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Abstract

The presented methodology concerns constructive induction, viewed generally as a
process combining two intertwined searches:  first  for the “best”  representation space,
and second for the “best” hypothesis in that space. The first search employs a range of
operators for improving the initial representation space, such as operators for generating
new attributes, selecting best attributes among the given ones, and for abstracting
attributes. In the methodology presented,  these operators are chosen on the basis of the
analysis of training data, hence the term data-driven. The second search employs an AQ-
type rule learning to the examples projected at each iteration to the newly modified
representation space. The aim of the search is to determine a generalized description of
examples that optimizes a task-oriented multicriterion evaluation function. The two
searches are intertwined, as they are executed in a loop in which one feeds into another.
Experimental applications of the methodology to text categorization and natural scene
interpretation demonstrate a significant practical utility of the proposed methodology.
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Introduction

Inductive learning algorithms are increasingly being used for data mining and knowledge

discovery because they can provide powerful tools for determining useful and

comprehensible patterns in large volumes of data. A major limitation of all conventional

inductive learning algorithms is that descriptions they build (e.g, decision trees, decision

rules, Bayesian nets, etc.) employ only terms (attributes) that are selected from among

those explicitly provided in the original data. For that reason, such algorithms have been

called selective.

Due to the above limitation, the responsibility of determining attributes relevant to the

problem at hand falls entirely on the data analyst. This task may be quite difficult in

practice. Yet, it is crucial for the success for the learning process. If attributes provided in

the training examples are insufficiently adequate for the problem, then descriptions

created by a (selective) learning system will likely be excessively complex, and their

accuracy will be low regardless of the learning method used. For example, if one measures

age in terms of days rather than years and gives the driving test score as a value from 0%

to 100% rather than as a boolean pass/fail, it will be difficult for a learning system to

generate rules which accurately predict if a person is a legal driver.

In general, attributes provided in the data may be inadequate for the learning task when

they are only weakly relevant (weakly statistically correlated), indirectly relevant

(relevant only as arguments of some function that combines them with other attributes),

conditionally relevant (relevant only for some cases or for selected decision classes, or

relevant only under some conditions), or when they are inappropriately measured (with

too low or too high  precision).



To cope with inadequacy of attributes provided in the original data, the idea of

constructive induction has been proposed [1]. The original formulation of the idea was

concerned primarily with generating additional, more task relevant attributes from the

originally given, in order to improve the learning process.  It was subsequently observed

that attributes used in the training data define the problem representation space, and a

learning algorithm searches for boundaries delineating individual concepts or classes in this

space. Adding more relevant attributes,  removing irrelevant ones, or modifying the

measurment precision of attributes are diffrent forms of the improvement of the

representation space, which can be applied individually or jointly. 

Therefore, a general view of constructive induction has been proposed, in which it is a

process of learning concepts desciptions that employs two intertwined searches: one for

the “best”  representation space, and the second for the “best” hypothesis in the space

[3] When searching for the  best representation space, the system may make no

commitment as to the description language used for creating a hypothesis, or may be

dependent on the description language. The second search determines a hypothesis that

combines attributes (spanning the representation space) according to the assumed

description language. Therefore, what constitutes the “best” representation space is, in

principle, dependent on the description language used. The search for the best space and

for the best hypothesis in the space are thus interrelated.

In general, the more expressive is the description language used by a learning algorithm,

the lesser is the need for improving the original representation space (assuming that the

original attributes are sufficiently adequate). On the other hand, the higher is the

expressive power (capacity)  of the description language, the exponenially higher is the

search for the best hypothesis in that language.  By separating searches for the best space

and for the best hypothesis, constructive induction simplifies the overall learning process



in the case of a weak representation space, and makes possible to generate an accurate

hypothesis even with a relatively simple learning algorithm..

Methods of constructive induction can be classified on the basis of the source of

information that is used for searching for the “best” representation space. In data-driven

constructive induction (DCI), the search is based on the analysis of the input examples

(data); in hypothesis-driven constructive induction   (HCI) the search is based on the

analysis of intermediate hypotheses); and in knowledge-driven constructive induction  

(KCI) the search exploits domain knowledge provided by the expert [3]. There is also  a

multistrategy constructive induction   (MCI), that employs two or more previous methods

[8].

The above general view of constructive induction and the understanding of different

information sources for its implementation has been in the last several years used to guide

the development of  such constructive induction programs as AQ17-DCI, AQ17-HCI and

AQ17-MCI. All these programs use an AQ-type rule learning algorithm for conducting

search for hypothesis, hence the “AQ” prefix.

This paper describes the latest methodology for the data-driven constructive induction

that has been implemented in the current version of the AQ17-DCI program, and presents

new results from its application to some practical problems. Specifically, the latest

methodology combines the AQ-15c learning algorithm with a much wider range of data-

driven representation space improvement operators. These operators are classified into

constructors  and destructors.  Constructors extend the representation space, and

destructors reduce the space.  Constructors are based on methods of attribute generation



(“feature construction”1),  and destructors are based on methods for attribute selection

(“feature selection”) and attribute abstraction. All these operators, which are usually

considered in the literature separately, have been integrated in AQ17-DCI in a synergistic

fashion.  Experimental applications of the methodology to text categorization and natural

scene interpretation have confirmed the benefits of improving the initial representation

space, and demonstrated the advantages of constructive induction over convential

induction in  cases where the initial representation space is not directly relevant or not

well-tuned for the desription language employed.

An Illustration of Constructive Induction

We distinguish between two types of representation spaces. One is concept (or

hypothesis) representation space, defined as the space that is searched for a hypothesis

generalizing training examples. This space is spanned over descriptors (attributes,

predicates, transformations, etc.) that are directly employed in the description of a

hypothesis. Second is the example representation space, which is spanned over attributes

occuring in the training examples. In the conventional machine learning methods, the

example representation space and the concept representation space are identical.

In some inductive learning problems, the boundaries of concepts in the example

representation space are very complex and thus difficult to learn.  Such a problem is

illustrated in Figure 1a. This is the so-called second Monk’s problem, which was used in

the international competition of machine learning program [2].

                                                
1  The paper makes a distinction between an attribute (a one-argument function that maps objects
to attribute values; e.g., color or length of an object) and a feature (that expresses a specific value
or property of an object (e.g., red or long).



In the diagram, spanned over six attributes x1, x2,..., x6, individual cells represent unique

combination of different attribute values. Positive training examples are marked by “+”

and negative training examples are marked by “-”.  The shaded area represents the target

concept, that is, the concept to be learned. As one can see, the boundaries of the target

concept are very complex; therefore, learning the concept in this representation space is

difficult. For this reason, conventional symbolic learning methods, such a decision tree

learning,  did not perform very well on this problem.

(a) (b)

Figure 1. Diagrammatic visualization of the Monk 2 representation spaces:  (a) the 

example representation space; and (b) the concept representaion space derived from the

example space by the data-driven constructive induction method described in this paper.

In the example representation space, the learning problem is difficult because the target

concept highly distributed. An improved representation space, determined by the AQ17-

DCI system, is shown in Fig. 1(b).  In this space, training examples are consolidated, and

the target concept is highly regular;  thus it is easy to learn. It is then desirable to use this

improved space as the concept representation space.  Details on how this representation

space was generated are in the section “A General Schema for Constructive Induction”



What Makes a Learning Problem Difficult?

Learning problems can be difficult for a number of reasons, among which are an

inadequate representation space, inadequate description language, or errors in training

examples. The constructive induction methodology presented here addresses some

problems posed by an inadequacy of the representation space.  Specifically, is offers

ways to cope with problems caused by indirectly or weakly relevant attributes, and/or an

overprecision of attributes.

An overprecision of attributes leads to an unnecessarily large representation space and

may make the process of finding the correct hypothesis difficult. It also may cause

overfitting the data. An attribute overprecision frequently occurs when attributes are

continuous. To avoid a potential problem, such attributes can be discretized, that is, their

domain is split to ranges of values [4]. Formally, such a discretization is a form of an

attribute abstraction operation2. Discretization is frequently done without taking into

consideration other operators for changing the representation space. The presented

methodology  combines the effect of quantization with other space modification

operators in order to produce a space that is highly  amenable for determining a desirable

hypothesis.

Attributes are indirectly relevant when their relevance to the given classification task is

dependent on an interaction with one or more other attributes. The difficulty of describing

an interaction depends on the description language used by the learning algorithm. For

most symbolic inductive learning algorithms interactions involving logical conjunction or

disjunction are easy to describe. However, interactions such as those most simply

                                                
2 The Inferential Theory of Learning [12] identifies abstraction as any transmutation that reduces the
amount of detail used to describe a given reference set.



represented as the equality or product of attributes may create significant difficulties for

such methods. Even more difficult to capture are interactions that are represented by

complex equation involving  multiple attributes. An example of a multi-attribute

interaction is the even/odd parity classification problem  (classifying binary strings on the

basis of parity of the number they represent). When there is complex multi-attribute

interaction, attribute construction methods can be used that combine attributes in a

problem-relevant manner [5], [6].

When the set of training examples contains attributes that are irrelevant for the given task,

this can lead to a spurious hypothesis. Conventional selective induction learning methods

are usually not affected by a small number of irrelevant attributes. Detecting and removing

irrelevant attributes can be done either by a filter approach or a wrapper approach [7]. In

the filter approach, attribute selection is performed as a pre-processing step to induction.

Because it is separated from the induction algorithm, filters are fast, they can be used with

any induction algorithms once filtering is done, and can be used on large datasets. The

wrapper approach uses the induction algorithm itself to make estimates of the relevance

of the given attributes, and can be viewed as a special case of hypothesis-driven

constructive induction.

A General Schema for Construction Induction

Insights gained from reviewing problems that cause difficulties for conventional learning

programs clearly indicate that the quality of the representation space is the major factor in

learning an accurate hypothesis. When the representation space has high quality, concepts

are represented in it simply, and therefore can be learned by almost any method.  In real

world problems, however, such quality can rarely be assured.  The central goal of research

on constructive induction is to develop methods capable of generating simple and accurate

hypotheses for learning tasks, in which the original representation space is of poor



quality. As mentioned earlier, constructive induction splits the process of learning an

inductive hypothesis into two intertwined phases.  Figure 2 shows  a general scheme for

constructive induction and illustrates these two searches.

USER

Input Data

Representation Space
Modification

Rule Evaluation

OUTPUT

Decision Rule
Generation

Figure 2.  A general schema for constructive induction

Initially, input data consist of a user-provided set of training examples, plus a

characterization of the initial representation space. This characterization includes a

description of attributes, their types and their domains. The training data set is split into

a primary and a secondary data set. The primary training set is supplied to the Decision

Rule Generation module which generates initial concept descriptions (in our case, in the

form of decision rules). These rules are evaluated in terms of their complexity,  and their

performance accuracy on the secondary training set. Based on the results of this

evaluation, the system decides either to stop the learning process (when the obtained

descriptions are satisfactory), or to move to the Representation Space Modification

module. This module creates a new representation space, into which input data are then

projected. This process repeats in cycles until  the learned rules are satisfactory, or all

planned modifications to the representation space have been tried. The final rules are



evaluated on the testing examples to determine a more precise estimate of their

performance accuracy.

The search for hypotheses within a given representation space is performed in AQ17-

DCI by the AQ algorithm as implemented in AQ15c [9]. AQ15c performs a separate and

conquer strategy  to determine a set of decision rules which jointly cover all the positive

examples and none of the negative examples (in the default case). This search starts by

randomly selecting a 'seed' example of a class (concept), and applying the extension-

against generalization operator to determine a set of general rules (a star) that  cover the

seed and do not cover negative examples. The best rule (according to a multicriterion

evaluation function) is selected from the star, and examples covered by this rule are

marked. A new seed is selected from among unmarked examples and the process is

repeated until all examples in the given class are marked.  A similar process is repeated for

other classes, until rulesets for each class are obtained.   The so produced hypotheses

may be additionally improved by a process of rule truncation. The end result is a set of

decision rules for each class in the data. An example of a rule produced by AQ is shown

below.

Class1  <=   [color = blue] &[height > 5”] & [shape = square or triangle] 

                                    or [height > 10”] & [shape = square]

This rule states "An object is in class1 if it is blue, its height is greater than 5”, and shape

is square or triangle, or if its height is greater than 5” and its shape is square". 

This example illustrates two important  features of the program. One is that conditions of

a rule can include “internal disjunction”, e.g., shape is square or triangle. The second is



that rules for a given class can logically intersect. These features extend the expressive

power of the learning method.

Each time a new set of rules (ruleset) is generated, its predictive accuracy is estimated

using the secondary training set (if the number of training examples is small, a cross-

validation method can be used).  An advantage of the holdout method of evaluation at this

stage (splitting training examples to a primary training and a secondary training set) is that

rules learned from the primary training set perform well on the secondary set, are less

likely to overfit the original data. Predictive accuracy is measured as the percentage of

secondary training examples correctly classified. The complexity  of a ruleset is evaluated

by counting the number of rules in the ruleset and the total number of conditions (or

selectors).

The quality of a ruleset is evaluated lexicographically. Rule sets are evaluated first

according to the accuracy criterion. If the accuracy is within a user defined threshold of

the goal accuracy, the rule set is then further evaluated according to the complexity

criterion. If the rule set does not meet the minimum standard for accuracy, it is rejected

and no further processing is done. The lexicographic evaluation permits the user to set a

constraint on the minimum allowable accuracy.

The representation space modification (RSM) module is responsible for determining

which modification operator to apply at a given stage, and making the changes to the

training and testing examples. In AQ17-DCI the user can select which of the RSM

operators should be tried (attribute construction, attribute selection,  and/or attribute

abstraction), or can accept a default setting that applies all operators. If in the “all



operators” mode, they are applied in a pre-defined order: attribute selection, attribute

abstraction, and then attribute construction3.

Operator   Arguments  Notation          Interpretation
Equivalence Attributes x,y   x = y If x = y then 1, otherwise 0
Greater than Attributes x,y   x > y If x = y then 1, otherwise 0
Greater than
or Equal

Attributes x,y   x>=y If x ≥y then 1, otherwise 0

Addition Attributes x,y   x + y Sum of x and y
Subtraction Attributes x,y   x - y Difference between x and y
Difference Attributes x,y   |x - y| Absolute difference between x and y
Multiplication Attributes x,y   x * y Product of x and y
Division Attributes x,y     x/y Quotient of x divided by y
Maximum Attribute set S Max(S) Maximum value in set S
Minimum Attribute set S Min(S) Minimum value in set S
Average Attribute set S Ave(S) Average of values in set S
Counting Attribute set S,C #Attr(S,C) No. of attributes in S satisfying C

Table 1. Data-driven representation space expansion operators used in AQ17-DCI.

An exhaustive generate and test approach is used by the data-driven attribute

construction process. A number of different operators are available to construct new

attributes. New operators can easily be added to this set, but the aim was to provide

simple, generally applicable operators that would be easy to generate and easy to

interpret by a user. These operators include both binary operators and multi-argument

operators (functions). Currently implemented in the binary group are the relational

operator (determining whether the first input is less than, greater than, or equal to the

second one) and a number of mathematical operators including addition, subtraction,

absolute difference, multiplication, and integer division (Table 1).

                                                
3 The AQ17-MCI  [8] method extends this model by including additional representation space
modification operators and by using meta-rules which relate problem characteristics to appropriate
representation space modification operators.



In the attribute construction process each possible combination of attributes and the

operators selected by the user from Table 1 is generated and evaluated. New attributes

must exceed a user-defined minimum discriminatory power (as calculated by information

gain ratio) and must also 'cost' no more than a user-defined threshold.  The cost of a new

attribute is the sum of the weights given to the original attributes used in the definition of

the new attribute, plus the system-defined weight associated with each operator. Binary

operators select attributes in pairs and multi-argument operators use unit information to

determine set membership. Both attributes must satisfy type (e.g. ordered attribute

values for addition),  as well as unit constraints specific for the operator (e.g. both

attributes must have the same units for the subtraction operator to be applied). These

constraints are useful in reducing the number of possible combinations generated, as well

as  insuring the resulting new attributes are meaningful. In addition, the user may set a

limit on the number of newly constructed attributes that are added to the representation

space.

As an example of how AQ17-DCI works, recall the second Monk’s problem described

earlier. For this problem, the improved representation space was found by the program

by generating and evaluating the result of using multiple user-selected operators against

the set of available attributes. One of the general operators available in AQ17-DCI (and

the one that happened to be most useful for this problem),  is an operator that  generates

counting attributes: #Attr(S, C). Such attributes measure the number of attributes in a set

S that satisfy some condition C. As currently implemented, determination of membership

in S is based either on user-provided attribute units, or by simply using the entire set of

available attributes. The latter proved useful here. The program generated a number of

new attributes and found that the counting attribute #Attr({x1,...x6}, Firstvalue) is highly

relevant for this problem (the condition C=Firstvalue means that an attribute takes the

first value of from its domain for a given object). In the hypothesis determination phase,



the AQ17-DCI program found the following consistent and complete description of all

the examples:

#Attr({x1,...x6}, Firstvalue) = 2,

which can be paraphrased: an example belongs to the concept, if exactly two of six

attributes take their first value. It turned out that this rule exactly represents the target

concept, and thus has a predictive accuracy of 100%.

Attribute selection can be done by applying one of the many existing attribute selection

criteria. The current AQ17-DCI employs the information gain ratio. It selects for future

processing the attributes with gain ratio greater than or equal to some predefined

threshold.

Attribute abstraction in AQ17-DCI uses the ChiMerge algorithm to create ranges of

attribute values as described in [10]. This is a bottom-up algorithm in which initially all

values are stored in separate intervals, and then merged into ranges until a termination

condition is met. The interval merging process consists of continuously repeating two

steps: 1) compute χ2 values (correlations between the value of the class attribute and the

value of an attribute), and 2) merge the pair of adjacent intervals with the lowest χ2 value.

Intervals are merged until all pairs of intervals have χ2 values exceeding the user-defined

chi-threshold. The chi-threshold can be determined from a table and is a function of the

desired significance level and the number of degrees of freedom (1 fewer than the number

of classes). The χ2 value measures the probability that the attribute interval and class

value are independent. If the interval has a χ2 value greater than threshold then class and

interval are correlated and should be retained. High χ2 threshold settings cause more

intervals to be merged resulting in fewer total intervals, or attribute values. Empirically we

have found that a χ2 threshold of 0.9 (values range from 0.1 to 1.0) is a good default.



Experimental Applications

The presented methodology recognizes that attribute construction, attribute selection and

abstraction all serve the same purpose, that is, to improve the initial representation space.

A question arises how well this integration works in practice. To answer this question,

this section presents results for applying the methodology to two real-world problems:

text categorization and natural scene interpretation.

A. Text Categorization

Text categorization is the problem of classifying segments of text (usually documents)

into a the best single class from a set of classes. In this problem, the specific task is to

classify incoming newswire text as either of interest, or not of interest to a given user. The

goal of constructive induction is to learn a description of the user’ s interest (profile) from

feedback from the user. This feedback consists of labels for a (usually small) set of

documents giving the user’s (binary) interest.

Attributes                                Description
x1..x5 Top 5 subject categories as computed by the SFC text classifier.
x6..x59             POL people tags as computed by the IDD POL tagger. For each

person identified, the vector contains the following string attributes:
[name, gender, honorific, title, occupation, age]. 9 people (each with
these subfields) are identified for each article.

x60..x104 POL organization tags as computed by the IDD POL tagger. For each
organization identified, the vector contains the following string
attributes: [name, type, acronym, country, business]. 9 organizations
(each with these subfields) are identified for each article.

x105..x140  POL location tags as computed by the IDD POL tagger. For each
location identified, the vector contains the following string attributes:
[name, type,  country, state] 9 locations (each with these subfields)
are identified for  each article.

x141..x141+n The top n ranked tf.idf terms t1...tn are selected over all articles. For
each article, position k in t1...tn has the tf.idf weight of term tk in that
article.

Table 2. Attributes used for text  description.



One of the most difficult aspects of this problem is in finding a good representation for

the text. The use of constructive induction method builds on work reported in [11], which

found that a hybrid representation for text, consisting of extracted ‘subjects’,  person,

organization and location (POL) attributes and keywords, coupled with a generalization

hierarchy performs well for modeling newswire text (Table 2). In this previous work,

combinations and subsets of attributes were generated and evaluated by hand. The goal of

this work was to determine the effectiveness of a constructive induction approach to the

problem of finding a good representation automatically.

In this problem, a user has an interest in “Medicine in the United States,” and has

provided feedback on the relevance of 38 (18 positive and 20 negative) articles from a

collection of 442 taken from the Colorado Springs Gazette Telegraph (Oct. through

November 1994). The goal of learning is to find a description of the user’s interest profile

so that news articles of interest may be automatically directed to the user. In this domain,

articles are represented by the set of attributes including subject categories, POL entities

and keywords as shown in Table 2.

In the previous work, reported in [11],  the experiments were performed on

representations consisting of a) only keywords (KEYWORDS), b) only POL’s (POL), c)

only subjects (SUBJECTS) and d) all attributes (COMPLETE). The COMPLETE and

SUBJECTS attribute sets were found to be the highest performing in the experiments

previously performed. However, it was felt that constructive induction could improve

both of these representations: the COMPLETE set by attribute selection and the

SUBJECTS set by attribute construction.

The COMPLETE attribute set consists of 145 attributes. The DCI-Generate (AQ+DCI-

Generate) method was run in addition to the DCI-Select (AQ+DCI-Select), which were



then both compared to the results obtained for the COMPLETE (AQ-only), set. The

expectation is that the selection of attributes will have the greatest impact on predictive

accuracy. A 10-fold cross-validation methodology with a 70/30 split of the data set was

used. The averaged results with the 90% confidence interval are shown in Table 3.

Attribute Set Method Average Predictive Accuracy
COMPLETE AQ-only 54.2 +- 6.9

AQ+DCI_Select 70.1 +- 5.8
AQ+DCI_Generate 67.4 +- 7.6

Table 3. Comparison of Predictive Accuracy on COMPLETE attribute set

These results show that a significant performance improvement was obtained both by

attribute selection and attribute construction. The greatest improvement was made by

DCI_Select. This was expected because the COMPLETE set contains redundant ways of

describing the article by providing a list of keywords, proper names and assigned subjects

to each article. It seemed clear for this small sample that only some of these attributes

would be needed for discrimination.. Eighty five attributes were removed including

gender_person1, gender_person5 and type_org, which aren’t strongly correlated with the

USMED interest

Some improvement was also made by DCI-Generate in constructing new attributes using

the counting attribute constructor #Attr(S,C),  where S={Subject1...Subjecti...Subjectn}

and C is true when Subjecti is present in the given example. This transformation

overcomes an awkwardness of the original representation. In the original representation,

an article is described by an ordered vector of subjects, for example the description of a

document as: [subject1=medicine] or [subject2= sports] or [subject3= finance]. The

problem with this representation is that it does not capture the non-ordered nature of a

person’s interest in a subject. For example, if I am interested in sports, I don’t really care



if sports is in the subject1 or subject2 place. My interest is best stated as ‘Does any of

the subjects include the value sports’. In this dataset there are 100 different possible

subjects so extending the attribute set with all possible binary attributes would make the

total vector very long and reduce the capability of the system to produce useful

generalizations. These concepts are difficult to represent in the attribute-value

representation,  unless there is an additional attribute such as #Attr(Subjects, sports)>=1.

AQ17-DCI did generate just  such attributes.

The counting operator generates a new attribute for each of the 100 possible subject

values. Each new attribute represents the number of times (value-cardinality) that value is

present in the vector. Each new attribute is filtered for quality, so as not to overwhelm

the learning algorithm. This operator constructed new attributes in six of the 10 runs.

With the counting operator an article’s subject can be more succinctly stated. For example

to say “the article is about finance” is represented as: #Attr(subjects, finance)=1), and

#Attr(subjects, computers)=0  is used to state the “the article is not about computers”.

Here is a rule describing articles of interest to the user (good)  that used the counting

generated attributes. The total coverage of the rule is shown by the t-weight. The u-

weight counts the number of uniquely covered examples4::

Class_good<::
[subject1=sci_&_tech]& [subject2=institutions]& [subject3=economy or medicine]
[#Attr(subjects, finance)=0] &[#Attr(subjects,computer)=0]               (t:3, u:3)

An article is of interest, if subject1 is about science and technology, subject2 is about

institutions, subject3 is about the economy or medicine, and if none of the subjects

include finance or computers. Table 4 contains the results of this DCI-Generate

                                                
4 The condition [Gender=m v f] is present in the rules because gender is assumed here to have three
possible values: m, f and unknown.



transformation to the SUBJECTS attribute set, as well as the DCI-Select results

compared against the baseline of no modification (AQ-only).

Attribute Set Method Average Predictive Accuracy
SUBJECTS AQ 78.0 +- 6.6

AQ + DCI-Select 78.0 +- 6.6 - No change
AQ + DCI-Generate 84.7 +- 6.9

Table 4. Comparison of Predictive Accuracy on SUBJECTS attribute set

Data-driven constructive induction was able to improve upon both the COMPLETE and

SUBJECTS attribute sets for the task of predicting user interest in newswire text. The

transformations were quite comprehensible,  in addition to bringing about up to a 29%

improvement in predictive accuracy. Additionally,  the construction of only useful forms

of #Attr(Subjects, x) by the counting operator of AQ17-DCI allowed the learning

algorithm to more efficiently overcome an awkwardness in the original representation of

newswire articles that would have been otherwise greatly expanded the representation

space, if generated by hand.

B. Natural Scene Interpretation

In the previous application it was found the both attribute selection and attribute

construction  improved the representation space,  and the predictive accuracy and

simplicity of the learned rules. This section details an application of how methods can be

used together to solve a difficult problem in computer vision of classifying regions in

images of natural scenes. In this problem the goal is develop a method that can accurately

distinguish objects in outdoor scenes under varying perceptual conditions. The approach

used is to learn characterizations of classes of natural objects (sky, trees, road) from

images that have been labeled. These characterizations, based on attributes extracted for



pixel windows, can then be applied to new scenes in order to predict the presence of

natural objects

In the experiment the input to the learner was a training image which includes selected

examples of the visual concepts to be learned: sky, trees and road. A windowing operator,

of size 5x5 scanned over the training area, was used to extract a number of attributes.

These attributes include color  (color intensity of red, green and blue) and texture (in this

case, we used Law masks for detecting horizontal and vertical lines, high frequency spot,

horizontal and vertical v-shapes, and Laplacian operators).  The quality of the generated

rules was evaluated using a 10-fold cross-validation method. This data set has 450

examples equally distributed between the three classes.

Average
Accuracy

Average
# of Rules

Average
# of Selectors

Average
Learning Time

AQ alone 72.5 % 27.7 94.8 231.7 sec

Table 5.  Results after learning in the original representation space

The standard approach to solving this problem is to apply a selective induction learning

algorithm to the raw data directly. The results obtained using this approach are shown in

Table 5. This is the baseline performance. The results obtained after attribute

construction, attribute selection and attribute abstraction are shown in table 6.

Average
Accuracy

Average
# Rules

Average
# Selectors

Average
L. Time

Average
CI Time

DCI-Sel 75.3 % 34.7 74.61 215.1 sec. 3.1 sec.
DCI-Quant 85.9%1 34.6 114.7 10.8 sec.1 5.7 sec.
DCI-Gen 87.1%1 18.51 63.51 171.1 sec.1 8.1 sec.
(1: significance α = 0.01 2: significance α = 0.05 3: significance α = 0.1)

Table 6. Results after applying a single RSM operator to the representation space



Table 6 shows a dramatic improvement resulting from the data quantization. This

abstraction operator reduced average attribute domain size from 256 to 14. The rules

learned after the attribute values had been quantized, had a significantly higher prediction

accuracy, and the learning time was significantly shorter than for rules learned in the

original space. However, rule complexity increased from an average of 27.7 rules to 34.6

rules, and there was a significant increase in number of selectors (conditions) used in the

rules.  This increase in complexity is surprising and points to the need for further work on

rule truncation.

The rules learned from the space expanded by DCI-Generate were also significantly more

accurate than the rules learned in the original space. DCI-Generate added on average 10

new attributes, the strongest of which described absolute and relative differences in the

amount of red, green and blue color intensities. Given the green trees, the dark road and

the blue sky present in the training images this is not surprising. The tree class included

new attributes that stated: [green > red] and [green > blue]. The introduction of these new

attributes to the representation space resulted in a significant improvement to all aspects

of the resulting rules. In the new DCI-Gen expanded representation space fewer rules

which were significantly more predictively accurate, and less complex were learned in

shorter time than in the original representation space.

Importantly, this improvement was achieved after only 8.7 seconds spent on searching

for new attributes. The total time spent constructing new attributes, and then learning in

the new space was 22% less than learning alone in the original representation space. The

transformations the representation space made by the other operators were not as useful

as those made by DCI-Quant and DCI-Gen. DCI-Sel was the next most useful

transformation. DCI-Sel consistently removed attributes x4..x8, which are attributes like:

horizontal and vertical line, high frequency spot, horizontal and vertical v-shape that



describe the patterns within the 5x5 extraction window. This resulted in a slight increase

in predictive accuracy, a significant reduction in the number of selectors present in the

rules and in learning time, but an increase in the number of rules generated. These single-

strategy results are encouraging and lead to the investigation of combinations of operators,

especially attribute generation through DCI-Gen combined with abstraction of the space

through DCI-Quant. The next section describes these experiments.

Average
Accuracy

Average
# Rules

Average
#Selectors

Average
L. Time

Average
CI Time

DCI-Quant ->DCI-
Gen

85.4%1 25.6 147.8 283.0 s 5.7+1.4 = 7.1 s

DCI-Gen ->DCI-
Quant

93.4%1(3) 20.51 63.71 104.5 s.
1(1)

8.1+19.3=27.4 s

DCI-Gen->DCI-Sel 90.3%1 25.7 53.61(3) 142.2 s.
1(2)

8.1+1.0 = 9.1 s

1: significance α = 0.01        2: significance α = 0.05         3: significance α = 0.1

Table 7. Results after applying multiple RSM operators. Significance over the baseline is

shown with the first superscript value. Significance to the first transformation alone is

shown with the superscript in paremtheses.

Table 7 shows the results from combinations of the three RSM operators: DCI-Gen,

DCI-Quant, and DCI-Sel that made significant improvements to the representation space.

The previous section showed how initial abstraction of the space was useful, but may

have been sub-optimal given the increase in rule complexity. This finding was reinforced

when  DCI-Gen was run on the abstracted space. Although the new attributes resulted in

fewer rules, they were less accurate than those learned in the DCI-Quant only space, and

were more complex. The contraction of the space may be removing some important

information. If the operators are reversed and DCI-Quant is applied to the space already

expanded by DCI-Gen, the space is significantly improved in almost all respects: Both

learning time and predictive accuracy are now significantly better than in both the original



space and the DCI-Gen only space. While rule complexity and number slightly increased

from the DCI-Gen only space, but is still significantly smaller than in the original

representation.

DCI-Sel used after DCI-Gen also results some improvements. DCI-Sel after DCI-Gen

results in a small increase in predictive accuracy over DCI-Gen alone, a significant

decrease in learning time and the number of selectors used, but an increase in the number

of rules. In this space as in the original representation, DCI-Sel removed attributes x4..x8.

DCI-Gen followed by DCI-Quant and then DCI-Sel was tried, but resulted in no

improvement in predictive accuracy of the learned rules.

The multiple transformations made to the representation space: attribute generation

followed by attribute quantization, resulted in rules which are significantly more accurate,

can be learned much faster, and are much less complex than rules learned in the original

representation.

The DCI-Gen combined with DCI-Quant result suggests that there is both an interaction

between attributes and an excess of detail in the original representation. By performing

DCI-Gen first, this interaction appears to be at least partially captured, and the

abstraction operator of DCI-Quant can now safely perform its operation without looking

at the context provided by the other attributes. Because DCI-Quant (using the Chi-merge

algorithm) views each attribute independently it may remove information that is

important to classification. Doing DCI-Gen first, this danger is reduced. It is premature,

however, to draw any general conclusions about the best ordering of RSM operators from

this single experiment. The conclusion that can be drawn from this is simply that some

patterns are best described in the original formulation of the problem, and some only

become apparent after abstraction. If abstraction is sensitive to interactions between



attributes it may be possible to eliminate such ordering effects, but such a method would

have to search an enormous space of both combinations and abstraction levels. An

approach which more tightly couples the search for combinations and abstraction level is

an interesting and important area for future research.

The attributes constructed by DCI-Gen were not only useful for classification, but also

have an easily interpretable meaning, as differences in color intensities. The difference in

color intensity between red and green, and between green and blue, were consistently in

the top three most informative attributes as measured by information gain (Table 8). The

difference between red and blue was also generated, but was not found to be of high

discriminatory power.

Name Operator used Description

red - green subtraction intensity difference between red and green

green - blue subtraction intensity difference between green and blue

Table 8 - Examples of new relevant attributes constructed by DCI-Generate

The application of multiple data-driven operators helped not only to increase the

prediction accuracy, but also generated meaningful new attributes. These transformations

explicitly found one combination of color intensities based on difference that was useful.

This ability to clearly see and understand the transformations made by the operators

allows researchers to better understand the results. It may also inspire the use of other

representations, for example the use of hue, intensity and saturation to represent color

information in the image. Such an interaction cannot currently be found by the DCI

method as it only combines pairs of numeric attributes. Searching for more complex

functions of original attributes is an open area of future research.



The results from applying data-driven constructive induction to the above problem of

natural scene interpretation problem shows that data-driven representation space

transformations can significantly improve the results of rule induction.

Conclusion

This paper presented a modern view of constructive induction, specifically, as a double

intertwined search—one for an improved representation space, and another for a set of

hypotheses. Such constructive induction integrates within a uniform framework ideas and

methods previously considered separately, such as methods of attribute selection,

attribute construction and attribute abstraction. The usefulness of combining these

methods has been shown by applications of the implemented program AQ17-DCI to two

different practical problems:  text categorization and natural scene interpretation.

The experiments with the presented methodology raise a number of interesting topics for

future work. One such topic is the question of how tightly to integrate each of the

available representation space modification operators. It was found in the natural scene

interpretation problem that an ordering effect exists between attribute construction and

abstraction. Developing a method for more tightly integrating these operators so that the

correct level of granularity is present for the entire set of attributes available is difficult

because of the massive size of the space being searched. Another topic for future work is

the problem of learning “metarules” that would automatically guide the application of the

representation space modification operators for any given problem. Initial work in this

directions has been described in [8].



Trial experiments on the application of the AQ17-DCI methodology to two

problems—text categorization and natural scene interpretation—indicate a great promise

of the presented ideas for  real-world inductive learning problems.
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