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Abstract 
The ROOT system in an Object Oriented framework for large scale data analysis. ROOT written in C ++, contains, 

among others, an efficient hierarchical 00 database, a C ++ interpreter. advanced statistical analysis (multi-dimen- 
sional histogramming, fitting, minimization, cluster finding algorithms) and visualization tools. The user interacts with 

ROOT via a graphical user interface, the command line or batch scripts. The command and scripting language is C + + 
(using the interpreter) and large scripts can be compiled and dynamically linked in. The 00 database design has been 
optimized for parallel access (reading as well as writing) by multiple processes. 

1. Introduction 

Having had many years of experience in developing 
the interactive data analysis systems PAW [ 1] and PIAF 
[2] and the simulation package GEANT [3], we realized 

that the growth and maintainability of these products, 
written in FORTRAN and using some 20 year old libra- 
ries, had reached their limits. Although still very popular. 
these systems do not scale up to the challenges offered by 
the LHC. where the amount of data to be simulated and 
analyzed is a few orders of magnitude larger than any- 
thing seen before. 

It became time to re-think our approach to large scale 

data analysis and simulation and at the same time we had 
to benefit from the progress made in computer science 

over the past 15 to 20 years. Especially in the area of 
Object Oriented design and development. Thus was born 
ROOT. 

We started the ROOT project in the context of the 
NA49 experiment at CERN. NA49 generates an impres- 
sive amount of data, about 10 terabytes of raw data per 
run. This data rate is of the same order of magnitude as 
the rates expected to be recorded by the LHC experi- 
ments. Therefore, NA49 is an ideal environment to develop 
and test the next generation data analysis tools and to 
study the problems related to the organization and anal- 
ysis of such large amounts of data. 

* Corresponding author. Tel.: + 41 22 7672041; e-mail: rene. 
brun@!cern.ch. 

With ROOT we try to provide a basic framework 

that offers a common set of features and tools for 
domains, such as data analysis, data acquisition, event 
reconstruction, detector simulation and event genera- 

tion. 
Currently the emphasis of ROOT is on the data analy- 

sis domain but thanks to the approach of loosely coupled 
object oriented frameworks the system can easily be 
extended to other domains. 

We believe that ROOT is an ideal environment to 
introduce physicists quickly to the new world of Objects 
and C++. 

2. Architectural overview 

The backbone of the ROOT architecture is a layered 
class hierarchy with, currently, around 250 classes 
grouped in about 20 frameworks divided into 9 
categories. This hierarchy is organized in a mostly 
single-rooted class library, that is, most of the classes 
inherit from a common base class TObject. While 
this organization is not very popular in C ++, it has 
proven to be well suited for our needs (and indeed 
for almost all successful class libraries: Java 163, 
Smalltalk [7], MFC [S], BeOS [9], etc.). It enabled 
the implementation of some essential infrastructure in- 
herited by all descendants of TObject. However, we also 
can have classes not inheriting from TObject when appro- 
priate (e.g.. classes that are used as built-in types. like 
TString). 
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2.1. The class categories 

The basic ROOT classes contain the most low-level 

building blocks of ROOT. For example, the TObject 
class, which implements common behaviour for all 
ROOT classes. The class TClass and its helper classes 
that provide support for extended runtime type informa- 
tion. The storage manager TStorage which handles all 
memory allocation and de-allocation operations and 

performs basic error checking (memory overwrites, etc.). 
The class TFile which provides a hierachical sequential 
and direct access persistant object store. The operating 
system abstraction layer TSystem and the concrete 

OS interfaces TUnixSystem, TWin32System and 
TMacSystem concentrate all OS dependent behaviour, 
like file system access, dynamic loading and interprocess 
communication (IPC) for the three main platforms sup- 

ported by ROOT. 
The container classes provide general purpose data 

structure classes like, arrays, lists, sets, B-trees, maps, etc., 
which are heavily used in the implementation of ROOT 

itself. 
The histogram and minimization classes offer ad- 

vanced statistical data analysis features, like lD, 2D and 
3D histograming of short, long, float or double values, 
with fixed or variable bin sizes, profile histograms, data 
fitting, formula evaluation and minimization. 

The Tree and Ntuple classes contain the tree system. 
The row-wise and column-wise Ntuples have been one of 
the major strengths of the PAW system. Trees extend the 
concept of Ntuples to all complex objects and data struc- 
tures found on raw data tapes and DSTs. The idea is that 
the same data model, same language, same style of que- 

ries can be used on all data sets in an experiment. Trees 
are designed to support not only complex objects, but 
also a very large number of them in a large number of 

files. Ntuples are simple trees with one branch only. 
The 2D graphics classes contain the low-level graphics 

primitives, like lines, arrows, rectangles, ellipses, text, etc., 
but also the higher level constructs like pads and can- 
vases. They also handle basic style and attribute manage- 
ment. 

The 3D graphics and detector geometry classes pro- 
vide basic 3D graphics primitives, like 3D polylines and 
3D polymarkers as well as higher level geometrical 
shapes (boxes, cones, polygons, tubes, etc.) which can be 
efficiently assembled into very complex detector geometries. 

The MOTIF graphical user interface classes contain 
all the graphical and interactive components found in 
almost every user interface toolkit, such as buttons, win- 
dows, dialogs and menus. Similar classes have also been 
developed for Windows/NT and Windows 95. 

The interactive interface classes and C ++ interpreter 
allow the construction of interactive applications in 
which the user has to learn only one language, C + + , to 
communicate with the program. The command lan- 

guage, macro language and programming language are 
all one and the same. 

The documentation classes allow the creation of hy- 

perized (in HTML format) C ++ header and source files, 
inheritance trees, class indices, macros and session tran- 
scripts. Thanks to this facility almost everything in the 
ROOT system can be automatically documented and 

cross-referenced. 

2.2. The TObject class 

Most ROOT classes are derived from TObject. TObject 

defines protocols (abstract methods) for comparing ob- 
jects, for object I/O, for graphics hit detection and for 
notification between objects, to name the most important 

ones. 
The ROOT object I/O facility supports the transfer of 

arbitarily complex polymorphic data structures from 
memory to a ROOT file and vice versa. This functional- 
ity is based on the abstract method Streamer, which is 
overridden in subclasses to stream an object’s instance 

variables. Circular structures are linearized, and multiple 
references to the same object are restored properly. Stor- 
ing pointers is implemented by an object table, which 
assigns a unique identifier to each transmitted object. 
This identifier can be transferred to other address spaces 

or to permanent storage. 
Object I/O needs some information about the type of 

an object at runtime, because not only the state of an 
object but also its corresponding class type has to be 
transmitted. ROOT runtime support could provide 
enough information about an object’s instance variables 
to implement the Streamer method generically in class 

TObject. However, we preferred the approach of a pro- 
grammer selectively deciding which data members 
should be written to disk. Data members caching some 
state of an object that can easily be reconstructed in the 

Streamer method do not have to be transferred to disk. 
Another example is when variables can be compacted 
into short words or even single bits (booleans). To aid the 
programmer we provide a tool to generate automatically 
a default Streamer method. 

The case of encountering an unknown class while 
reading back an object structure leads to the discussion 
of dynamic loading and linking. To handle this case 
gracefully, ROOT includes a mechanism to load a new 
class and link it to a running application. This dynamic 
linking support can be further used to extend a running 
system. In the case of the NA49 data analysis the library 
with the experiment specific classes is dynamically linked 
to the running interactive ROOT program. 

The object I/O facility is also used as the standard 
format for transferring arbitary data structures to other 
ROOT based applications running in other address 
spaces or on other machines. The transparent integration 
of dynamic linking into the object I/O mechanism allows 
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the copying of instances of classes that are not known in tating rapid development. CINT covers about 95% of 
the running application. This feature allows us to develop ANSI C and 85% of C++ CINT, written in ANSI 
fairly easily advanced, web like, browsers that could C (about 70 000 lot), is solid enough to interpret itself and 
operate on imported ROOT objects (for example, we let the interpreted version execute a program. CINT 
could refit imported histograms without having to leave makes C/C + + programming enjoyable even for part- 
the browser). time programmers. 

2.3. The class dictionaryv object runtime support 

Even with the upcoming runtime type identification 
(RTTI) extension for C ++, the runtime system does not 
provide any information about the class structure, the 
instance variables or the member functions of an object. 
Consequently, an additional mechanism had to be intro- 

duced to gather this information, in order to support 
InheritsFrom Inspect and Dump methods, the object 
I/O facility and the automatic documentation system. 
ROOT uses the approach of associating with each class 
(via a static pointer) a special object describing its struc- 
ture. These descriptors are instances of the class TClass 
which is itself a subclass of TObject. TClass objects store 
the following information about a class: 
- the name and title of a class; 

CINT is developed by Masaharu Goto who is an R&D 
engineer in the mixed signal test department of the 
Hachioji semiconductor test division of HP Japan. 

Masaharu is working closely with the ROOT team to 
integrate CINT seamlessly into ROOT and to further 
optimize CINT/ROOT. 

The ROOT system embeds CINT to be able to execute 

C + + scripts and C + + command line input. CINT also 
provides ROOT with extensive RTTI capabilities. 

4. The ROOT I/O system 

_ the size of an instance in bytes; 
- its parent class(es); 
_ the names, types and descriptions of its instance vari- 

ables; 
_ the names and signatures of its member functions; 
- a source code reference to the definition and imple- 

mentation part of the class: 
_ the address of the class object factory method used to 

create a new object. 
Because the C++ runtime system gives no access to 

type and structure information, the ROOT system uses a 
dictionary generator called ROOTCINT. ROOTCINT 
(a wrapper program around CINT, the C++ inter- 

preter) parses the class header files and generates a dic- 
tionary (in the form of a C++ function). To link the 
ROOTCINT generated dictionary function to a class the 
programmer only has to add two preprocessor macros to 
his code. One macro. ClassDef. must be placed in the 
class definition file and the other macro, ClassImp, in the 
implementation file. 

One of the basic pillars of the ROOT system is its 

hierachical object database. The database is designed to 
be particularly efficient for objects frequently manipu- 
lated by physicists: histograms, ntuples. trees and events. 

One could argue that this functionality can also be 

provided by a full fledged commercial Object Oriented 
Data Base Management System (OODBMS). We con- 

sider OODBMSs as potential candidates for the replace- 
ment of tools like HEPDB [4] or FATMEN [S], i.e. 
when locking and concurrent writing is required. But we 
do not believe that they provide a solution for the types 

of objects mentioned above. Why? 
~ Interactive computing is towards commodity desktop 

and notebook devices. They will be heavily used for 

histogram manipulation and data presentation. This 
should not require a special connection to a central 
data base or a license server (think of home compu- 
ting). 

Besides as a dictionary generator, CINT is being used 
in the ROOT system as a command line interpreter and 
macro processor. Thanks to CINT the ROOT system 
can olIer the user a single language (C + +) interface. 

3. The CINT C/C + + interpreter 

- OODBMSs, by definition, are designed to store com- 
plete objects. Data clustering is organized around ob- 
jects and containers of objects. They are not designed 
to access only a subset of the object attributes. We 
have demonstrated with the PAW column-wise 
Ntuples the usefulness of having access to single at- 
tributes. The ROOT Tree functionality cannot be pro- 

vided in an efficient way by the current OODBMSs. 
- 00 data bases do not support on the fly data compres- 

sion. We arc designing experiments that will generate 
massive amounts of data. The cost of direct access 
devices for tens of terabytes may be a dominant factor 
in the cost of computing. 

CINT is a C/C++ interpreter which is aimed at 
processing C/C +- + scripts. Scripts are programs which 
perform specific tasks. Generally execution time is not 
critical. but rapid development is. Using an interpreter 
the compile and link cycle is dramatically reduced facili- 

~ Attribute range specification is not supported. A 4 byte 
integer cannot be saved as a single byte. 

~ The data bases companies are small and fragile. Will 
they survive after a few years’! The technology is not 
yet mature and compatibility between vendors is not 
guaranteed. 
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- We prefer not to discuss the question of the cost and 
the manpower resources necessary to support a com- 
mercial data base. 

4.1. The physical jile structure 

A ROOT databse file has a file header (less than 64 
bytes) followed by several logical records of variable 
length. The first 4 bytes of each physical record are an 

integer holding the number of bytes in the record. If the 
number of bytes is negative, it identifies a deleted record 
that can be reused in a subsequent write operation. The 
following bytes contain all the information to uniquely 

identify a data block on the file. 
The TFile: :Map member function can be used to view 

the contents of a file by reading sequentially all the data 
blocks. The information stored by the ROOT output 
functions is always in machine independent format (AS- 
CII, IEEE floating point, Big Endian byte ordering). The 
redundancy in the logical record header can be used in 
case of the file corruption or disk errors, to rebuild the 
original structure. Data in the logical records can be 

compressed or uncompressed, but the logical record 
header is never compressed. The first logical record on 
a file always contains the description of the top level 
directory of the file. 

The logical records contain the following possible 
data: 
- File/directory information. 
- A standard object as written by the TObject: :Write 

function. When the Write function is called, a TKey 
object is created. This TKey object is the logical record 
header. 

- A user buffer. In the same way as for TTree objects, the 

- A TTree buffer. When a TTree buffer is written, a 
TBasket object is created. TBasket is derived from 
TKey and contains additional information specific to 
the ‘ITree navigation logic. 

user has the possibility to define a new class derived 
from TKey and optimize it for his objects. 

Note that the concept of record length or block size has 
completely disappeared from the ROOT terminology. 
This simplifies considerably the logic of the system. It 
makes also simpler the implementation of memory map- 
ping techniques. 

4.2. The logical file structure 

A ROOT file is like a Unix file system. It can contain 
directories and objects with an unlimited number of 
levels. Each directory has an associated list of keys, kept 
in memory until the file is closed. Finding an object on 
the file is done in two steps: 
- Find the position of the key object using the key 

name. 
- Get the position of the object on the file. 

ROOT objects are always written in consecutive order 
on the file. By default, the directory description is written 
when the TDirectory constructor is invoked. However, 
if in a previous session, objects were deleted, the space 
released can be used by newly created objects. In this 
case, ROOT tries to find the best free block. The list of 

free blocks is a list supported by the TFile object. If a free 
block has a length that matches the length of the new 
object, the object is written in the free block bigger than 

the object used. When a file is closed, the linked list of 
each directory is written to the file. 

Thanks to this structure, a ROOT file can be read 
sequentially in case all objects need to be processed, or 
accessed randomly using the information in the TKey 
object. The TTree objects use a variant of the standard 
TKeys (TBasket). The TBasket keys are designed to 

address randomly a large quantity of objects (TBranch 
buffers) in very large files. 

4.3. Support for class/schema eoolution 

A ROOT file will in general be written with the same 
version of a class library. However, in the life time of 

a collaboration, the definition of many classes is likely to 
change frequently. 

The problem is made even more complicated by the 
use of inheritance. Assume a class D with its base classes 
C, B and A. An object of class D must be identified by the 
four version numbers of its composing classes. 

We have implemented in the ROOT files a versioning 
mechanism that guarantees that old files can always be 

read by new libraries. A likely case is the one of an 
analysis program looping on many data sets generated 
across the years with different class definitions. 

The header files containing the class definition must 
include the macro: 
ClassDef (Classname, VersionID), 

e.g. ClassDef (TLine, 1) 
The ClassDef macro is defined in one of the main ROOT 
include files which is automatically referenced by any 
include file using TObject derived classes. The second 
parameter of ClassDef is an integer representing the class 
version number. When the file is processed by the CINT 
Dictionary Generator the version information is saved in 

the dictionary data structure and is later available at 
execution time in the Streamer( > I/O method. 

4.4. The input/output functions 

An object is written to a file via the TObject: :Write ( ) 
method. This operation consists of the following steps: 
- Creation of a support TKey object in the current 

directory. 
~ The TKey object creates a TBuffer object. 
- The TBuffer object is filled via the Streamer( > 

method of a class. 
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_~ If the file is compressed (default) a second buffer is 

created to hold the compressed buffer. 
_ Reservation of the corresponding space in the file by 

looking in the TFree list of free blocks of the file. 
_ The buffer is written to the file. 
An object is read from the file into memory via the 

TKey: :Read( ) method using the following sequence of 
operations: 
_ Search the key address by name in the current direc- 

tory. The list of all the key names is contained in a 

hashlist. 
._ Create the buffer(s) necessary to read the object from 

file. 
The TKey object includes the name of the class of the 
object on the file. Using the class name, the pointer to 

the class definition (TClass) is obtained by looking into 
the linked list of class names supported by the top level 
gROOT object. The TClass: :New< > method is called. 

This function invokes the default constructor of the 
class. 
The object’s Streamer( > member function is called. 

The prototype for the Streamer( > function is auto- 

matically declared by the ClassDef macro. An example 
of code for the Streamerc > function is shown below 
for the ROOT class TShape. This code illustrates 
how the Streamer( > function deals with base classes, 
including multiple inheritance. The two data members 
f’Number and fMateria1 are integers. fMateria1 is 
a pointer to the material definition for this shape. In 

the likely case that many different shapes will reference 
the same material. only one copy of the referenced 
material will be written. The code for this function is 
automatically generated by the CINT Dictionary 

Generator. 

void TShape: :Streamer (TBuffer Beb) 

Stream a TShape object 

if (b. IsReading{ > > 1 
Version-t v = b.ReadVers( 1; 
TNamed: :Streamer@); 
TAttLine: :Streamer@); 
TAttFill: :Streamer@); 
b --> f Number; 
b \\ fvisibility; 
b x f Material; 

; else ; 
b.WritVers(TShape: :IsA( > 1; 
TNamed: :Streamer@); 
TAttLine: :Streamer(b); 
TAttFill: :Streamer(b); 
b ci fNumber; 
b c< fvisibility; 
b c/ f Material; 

/ 

4.5. Compression or it0 compression:2 

By default, objects are compressed before being written 
to a file. The ROOT compression algorithm is based on 
derivatives of the well known gzip algorithm. 

This algorithm supports up to 9 levels of compression. 
The default compression level is 1. This level is specified 
as a parameter in the TFile constructor or can be modi- 
fied by the TFile: :SetCompressionLeveI( ‘) function. If 

the level is set to 0, no compression is done. The perfor- 
mance of the compression algorithm can be seen on an 
object by object basis by using the TFile: :Map( > func- 
tion. Experience with this algorithm tends to indicate 
a compression factor of 1.3 for raw data files and around 
2 on most DSTs files. 

The time to uncompress a buffer is negligible com- 
pared to the compression time and is independent of the 
selected compression level. A ROOT file may contain 
objects written with different compression levels. 

5. The ROOT Trees 

For many years, the data flow model in HEP has been: 
Raw Data Tapes + Data Summary Tapes -+ Mini/Micro 
DSTs 

The introduction of Ntuples in the PAW framework 
has proven to be very successful. Many experiments are 
using Ntuples as a convenient replacement for mini- 
DSTs or even DSTs. 

The PAW Ntuples, however, were restricted to very 
simple data objects, collection of single variables or ar- 

rays. 
With ROOT, we are introducing a new concept that 

we call Trees. Trees provide the functionality of the 
Ntuples and much more. The Tree architecture extends 
the concept of the Ntuple to all complex objects or data 
structures found in Raw Data tapes and DSTs. The idea 
is that the same data model. same language, same style of 
queries can be used for all data sets in one experiment. 
Trees are designed to support not only complex objects, 
but also a very large number of them in a large number of 

files. 
In a conventional DST. all data structures of one event 

were written in a contiguous area on the file. This model 

has been very successful and robust for sequential files 
and when the analysis program requires access to a large 
number of attributes of one event. On the other hand, 
this model was particularly inefficient when one had to 
iterate on a subset of the events or when only a small 
subset of the event attributes was used. 

A Tree (class TTree) is made of branches. Each branch 
(class TBranch) is described by its leaves (class TLeafl. 
The leaves can be simple variables, structures, arrays or 
objects. An array may be of variable length, the length 
itself being a variable in the same branch or another 
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branch. Branches will in general be objects. However, we 
thought important to also support variables and struc- 
tures for these applications not yet converted to C + + 
and objects. A structure, for example, could be a simple 
C structure or a list of variables in a Fortran common 
block. 

When the fruits of one branch (detector data) are ready 
to be picked, they are collected into baskets (class 
TBasket). When the baskets are full they go to the store, 
i.e. the file. 

Each branch will go to a different buffer (basket). Some 
buffers will be written maybe after every event, whereas 
other buffers maybe written only after a few hundred 
events. The different buffers can be organized to be writ- 
ten to the same file or to different files. This mechanism is 
also well suited for parallel architectures. Note that this 
scheme allows also insertion of a new branch at any time 
in an existing file or set of files. 

Due to this data clustering scheme queries can be 
executed very efficiently. Queries executed on one or 
more variables or objects, cause only the branch buffers 
containing these variables to be read into memory. 

Data are in general processed on different architec- 
tures with different memory sizes. In case the analysis is 
performed on a parallel architecture with a lot of mem- 
ory, as many buffers as possible are kept in memory, 
maybe even all buffers. 

The Tree data structure allows direct access to any 
event, to any branch and to any leaf even in the case of 
variable length structures. 

6. Further information 

This paper describes only the fundamentals of the 
ROOT system. More detailed and up to date information 
can be found at: 
http:/root.cern.ch/ 
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