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Maximum Likelihood Estimation of Parameters 

in the Inverse Gaussian Distribution, 

With Unknown Origin 

R. C. H. Cheng and N. A. K. Amin 

Institute of Science and Technology 
University of Wales 

Cardiff CF1 3NU Wales 

Maximum likelihood estimation is applied to the three-parameter Inverse Gaussian distri- 
bution, which includes an unknown shifted origin parameter. It is well known that for similar 
distributions in which the origin is unknown, such as the lognormal, gamma, and Weibull 
distributions, maximum likelihood estimation can break down. In these latter cases, the likeli- 
hood function is unbounded and this leads to inconsistent estimators or estimators not asymp- 
totically normal. It is shown that in the case of the Inverse Gaussian distribution this difficulty 
does not arise. The likelihood remains bounded and maximum likelihood estimation yields a 
consistent estimator with the usual asymptotic normality properties. A simple iterative method 
is suggested for the estimation procedure. Numerical examples are given in which the estimates 
in the Inverse Gaussian model are compared with those of the lognormal and Weibull distri- 
butions. 

KEY WORDS: Maximum likelihood estimation; Inverse Gaussian distribution; Lognormal 
distribution; Weibull distribution. 

1. INTRODUCTION 

Suppose a parametric model is to be fitted to a 
random sample of observations x1, x2, ..., xn that is 
positively skewed, where moreover the x's are bound- 
ed below by an unknown bound. For convenience, we 
shall assume that x's are ordered with x1 smallest. If 
the physical situation does not suggest an obvious 
distribution, one can be chosen on the grounds of 
goodness of fit and convenience. There are a number 
of three-parameter generalizations of well-known 
two-parameter distributions that can be used, the best 
known probably being the lognormal, gamma, and 
Weibull distributions. These three are similar in that 
the two-parameter versions have positive density only 
if x > 0, while the three-parameter versions allow for 
a shifted origin so that the density is positive only for 
x > a. In their three-parameter versions, the lognor- 
mal model was investigated by Cohen (1951), Hill 
(1963), and Harter and Moore (1966), among others; 
the gamma model by Harter and Moore (1965) and 
Cohen and Norgaard (1977); the Weibull model by 
Harter and Moore (1965), Dubey (1966), and Rock- 
ette, Antle, and Klimko (1974). 

It is well known that maximum likelihood esti- 
mation in these three-parameter versions does not 
satisfy the usual regularity conditions and conse- 

quently can give rise to estimators not having the 
usual asymptotic normality properties, and even to 
inconsistent estimators for these three models. The 
critical difficulty when using the three-parameter log- 
normal, gamma, and Weibull models is that in all 
these cases there are paths in the parameter space, 
with a (the shifted parameter) tending to the smallest 
observation x1, along which the likelihood becomes 
infinite. This yields a = xl as the ML estimator of a. 
Unfortunately, this does not then yield sensible esti- 
mates of the remaining parameters. In certain cases, 
such as the lognormal model, the problem can be 
circumvented by searching for a local maximum of the 
likelihood which yields consistent estimators for all 
parameters. Unfortunately, for a given sample there 
may be no local maximum. Thus the technique is not 
foolproof and it has to be augmented by additional ad 
hoc methods (see Harter and Moore 1966). 

To avoid these difficulties, we suggest an alternative 
distribution, the three-parameter Inverse Gaussian 
(IG) distribution, with density function 

f(x; a, 2, p) 
= [;/{27r(x - oX)3}]1/2 

exp[--A(x -a - )2/{22(x c-a)}] 

x > a; L, 2 > 0. (1.1) 
257 



R. C. H. CHENG AND N. A. K. AMIN 

The well-known two-parameter model, of which (1.1) 
is a generalization, was reviewed recently by Folks 
and Chhikara (1978) and no consideration of the 
three-parameter case appears to have been made. Our 
main aim is to show that ML estimation for this 
distribution is not only numerically straightforward, 
but more importantly cannot give rise to inconsistent 
estimators. It is suggested that if the only criteria for 
using a particular model are those of convenience and 
goodness of fit, then the IG distribution is an es- 
pecially appropriate model. 

In the next section we describe the properties of the 
likelihood function of the IG distribution and suggest 
a method for obtaining ML estimates of the par- 
ameters. In Section 3, some properties of the esti- 
mators are discussed. Numerical examples are given 
in the final section and the ML estimates in the IG 
model are compared with those of the lognormal and 
Weibull models. 

2. ML ESTIMATION IN THE INVERSE 
GAUSSIAN MODEL 

We first consider the likelihood function of the IG 
distribution. The log-likelihood corresponding to the 
density (1.1) is 

n 
L(a, A, 4I) = (n/2)log{A/(27r)} - (3/2) ~ log(x,- a) 

i=1 

- A Z (x,i - - )/{2(xi - a). (2.1) 
i=1 

For fixed cx, the maximum of L can be written as 

L*(a) = max L(a, A, A) = L(a, f/(a), i(ao)), 
, ;A 

where 

(a)oc = x --a, A(a) = {n-1 (xi - Ca)1 -- (a)} 

(2.2) 

The overall ML estimators a, a, and iA can now be 
found by maximizing L*(a) with respect to a. 

Unlike the lognormal, gamma, and Weibull cases, 
L*(a) has a finite maximum. Straightforward series 
expansion of L*(a) in terms of 6 = Xl - a gives 

L*(a) = Kn- 3)log 8 + 0(1) as --b 0, (2.3) 

so that L*(a)-? -oo as ac-- x1, provided n > 3, which 
we assume from now on. Similarly, 

L*(a) = -in{1 + log(27rs2)} - ngls(2c)-1 

+ 0( -2) as c- - oo, (2.4) 

where s2 and g1 are respectively the sample variance 
and skewness given by s2 = E x2/n - x2, gl = s-3 

(, x/n - 3 E x2 E xi/n2 + 2x3), so that L*(a) tends 
to a constant as a-- - oo. 

It follows from (2.3) and (2.4) that L*(a) is bounded 
above for all - oo < a < x1. Equation (2.4) also shows 
that, when the sample skewness is positive, L*(a) ulti- 
mately decreases as a tends to -oo. Consequently, 
L*(a) must have a global maximum at a stationary 
point where OL*(o)/ax = 0. 

When the sample skewness is negative, L*(a) can 
achieve its overall maximum at a = - oo. This might 
appear unusual, but is actually easily explained. The 
point is that the IG distribution encompasses the 
normal distribution as a special case. Letting a -+ - oo 
is equivalent to fitting the normal distribution, with 
the ML estimates of the mean 0(a) = a + /?(a) and the 
variance 62(a) = A3(a)/~(a) becoming the ML esti- 
mates of the mean and variance of a normal sample. 
We have 

0(a) = x (independent of a), lim 62(a) 
a-- - 0 

(2.5) = Xi/n-X2. 

Thus, when the sample is negatively skew, ML esti- 
mation is equivalent to fitting the normal model, this 
being obtained by letting a -- - oo. 

With the above points in mind, the following pro- 
cedure is suggested for deciding when to fit the IG 
distribution and when to fit the normal one. First, 
calculate the sample skewness g1 as previously de- 
fined. Then, fit the three-parameter IG model if 
g, > k(6/n)1"2, with k a positive constant to be chosen; 
otherwise, fit the normal model. (Recall that the 
sample is assumed to be positively skewed. The case in 
which the normal model is not appropriate because 
the sample is too negatively skewed does not therefore 
occur.) The reason for using this test is that it is known 
(see for example Kendall and Stuart 1969) that g1 is 
approximately N(0, 6n-1) if the underlying distri- 
bution is nearly normal. The constant k can therefore 
be chosen to make small the probability of fitting the 
IG model when the true distribution is actually nearly 
normal. For example, with k = 1.64 this probability is 
approximately 5 percent. It should be stressed that it 
is not desirable to make this probability too small, as 
this would give an over-conservative procedure with 
the three-parameter IG model being fitted only when 
the distribution is very skew. 

When the IG model is to be fitted, a has to be found 
from the implicit equation DL*(a)/Oa = 0. The sugges- 
ted method for doing this is to use the iteration 

axo = x 1- (2s2 log n)-'(~ - x)3, 

am+i = om+ 3 (xi-a -,,1/n 
+m{2 -Z (Xi-a m) /n} (2.6) 

x {3 + }(m = 0, 1, 2, 
x {3#;2,7,a- + 12A ,2}(m = 0, 1, 2, ...), 
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where /L^, Am are the estimates (2.2) evaluated at 
a = am. The recursion is based on the Newton- 
Raphson iteration 

1m+ I = cm - {OL*/@a)/(82L*/Da2)},, (2.7) 

It replaces 02L*/Oac2, however, by an estimate of its 
expected value, this being approximately 

E{n- l(-2L */Da2)t,.} =-1.5A-t- - 6A-2 

for large n. 
Apart from simplifying calculations, the approxi- 

mation to 82L*/cta2 has the important advantage of 
being always negative. This ensures that the modified 
iterations converge only to a maximum and never to a 
minimum of L*. The suggested starting value %o has 
been obtained by using x1 adjusted by a bias correc- 
tion term. Finally, if the initial choice of ao happens to 
be poor, it is possible to get at some stage, am+ 1 > x1, 
which is clearly invalid. If this occurs, then it is sug- 
gested that iterations are continued with am+ = 
(x1 + am)/2. 

3. DISTRIBUTIONAL PROPERTIES 
OF ESTIMATORS 

We consider both large and small sample properties 
of the ML estimators in the IG distribution. We have 
used the parametrization (a, I, A) as being a natural 
generalization of the two-parameter (u, A) model. This 
is not always the most informative set of parameters 
and we shall therefore consider also the parameters 
0 = a + au, 2 = IU3/A, and 4 = A//I, these being res- 
pectively the mean, variance, and shape parameters of 
the distribution. 

For large samples, the usual normality and ef- 
ficiency properties still hold, even though the model 
does not satisfy the usual regularity conditions. 

Theorem. There is in probability as n-- oo, a 
stationary point (a, M', A) of L such that \/n( - -a, 
a- /#, . - A) is asymptotically normally distributed 
with mean zero and covariance matrix E with ele- 
ments d- 1j, where 

121 = - )-3 , 

'13 -i(p-4-)-l -3) 

a23 = (-4 + r-1U-3) 

a22 = ?i- 1#3 + 
- 

3#- 
1 

+ 3;,-4 

a33 = 2 5 + + 2- 3 

andd = -2-4 +3 3- -3. 

The proof is given in the Appendix. The asymptotic 
distribution of 0, a, k can be calculated directly from 
this result using well-known "standard errors" formu- 

las. For example, this yields the asymptotic distri- 
bution of 0 as x/n[0 - (a + u)] - N(O, ,3A- 1). 

The extent to which the asymptotic results hold for 
small samples depends very much on the shape of the 
parent distribution. The discussion is simplified be- 
cause the distributional properties do not depend on 
a, and because p is only a scale parameter. Thus, with 
no loss of generality we can assume that a = 0, and 
that p = 1. The shape of the distribution then depends 
only on 4), being progressively more skew as --+ 0, 
and tending to normality as 40 -- oo. Table 1 gives the 
values of the biases to order n- for selected values of 
4). The biases of a, pj, and A have been computed from 
the formula given by Shenton and Bowman (1977, 
Eq. (3.12b)); the biases of the other estimates have 
been calculated from these using 

bias{f(4)} = bias(~) 

+1 z cov(, j), 

where the derivatives are evaluated at E(t). 
The most notable feature is that the estimators A, 4, 

and to a lesser extent p and a all show increasingly 
substantial bias as the underlying distribution tends 
to normality (i.e., as 4 increases). In contrast, the 
estimates of mean and variance, 0 and a2 = f3/. are 
relatively unbiased. 

This feature shows there is little point in trying to fit 
the three-parameter model when the data look 
normal irrespective of the true shape of the population 
distribution. In essence, the only reliable information 
is being supplied by the sample mean and variance. 
All the other estimators,2, A, , , and a, precisely those 
connected directly with the IG model, are heavily 
biased. 

There is another feature of note in Table 1, which 
occurs in the converse situation where the parent 
distribution is very skew. Here the estimates a,, a, A, 

and 0 remain reasonably unbiased. However, 82 now 
becomes increasingly positively biased as skewness 
increases. We do not pursue in detail how this bias 

Table 1. First Order Biases ( with ,u = 1) 

q~ nbias (a) nbias () nbias($) nbias (~2) 

0.1 .1433 -.0652 .9440 338.4 

0.5 .6008 -.4815 .6708 18.54 

2.0 1.296 1.000 1.482 1.722 

10.0 -1.667 259.3 184.1 .0372 

100.0 -60.49 38250. 19190. -.008411 

Notes : (i) The bias of 1 is bias () = - bias (a) . 

(ii) The bias of 9 is zero. 
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might be removed, but note that v = ns2/(n - 1) is 
unbiased for 83/2. Now, as 0) increases, so p3/. be- 
comes approximately equal to s2 in probability. This 
implies that v is nearly fully efficient when (4 is large. 
Interestingly, v retains a fair proportion of its ef- 
ficiency when (4 is small. To order n- 1, 

var(v) = n- l4(2 - 2 + 15 - 
3), 

which tends to 15n-1lu44-3 as 4)-+ 0. To the same 
order, 

var( 3/J) 

= n-1i4(2 
-)2 + 230 -3 + 360 -4)(1 + 440- )- , 

and this tends to 9n - 14-3 as - 0. As /3/A has a 
large bias when () is small, this suggests that v is to be 
preferred when either n is small or 0 is large. 

4. NUMERICAL EXAMPLES 

To illustrate this discussion we fit the IG model to 
three sets of data, selected to illustrate different types 
of behavior of the ML estimates. All three sets of data 
are sufficiently skewed to warrant, under the sugges- 
ted criterion, fitting the IG rather than the normal 
model. Also, in each case there are grounds for be- 
lieving a shifted origin as being possibly more appro- 
priate than an origin with a = 0, so that it is reason- 
able to try to fit the three-parameter IG model. 

The fitting of the IG model of (1.1) will be compared 
with the three-parameter lognormal model with den- 
sity 

f(x) = (2r)- 1/2F- (x - )-1 

x exp -(2a2)- 1 [log(x- a) - f]2} 

and the three-parameter Weibull model with density 

f(x) = y6- (x - xa)-1 exp{-[(x - a)/]Y. 

In these two models local maximum likelihood esti- 
mation has been used to obtain estimates. 

This method has been used to illustrate the advan- 
tage of the IG model over the lognormal and Weibull 
models in always allowing ML estimates to be ob- 
tained. Though we have not done so here, when ML 
estimation breaks down, alternative methods (such as 
the modifications suggested by Cohen 1975 and 1976 
in which an alternative equation is substituted for 
aL/acx = 0) might be used that enable the lognormal 
or Weibull model to be successfully fitted. The pro- 
blem, of course, is that it is not clear at the outset 
when such an alternative procedure is required. It 
should be said, however, that though ML estimates 
can always be obtained with the IG model, this does 
not mean they will always be completely satisfactory. 
As discussed at the end of Section 3, there is the 
possibility in small samples of bias adversely affecting 
estimates. 

There does not seem to be a precise goodness-of-fit 
test suitable for these three-parameter distributions 
when the sample size is small. For example, the 
Kolmogorov-Smirnov test cannot be applied where 
all three parameters have to be estimated from the 
sample. The chi squared goodness-of-fit test might be 
used, but the smallness of the sample size renders its 
application impractical. We therefore give only a 
rough indication of the goodness of fit of each of the 
models by plotting the empirical cdf and cdf of the 
fitted distributions. 

Additional comparison of the three models can be 
made using the ML estimates themselves. A direct 
comparison of parameter estimates is not possible as 
they are not simply related except for the parameter a, 
which is the shifted origin in all three models-and #u 
in the IG model and 6 in the Weibull model, which are 
both scale parameters. They can, however, be used to 
give ML estimates of the mean, variance, and skew- 
ness that give a more direct comparison of the three 
models. For the IG model, the mean, variance, and 
skewness are a + ,u, 3/iA, and 3(#/A)1/2; for the lognor- 
mal model they are ca + exp(p + lia2), w(w- 1)e2, 
and (w - 1)1/2(w + 2), where w = ea2; and for the Wei- 
bull model they are a + (F(l + +- 1), v62, and 

v-3/2{F(l + 37y-) - 3F(1 + 2y-l)F(1 + 7-1) 

+ 2F3(1 + y-1)}, 

where v = F(1 + 2y-1) - F2(1 + y-1). 

Example 1. Dumonceaux and Antle (1973) cite 
data, obtained in a civil engineering context, of the 
maximum flood level (in millions of cubic feet per 
second) for the Susquehanna River at Harrisburg, 
Pennsylvania over 20 four-year periods as 

.654 .613 

.402 .379 

.269 .740 

.416 .338 

.315 .449 .297 

.423 .379 .3235 

.418 .412 .494 

.392 .484 .265 

This is an example in which all three models can be 
successfully fitted. The ML estimates for the IG model 
are a = .178, 2 = .245, and A = .914; for the lognor- 
mal they are a = .185, ,B = -1.56, and a2 = .257, and 
for the Weibull model they are a = .261, 9 = 1.25, and 
( = .173. We give some idea of the goodness of fit by 
comparing the empirical cdf and the cdfs of the fitted 
models, shown in Figure 1. The three models give a 
similar fit to the data with the cdfs for the lognormal 
and IG appearing almost identical. Estimates of mean, 
variance, and skewness listed in Table 2 compare 
reasonably well and with the corresponding sample 
statistics. In the Weibull model, though the fit is satis- 
factory, ML estimation is actually close to breaking 
down. The a value giving the local maximum of the 
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- Empirical 

- - IG and Lognormal 

Weibull 

.2 .3 .;4. .5 .6 .7 

Maximum Flood Level (in millions of cubic feet per second) 

Figure 1. Empirical and Fitted Distributions: Du- 
monceaux and Antle Data 

Weibull likelihood is very close to the smallest obser- 
vation and the data would only need to be slightly 
more skewed before the local maximum disappears 
altogether. The next example illustrates this. 

Example 2. Engelhardt and Bain (1979) give the 
fatigue lives (in hours) for 10 bearings tested on a 
certain tester as follows. 

152.7 172.0 172.5 173.3 193.0 
204.7 216.5 234.9 262.6 422.6 

The ML estimates for the IG model are a = 139.7, 
p = 80.8, and 1 = 88.2. The lognormal model can also 
be fitted giving estimates a = 144.1, , = 3.94, and 

2 = .827. ML estimation breaks down for the Wei- 
bull model as no local maximum of the likelihood 
exists. 

The cdfs of the fitted lognormal and IG models are 

Table 2. Comparison of ML Estimates in the IG, 
Lognormal and Weibull Models: Dumonceaux and 
Antle Data 

Estimate Sample Inversen nal Weibu Value Gaussian gnors 

a (1 = .265) .178 

Mean .423 .4+23 

Variance 

Skewness 

.0149 .0161 

.185 .261 

.424 .422 

.0167 .0169 

1.07 1.55 1.781.4 

150 200 250 300 350 400 

Fatigue Lives (in hours) 

Figure 2. Empirical and Fitted Distributions: En- 
gelhardt and Bain Data 

again very similar as seen in Figure 2 and they pro- 
vide a reasonable fit compared with the sample cdf. 
However, a comparison of the estimates of mean, 
variance, and skewness in Table 3 suggests better 
agreement between the sample and IG estimates, the 
lognormal estimates being somewhat larger that the 
sample values. 

Example 3. Steen and Stickler (1976), in a survey of 
beach pollution in South Wales, give the pollution 
(measured in number of coliform per 100 m) on 20 
days over a five-week period at Cold Knap Beach as 
follows. 

200 6091 336 327 154 109 111 282 2120 1082 
918 718 482 1345 53600 5900 1918 900 1045 1454 

The ML estimates in the IG model are a = 44.4, 
Q = 3910, and A = 318; in the lognormal model they 
are & = 108.5, i = 6.08, and a2 = 6.36. ML estimation 
again breaks down in the Weibull model. 

Table 3. Comparison of ML Estimates in the IG, 
Lognormal and Weibull Models: Engelhardt and 
Bain Data 

Estimate Sample Gaussn Lognormal Weibull 

a (x1 = 152.6) 139.6 144.1 ML estimation 

Mean 220.5 220.5 221.8 Fails 

Variance 5533. 5984. 7751. 

Skewness 1.86 2.87 4.86 

TECHNOMETRICS ?, VOL. 23, NO. 3, AUGUST 1981 
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Empirical 

-- IG 

Lognormal 

4 12 20 28 36 44 52 60 68 

Numnber of Coliform x 100 

Figure 3. Empirical and Fitted Distributions: Steen 
and Stickler Data 

In Figure 3, the plots of the cdf of the fitted lognor- 
mal and IG models are seen to give similar fits to the 
empirical cdf, with the IG model giving a somewhat 
better fit to the middle percentiles and upper tail of the 
empirical distribution. Comparison of the estimates of 
mean, variance, and skewness in Table 4, however, 
indicates the lognormal estimates A and a2 as being 
highly suspect. In fact, the data are close to the bor- 
derline where ML estimation in the lognormal model 
cannot be applied; for slightly more skewed data, the 
lognormal likelihood would have no local maximum 
at all. 

5. CONCLUSION 
When the physical situation does not suggest an 

obvious distribution to be fitted to (positively) skewed 
data, one can be chosen on the grounds of goodness of 
fit and convenience. It is suggested that the three- 
parameter IG distribution may provide an alternative 

Table 4. Comparison of ML Estimates in the IG, 
Lognormal and Weibull Models: Steen and Stick- 
ler Data 

Estimate Sample Inverse Lognormal Weibull 

a (I1 = 109) 44.4 

Mean 3955 3955 

108.5 ML estination 

10659 Fails 

Variance 1.32 x 108 1.88 x 108 6.'+5 x 101 

Skewness 3.99 10.53 14028 

skewed model in such situations. Unlike other three- 
parameter models, such as the lognormal and the 
Weibull cases, the IG model has a bounded likelihood 
and ML estimators for the parameters can always be 
obtained. The estimators possess the usual asymptotic 
properties of normality and minimum-variance. A 
method of fitting the distribution has been given in 
Section 2. Computation of the estimates is relatively 
simple and requires no greater effort than in the other 
models. 

APPENDIX 

Proof of theorem. Only an outline is given, as the 
proof is similar to standard proofs of asymptotic nor- 
mality of ML estimates. A more detailed proof has 
been given by Cheng, Amin, and Feast (1979). 

In standard proofs (see for example Kendall and 
Stuart 1969), a consistent root of the likelihood equa- 
tion is first exhibited. In the present case, because of 
the unknown shifted origin a, it is necessary to es- 
tablish a sharper initial result than just that of consist- 
ency. 

We write X = Op(n -) for a variable X of order n -q 
in probability. We first show that a solution a can be 
found for which a - ao = Op(n - 1/2), where ao is the 
true parameter value. Expanding aL*/8a, or more 
simply h(a) = 4(a) aL*/8a, as a series in a about ao, we 
find that 

n-2h(0) = Lo + Li(a0 - a) + R, 

where Lo = O (n-,12), L1 = Op(l), and R = Op{(a0o- 
a)2/(xl- Cao)2}. The expansion is valid provided x1 
- ao > a - ao. From the distribution of x, we find 

that (xi - a0o)- = Op(log n), so that if we restrict 
(a - ao) to being O(n- 1/2) then the inequality will hold 
in probability. Under this condition we find that R 
can be neglected and there is a root of h(a) = 0 
given approximately by A - a = Lo/LL for which 

-a = Op(n 1/2). 
A similar argument applied to ja = a(a), A = AM(&) as 

defined in (2.2) now shows p- o = Op(n-1/2) and 
- o = Op(n- 1/2). 
The asymptotic distribution of 6 = (a, pt, 1) can 

now be established along standard lines. For example, 
the asymptotic distribution of a &- ao is the same as 
that of Lo/LI. A straightforward evaluation shows 
that the asymptotic distribution of 0 is normal with 
mean 0?(= true parameter values) and variance, 
which can be calculated in the usual way as 
E{- nl (a2L/ao0i 0j)-1 e o}. A direct computation of 
this quantity gives the result of the theorem. 

[Received March 1980. Revised February 1981.] 
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