap ‘:’>T B. The frequency of such a
rule can be defined as the number of occurrences of A;
that are followed by As etc. within time V. Rules of
this type have been studied under the name sequential
patterns (Agrawal & Srikant 1995) and episode rules
(Mannila, Toivonen, & Verkamo 1997), and the algo-
rithms developed there can be used in this context also.

The problem with this extension is that the number
of potential rules grows quickly. For rules with A let-
ters on the left hand side we have to prune rules on
the basis of frequency. That is, in order for the rule

Ay N N Ay g B to be considered, the frequency
of the rule has to exceed a given threshold. This tech-
nique stems from association rule algorithms (Agrawal,
Imielinski, & Swami 1993; Agrawal et al. 1996), and it
is very efficient in pruning the search space; the draw-
back is that rules with high significance but low fre-
quency might go undetected (Brin, Motwani, & Silver-
stein 1997). Another possibility here (which we did not
experiment with) is to use the branch-and-bound prop-
erties of the J-measure to prune the search space, as in

the ITRULE algorithm of (Smyth & Goodman 1992).

Experimental results
We used three different data sets in our experiments:

1. Stock data: daily closing prices of 10 database com-
panies traded on the Nasdaq stock market for the
past 19 months. Each sequence is of length 410.

2. Telecommunications data: traffic volumes on 34 lines
in the Helsinki metropolitan area. The volume is
recorded every 15 minutes, and the series have length
478 (approximately b days).

3. Paleoecological data: abundances of 36 different taxa
of diatoms in sediment at the bottom of a lake in
northern Finland, at 147 different depths. That is,
there are 36 different series, each having length 147.

Our experiments focused on finding out whether the
method discovers interesting rules from the sequences,
and whether the method is robust enough so that small
changes in the values of the parameters do not change
the results drastically.

For each of the data sets, we experimented with sev-
eral different window widths w, rule time lengths T,
cluster diameter d, and the number of clusters k. For
each experiment, the resulting rules were ranked using
the J-measure. Due to the lack of space, we present
only a small subset of the results, concentrating on the
stock data set.

Simple rule discovery We first set up a minimum
threshold of 1% frequency and 50% confidence. Any
rules that do not meet this criteria were discarded. Af-
ter that we use the J-measure to compare the quality
of the rules. The top scoring rules are listed in the fol-
lowing table. Figure 2 shows the centers of the clusters
for each of the rules.

w | d Rule Sup. | Conf. | J-mea. | Fig.
(%) | (%)
13(35(1824 | 28 | 59.6 | 0.0037 | 2(a)
15| 4.0 | 37242 | 1.3 | 57.37 | 0.0087 | 2(b)
1545|1129 | 35 | 66.7 | 0.0031 | 2(c)
3055|762 21| 12 | 573 | 0.0073 | 2(d)

Figure 2: Significant rules for stock data

An interpretation of the rule in figure 2 (a) is that
a stock which follows a 2.5-week declining pattern of
s18 (sharper decrease and then leveling out), will likely
incur a short sharp fall within 4 weeks before leveling
out again (the shape of s4).

Rules for pairs of sequences We also compare in-
dividual sequences to detect applicable rules for each
pair of sequences. In this case, we put a higher thresh-
old on the minimum support to generate more mean-
ingful rules. We found the top set of 488 rules (rules
with J-measure > 0.03). Figure 3 shows some example
rules that describe patterns found from the time series
of stock prices of two object-oriented database compa-
nies. While these time series as a whole are not very
similar, there is substantial evidence of links between
the two series, as the local patterns demonstrate quite
strongly.

Also we discovered that more than 27% of the rules
relate 3 pairs of sequences, out of a total of 45 (i.e.
2%). This indicates that only a small set of sequences
are closely related.

w=20, d=5.0
7(seq10) 2 6(seqb)
(b)

w=20, d=5.5
15(seq10) 2 15(seqb)

w=20, d=5.5
15(seq6) =4 1(seq10)
d

w=30, d=6.0
8(seq10) = 9(seqb)
(c)

Figure 3: Significant rules for sequence 6 and 10

Robustness as a function of the clustering
methodology We also investigated the impact of the
clustering methodology on the results of the algorithm.
We considered some of the rules in the previous section,
and tried to find a similar rule using different values of
d and/or w. The experimental results showed that as
the clustering parameters are perturbed, the effect is to
also induce slight changes in the rules which are discov-
ered, i.e., the new rules which are discovered are in the
neighborhood of the old rules discovered by the previ-
ous parameter settings, indicating that the method is
reasonably robust.

Another important aspect of the clustering method-
ology is the clustering algorithm itself. In the previous
experiments, clustering is carried out by using the K-
means algorithm, which means that the algorithm will
iterate until the clusters are stable. Experiment shows
that the number of iterations ranges between 10 and
80 for the stock data. Obviously, for large data sets,
reading the data multiple times is unrealistic. One al-
ternative is to employ the greedy method of clustering
mentioned previously.

Our experiments discovered many similar rules even
using the greedy algorithm. A couple of significant
rules are shown in following table and figure 4:

w | d Rule Sup. | Conf. | J-mea. | Fig.
(%) | (%)

20 [55| 728 8.3 73.0 | 0.0036 | 4(a)

30 55| 18221 | 1.3 62.7 | 0.0039 | 4(b)

The two rules in this figure corresponds to rules
shown in figure 2 (c) and (d) respectively. Thus, empir-
ically, we can speed up the clustering process without
any significant change in the discovered rules. An inter-

Figure 4: Significant rules for stock data (using only 2
iteration of K-means)

esting problem for further research is to more precisely
characterize and quantify the trade-off between compu-
tational costs of the algorithm and the quality of the
discovered rules.

Discussion

Extracting rules directly from time-series data involves
two coupled problems. First, since rules are inherently
a symbolic representation, one must transform the low-
level signal data into a more abstract symbolic alpha-
bet. In this paper this is achieved by data-driven clus-
tering of signal windows in a similar way to that used
in VQ data compression.

The second problem is that of rule induction from
symbolic sequences. Naturally, there is a trade-off be-
tween the quality of the abstraction and the quality of
the rules induced using this abstraction. Parameters
such as cluster window width, clustering methodology,
number of clusters, and so forth, may well affect the
types of rules which are induced. In this context it
is important to keep in mind that the proposed tech-
nique is essentially intended as an ezploratory method
and thus, iterative and interactive application of the
method coupled with human interpretation of the rules
is likely to lead to the most useful results (rather than
any fully automated approach). Our methods are first
steps, and additional experimentation is needed to es-
timate the strengths and weaknesses of the method.

Clearly there are several directions for generalizing
the concepts introduced here, such as alternative ab-
stractions (rather than pattern centroids). For exam-
ple, the hierarchical piecewise linear representation in-
troduced in (Keogh & Smyth 1997) may provide a
computationally efficient way to increase the expres-
sive power of the underlying signal representation. The
piecewise linear data structure implicitly handles vari-
ability in “warping” of signal structure (e.g., signal
peaks which may be amplitude-scaled and/or stretched
in time), a feature which is absent in the “fixed win-
dow” method described here. Furthermore, a hierar-
chical representation may provide a practical way to
incorporate the notion of multi-resolution scale into
the representation in a natural manner, allowing for
rules which relate events at different scales in the sig-
nal structure.

Also generalizing the rule language is an interesting

problem. for example allowing regular expressions over
the patterns produced by the clustering (in the spirit
of (Agrawal et al. 1995)).

References

Agrawal, R., and Srikant, R. 1995. Mining sequential
patterns. In Proceedings of the Eleventh International
Conference on Data Engineering (ICDE’95), 3 — 14.

Agrawal, R.; Psaila, G.; Wimmers, E. L.; and Zait,
M. 1995. Querying shapes of histories. In Proceedings
of VLDB.

Agrawal, R.; Mannila, H.; Srikant, R.; Toivonen, H.;
and Verkamo, A. I. 1996. Fast discovery of associa-
tion rules. In Fayyad, U. M.; Piatetsky-Shapiro, G;
Smyth, P.; and Uthurusamy, R., eds., Advances in
Knowledge Discovery and Data Mining. Menlo Park,
CA: AAAIT Press. 307 — 328.

Agrawal, R.; Faloutsos, C.; and Swami, A. 1993. Ef-
ficiency similarity search in sequence databases. In
Proceedings of the Conference on Foundations of Data
Organization, 22. IBM Almaden Research Center.

Agrawal, R.; Imielinski, T.; and Swami, A. 1993. Min-
ing association rules between sets of items in large
databases. In Buneman, P., and Jajodia, S., eds.,
Proceedings of ACM SIGMOD Conference on Man-
agement of Data (SIGMOD’93), 207 — 216. Washing-
ton, D.C., USA: ACM.

Berndt, and Clifford. 1994. Using dynamic time
warping to find patterns in time series. In Proceed-
wngs of AAAI Workshop on Knowledge Discovery in
Databases 199.

Bollobas, B.; Das, G.; Gunopulos, D.; and Mannila,
H. 1997. Time-series similarity problems and well-
separated geometric sets. In 13th Annual ACM Sym-
postum on Computational Geometry, 454-456.

Brin, S.; Motwani, R.; and Silverstein, C. 1997. Be-
yond market baskets: Generalizing association rules
to correlations. In Peckman, J. M., ed., Proceedings of
ACM SIGMOD Conference on Management of Data
(SIGMOD’97), 265 — 276. Tucson, AZ: ACM.

Das, G.; Gunopulos, D.; and Mannila, H. 1997. Find-
ing similar time series. In Principles of Knowledge
Discovery and Data Mining (PKDD) 1997.

Gersho, A., and Gray, R. M. 1992. Vector Quantiza-
tion and Signal Compression. Boston: Kluwer Aca-
demic Publishers.

Jain, A. K., and Dubes, R. C. 1988. Algorithms for
Clustering Data. Englewood Cliffs, NJ: Prentice-Hall.
Kaufman, L., and Rousseauw, P. J. 1990. Finding
Groups in Data: An Introduction to Cluster Analysis.
John Wiley and Sons.

Keogh, E., and Smyth, P. 1997. A probabilis-
tic approach to fast pattern matching in time series
databases. In Heckerman, D.; Mannila, H.; Pregi-
bon, D.; and Uthurusamy, R., eds., Proceedings of the

Third International Conference on Knowledge Discov-
ery and Data Mining (KDD-97), 24. AAAT Press.

Klemettinen, M.; Mannila, H.; Ronkainen, P.; Toivo-
nen, H.; and Verkamo, A. 1. 1994. Finding interesting
rules from large sets of discovered association rules. In
Proceedings of the Third International Conference on
Information and Knowledge Management (CIKM’94),
401 — 407. Gaithersburg, MD: ACM.

Kloesgen, W. 1995. Efficient discovery of interesting
statements in databases. Journal of Intelligent Infor-
mation Systems 4(1):53 — 69.

Mannila, H.; Toivonen, H.; and Verkamo, A. 1. 1997.
Discovery of frequent episodes in event sequences.
Data Mining and Knowledge Discovery 1(3):259 — 289.
Piatetsky-Shapiro, G. 1991. Discovery, analysis, and
presentation of strong rules. In Piatetsky-Shapiro,

G., and Frawley, W. J., eds., Knowledge Discovery in
Databases. Menlo Park, CA: AAATI Press. 229 — 248.

Rafie1, D., and Mendelzon, A. 1997. Similarity-based
queries for time series data. SIGMOD Record (ACM
Special Interest Group on Management of Data).

Shatkay, H., and Zdonik, S. B. 1996. Approximate
queries and representations for large data sequences.
In Proceedings of the 12th International Conference on
Data Engineering, 536-545. Washington - Brussels -
Tokyo: IEEE Computer Society.

Smyth, P., and Goodman, R. M. 1991. Rule induction
using information theory. In Knowledge Discovery in

Databases. Cambridge: MA: The MIT Press. 159-176.

Smyth, P., and Goodman, R. M. 1992. An information
theoretic approach to rule induction from databases.
IEEE Transactions on Knowledge and Data Engineer-
ing 4(4):301-316.

Yazdani, N., and Ozsoyoglu, Z. M. 1996. Se-
quence matching of images. In Proceedings of Sth

International Conference on Scientific and Statistical
Database Management (SSDBM), 53 - 62.

