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Abstract

The presentedmethodology concernsconstructive induction, viewed generally as a
process combiningvo intertwinedsearches:first for the “best” representatiorspace,
andsecondfor the “best” hypothesisin that space.The first searchemploysa rangeof
operators forimproving the initial representatiorspace,suchasoperatorsfor generating
new attributes, selecting best attributes among the given ones, and for abstracting
attributes. In the methodology presentatieseoperatorsare chosenon the basisof the
analysis of training data, hence the telate-driven. The secondsearchemploysan AQ-
type rule learningto the examplesprojected at eachiteration to the newly modified
representatiorspace.The aim of the searchis to determinea generalizeddescriptionof
examplesthat optimizes a task-orientedmulticriterion evaluation function. The two
searchesreintertwined,asthey are executedn aloop in which onefeedsinto another.
Experimentalapplicationsof the methodologyto text categorizationand natural scene
interpretation demonstrate a significant practical utility of the proposed methodology.

Keywords. machine learning, inductive learning, constructive induction, attribute
generation, attribute selection, attribute abstraction, discretization.



I ntroduction

Inductive learningalgorithmsareincreasinglybeingusedfor data mining and knowledge
discovery becausethey can provide powerful tools for determining useful and
comprehensibl@atternsin largevolumesof data.A major limitation of all conventional
inductive learningalgorithmsis that descriptionsthey build (e.g, decisiontrees, decision
rules, Bayesiannets, etc.) employ only terms (attributes)that are selectedfrom among
those explicitlyprovidedin the original data.For that reasonsuchalgorithmshavebeen

calledsdective.

Due to the abovelimitation, the responsibility of determiningattributesrelevantto the
problemat handfalls entirely on the dataanalyst. This task may be quite difficult in
practice. Yet, it is crucial for the success for the learning prolfeatiributesprovidedin
the training examplesare insufficiently adequatefor the problem, then descriptions
createdby a (selective)learning system will likely be excessivelycomplex, and their
accuracy will be low regardless of the learning method Usedexample,if one measures
age in terms of days rather than years and ghedriving test scoreasa valuefrom 0%
to 100% ratherthan as a booleanpass/fail,it will be difficult for a learningsystemto

generate rules which accurately predict if a person is a legal driver.

In generalattributesprovidedin the datamay be inadequatdor the learningtask when
they are only weakly relevant (weakly statistically correlated), indirectly relevant
(relevant onlyas argumentf somefunction that combinesthemwith other attributes),
conditionally relevant(relevantonly for somecasesor for selecteddecisionclassesor
relevantonly undersomeconditions),or whenthey areinappropriatelymeasuredwith

too low or too high precision).



To cope with inadequacyof attributes provided in the original data, the idea of
constructiveinductionhasbeenproposed[1]. The original formulation of the ideawas
concernedprimarily with generatingadditional, more task relevant attributes from the
originally given, inorderto improvethe learningprocess. It was subsequentlybserved
that attributesusedin the training data define the problem representation space, and a
learning algorithm searches for boundaries delineating individual concepts or clabses in
space.Adding more relevantattributes, removing irrelevant ones, or modifying the
measurmentprecision of attributes are diffrent forms of the improvement of the

representation space, which can be applied individually or jointly.

Therefore,a generalview of constructiveinductionhasbeenproposed,in which it is a
process of learningonceptsdesciptionsthat employstwo intertwinedsearchesone for
the “best” representatiorspace andthe secondfor the “best” hypothesisin the space
[3] When searchingfor the best representationspace,the system may make no
commitmentas to the descriptionlanguageusedfor creatinga hypothesis,or may be
dependenbn the descriptionlanguageThe secondsearchdeterminesa hypothesisthat
combines attributes (spanningthe representationspace) according to the assumed
descriptionlanguageTherefore what constitutesthe “best” representatiorspaceis, in
principle, dependent on thaescriptionlanguageused.The searchfor the bestspaceand

for the best hypothesis in the space are thus interrelated.

In generalthe more expressivas the descriptionlanguageusedby a learning algorithm,
the lesseris the needfor improving the original representatiorspace(assumingthat the
original attributes are sufficiently adequate).On the other hand, the higher is the
expressivgpower (capacity) of the descriptionlanguagethe exponeniallyhigheris the
search for the best hypothesis in that language. By separating sdardhedestspace

and for the best hypothesis, constructive inducsiomplifies the overall learningprocess



in the caseof a weakrepresentatiorspace,and makespossibleto generatean accurate

hypothesis even with a relatively simple learning algorithm..

Methods of constructiveinduction can be classified on the basis of the source of
information that is usetbr searchingor the “best” representatiorspace.ln data-driven
constructiveinduction (DCI), the searchis basedon the analysisof the input examples
(data); in hypothesis-driven constructive induction (HCI) the searchis basedon the
analysisof intermediatehypotheses);and in knowledge-driven constructive induction
(KCI) the search exploitdomainknowledgeprovidedby the expert[3]. Thereis also a

multistrategy constructive induction (MCI), that employs two or more previoosethods

[8].

The above generalview of constructiveinduction and the understandingof different
information sources for its implementation has been in the last severaligedts guide
the development of such constructive induction programs as AQ17A0l7-HCI and
AQ1L17-MCI. All theseprogramsusean AQ-type rule learning algorithm for conducting

search for hypothesis, hence the “AQ” prefix.

This paperdescribeshe latest methodologyfor the data-drivenconstructiveinduction
that has been implemented in the current version of the AQ17-DCI programpresahts
new results from its applicationto some practical problems. Specifically, the latest
methodologycombinesthe AQ-15c learningalgorithmwith a muchwider rangeof data-
drivenrepresentatiorspaceimprovementoperators.Theseoperatorsare classifiedinto
constructors and destructors.  Constructorsextend the representationspace, and

destructors reduce thepace. Constructorsare basedon methodsof attribute generation



(“feature construction?), and destructorsare basedon methodsfor attribute selection
(“feature selection”) and attribute abstraction.All these operators,which are usually
considered in the literature separately, have been integrafg@17-DCI in a synergistic
fashion. Experimental applications thie methodologyto text categorizatiorand natural
sceneinterpretationhave confirmedthe benefitsof improving the initial representation
space, and demonstratedthe advantagesof constructive induction over convential
inductionin caseswvherethe initial representatiorspaceis not directly relevantor not

well-tuned for the desription language employed.

An lllustration of Constructive I nduction

We distinguish betweentwo types of representationspaces.One is concept (or
hypothesis) representation space, definedasthe spacethat is searchedor a hypothesis
generalizingtraining examples.This space is spannedover descriptors (attributes,
predicates,transformations.etc.) that are directly employedin the description of a
hypothesis. Second is tlegample representation space, which is spannedver attributes
occuringin the training examples.In the conventionalmachinelearning methods,the

example representation space and the concept representation space are identical.

In some inductive learning problems, the boundariesof conceptsin the example
representatiorspaceare very complexand thus difficult to learn. Such a problem is
illustrated in Figure 1a. This ke so-calledsecondMonk’s problem,which was usedin

the international competition of machine learning program [2].

1 The paper makes a distinction between an attribute (a one-argument function that maps objects
to attribute values; e.g., color or length of an object) and a feature (that expresses a specific value
or property of an object (e.g., red or long).



In the diagram, spannexyer six attributesxl, x2,..., X6, individual cells represenunique
combinationof different attribute values.Positive training examplesare markedby “+”

and negative trainingxamplesare markedby “-”. The shadedarearepresentghe target
concept,that is, the conceptto be learned.As one cansee,the boundariesof the target
conceptarevery complex;therefore learningthe conceptin this representatiorspaceis
difficult. For this reason,conventionalsymbolic learningmethods,such a decisiontree

learning, did not perform very well on this problem.
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Figure 1. Diagrammaticvisualization of the Monk 2 representatiorspaces: (a) the
examplerepresentatiorspace;and (b) the conceptrepresentaiospacederived from the

example space by the data-driven constructive induction method described in this paper.

In the examplerepresentatiorspace the learningproblemis difficult becausehe target
concept highly distributed. An improved representaspace determinedoy the AQ17-
DCI system, is shown in Fig. 1(b). this space training examplesare consolidatedand
the target concept is highly regular; thus it is easy to leaisthen desirableto usethis
improved space as the conceppresentatiorspace. Detailson how this representation

space was generated are in the section “A General Schema for Constructive Induction”



What Makes a L earning Problem Difficult?

Learning problems can be difficult for a number of reasons,among which are an
inadequaterepresentatiorspace,inadequatedescription language,or errorsin training
examples.The constructive induction methodology presentedhere addressessome
problemsposedby an inadequacyof the representatiorspace. Specifically, is offers
ways to cope with problems caused by indirectly or weadigvantattributes,and/oran

overprecision of attributes.

An overprecisiorof attributesleadsto an unnecessariljarge representatiorspaceand
may makethe processof finding the correct hypothesisdifficult. It also may cause
overfitting the data. An attribute overprecisionfrequently occurs when attributes are
continuous. To avoid a potential problem, such attributedbealiscretizedthat is, their
domainis split to rangesof values[4]. Formally, sucha discretizationis a form of an
attribute abstractionoperatio. Discretizationis frequently done without taking into
considerationother operatorsfor changingthe representationspace. The presented
methodology combinesthe effect of quantization with other space modification
operators in order to produce a spéuat is highly amenabldor determininga desirable

hypothesis.

Attributes areindirectly relevantwhentheir relevanceo the given classificationtask is
dependent on an interaction with one or more other attributes. The difficudgsofibing
an interactiondependson the descriptionlanguageusedby the learning algorithm. For
most symbolicinductive learningalgorithmsinteractionsinvolving logical conjunctionor

disjunction are easy to describe.However, interactions such as those most simply

2 The Inferential Theory of Learning [12] identifies abstraction as any transmutation that reduces the
amount of detail used to describe a given reference set.



represented as thexjuality or productof attributesmay createsignificantdifficulties for
such methods.Even more difficult to captureare interactionsthat are representedby
complex equation involving multiple attributes. An example of a multi-attribute
interaction is the even/odd parity classification problem (classifying bstangson the
basisof parity of the numberthey represent) When there is complex multi-attribute
interaction, attribute constructionmethodscan be usedthat combine attributes in a

problem-relevant manner [5], [6].

When the set of training examples contains attributes that are irrelevém tpven task,
this can lead to a spurious hypothe§isnventionalselectiveinductionlearningmethods
are usually not affected by a small number of irrelevant attributes. Detectimgraodng
irrelevant attributes can be done either by a filter approaehwrapperapproach[7]. In
the filter approach, attribute selection is performed pee-processingtep to induction.
Because it is separated from the induction algorithm, filters are fast, they can bathsed
any inductionalgorithmsoncefiltering is done,and can be usedon large datasetsThe
wrapperapproachusesthe inductionalgorithmitself to makeestimatesf the relevance
of the given attributes, and can be viewed as a special case of hypothesis-driven

constructive induction.

A General Schema for Construction Induction

Insightsgainedfrom reviewing problemsthat causedifficulties for conventionallearning
programs clearly indicate that the quality of the representation space is the majanfactor
learning an accurate hypothesis. When the representation space has highogpualépts

are represented in it simplgndthereforecanbe learnedby almostany method. In real
world problems, however, such quality can rarely be assured. The centraf gesgarch

on constructive induction is to develop methods capable of generating singi@decurate

hypothesesfor learning tasks, in which the original representatiorspaceis of poor



guality. As mentionedearlier, constructiveinduction splits the processof learning an
inductive hypothesis into two intertwingzhases. Figure 2 shows a generalschemefor

constructive induction and illustrates these two searches.
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Figure 2. A general schema for constructive induction

Initially, input data consist of a user-providedset of training examples,plus a
characterizationof the initial representationspace. This characterizationincludes a
description of attributes, their types and thbmains.The training datasetis split into
a primary and a secondaghataset. The primary training setis suppliedto the Decision
Rule Generatiormodulewhich generatesnitial conceptdescriptions(in our case,in the
form of decision rules). Theselesare evaluatedn termsof their complexity, andtheir
performanceaccuracyon the secondarytraining set. Based on the results of this
evaluation,the systemdecideseither to stop the learning process(when the obtained
descriptionsare satisfactory),or to move to the RepresentatiorSpace Modification
module.This modulecreatesa new representatiorspace,into which input dataarethen
projected.This processrepeatsin cyclesuntil the learnedrules are satisfactory,or all

plannedmodificationsto the representatiorspacehave beentried. The final rules are



evaluatedon the testing examplesto determine a more precise estimate of their

performance accuracy.

The searchfor hypotheseswithin a given representatiorspaceis performedin AQ17-
DCI by the AQ algorithm as implemented in AQ15c [9]. AQ15c perfoaregparate and
conguer strategy to determinea setof decisionruleswhich jointly coverall the positive
examplesand noneof the negativeexampleqin the default case).This searchstarts by
randomly selectinga 'seed'exampleof a class (concept),and applying the extension-
against generalization operator tteterminea set of generalrules (a star) that coverthe
seedand do not cover negativeexamples.The bestrule (accordingto a multicriterion
evaluationfunction) is selectedfrom the star, and examplescoveredby this rule are
marked.A new seedis selectedfrom amongunmarkedexamplesand the processis
repeated until all examples in the given class are marked. A similar proogigeasedor
other classesuntil rulesetsfor eachclassare obtained. The so producedhypotheses
may be additionallymprovedby a processof rule truncation. The endresultis a set of
decision rules for each classthre data.An exampleof a rule producedby AQ is shown

below.

Classl <= [color = blue] &[height > 5] & [shape = square or triangle]

or [height > 10”"] & [shape = square]

This rule states "An object is in classl if it is blue hésghtis greaterthan5”, andshape

is square or triangle, or if its height is greater than 5” and its shape is square”.

This example illustrates two important features of the program. Ghatisonditionsof

a rule caninclude “internal disjunction”, e.g.,shapeis squareor triangle. The secondis



that rulesfor a given classcan logically intersect. Thesefeaturesextendthe expressive

power of the learning method.

Eachtime a new setof rules (ruleset)is generatedits predictive accuracyis estimated
using the secondarytraining set (if the numberof training examplesis small, a cross-
validation method can be used). An advantage of the holdout metleodlotionat this
stage (splitting training examples to a primary training and a secondary trainingtisat) is
ruleslearnedfrom the primary training set perform well on the secondaryset, are less
likely to overfit the original data. Predictiveaccuracyis measuredas the percentageof
secondary training examples correatlgssified. The complexity of a rulesetis evaluated
by countingthe numberof rulesin the rulesetand the total numberof conditions(or

selectors).

The quality of a rulesetis evaluatedlexicographically. Rule sets are evaluatedfirst
accordingto the accuracycriterion. If the accuracyis within a user defined thresholdof
the goal accuracy,the rule set is then further evaluatedaccordingto the complexity
criterion. If the rule setdoesnot meetthe minimum standardior accuracyit is rejected
and nofurther processings done.The lexicographicevaluationpermitsthe userto seta

constraint on the minimum allowable accuracy.

The representatiorspace modification (RSM) module is responsiblefor determining
which modification operatorto apply at a given stage,and making the changego the
training and testing examples.In AQ17-DCI the user can selectwhich of the RSM
operatorsshould be tried (attribute construction,attribute selection, and/or attribute

abstraction),or can accepta default setting that applies all operators.If in the “all



operators’mode, they are applied in a pre-definedorder: attribute selection, attribute

abstraction, and then attribute construction

Operator Arguments Notation Inter pretation

Equivalence | Attributes X,y X=Y If x =y then 1, otherwise 0
Greater than | Attributes x,y X>y If x =y then 1, otherwise O
Greater than | Attributes x,y X>=y If x 2y then 1, otherwise 0

or Equal

Addition Attributes X,y X+y Sum of x and y

Subtraction | Attributes x,y X-Yy Difference between x and y
Difference Attributes X,y X - y| Absolute difference between x and]
Multiplication | Attributes x,y X*y Product of x and y

Division Attributes X,y xly Quotient of x divided by y
Maximum Attribute set S | Max(S) Maximum value in set S
Minimum Attribute set S | Min(S) Minimum value in set S

Average Attribute set S | Ave(S) Average of values in set S
Counting Attribute set S,C| #Attr(S,C)| No. of attributes in S satisfying C

Table 1. Data-driven representation space expansion operators used in AQ17-DCI.

An exhaustive generateand test approach is used by the data-driven attribute
constructionprocess.A numberof different operatorsare availableto constructnew
attributes.New operatorscan easily be addedto this set, but the aim was to provide
simple, generally applicable operatorsthat would be easy to generateand easy to
interpretby a user. Theseoperatorsinclude both binary operatorsand multi-argument
operators(functions). Currently implementedin the binary group are the relational
operator(determiningwhetherthe first input is lessthan, greaterthan, or equalto the
secondone) and a number of mathematicaloperatorsincluding addition, subtraction,

absolute difference, multiplication, and integer division (Table 1).

3 The AQ17-MCI [8] method extends this model by including additional representation space
modification operators and by using meta-rules which relate problem characteristics to appropriate
representation space modification operators.



In the attribute constructionprocesseach possible combinationof attributes and the
operatorsselectedoy the userfrom Table 1 is generatedand evaluated New attributes
must exceed aser-definedninimum discriminatorypower (as calculatedoby information
gain ratio) and must also 'cost' no mtran a user-definedhreshold. The costof a new
attribute is the sum of the weights given to the origataibutesusedin the definition of
the newattribute, plus the system-definedveight associatedavith eachoperator.Binary
operatorsselectattributesin pairs and multi-argumentoperatorsuseunit informationto
determineset membership.Both attributes must satisfy type (e.g. ordered attribute
valuesfor addition), as well as unit constraintsspecific for the operator (e.g. both
attributesmust havethe sameunits for the subtractionoperatorto be applied). These
constraints are useful reducingthe numberof possiblecombinationgyeneratedaswell
as insuringthe resultingnew attributesare meaningful.In addition, the usermay set a
limit on the numberof newly constructedattributesthat areaddedto the representation

space.

As an exampleof how AQ17-DCI works, recall the secondMonk’s problem described
earlier.For this problem,the improvedrepresentatiorspacewas found by the program
by generatingand evaluatingthe resultof using multiple user-selecte@peratorsagainst
the set of availableattributes.One of the generaloperatorsavailablein AQ17-DCI (and
the one that happened to be most useful forgheblem), is an operatorthat generates
counting attributes: #Attr(S, C). Such attributes measuihe numberof attributesin a set
S that satisfy some condition C. As currently implementieterminatiorof membership
in S is basecetitheron user-providedattribute units, or by simply usingthe entire set of
availableattributes.The latter proved useful here. The programgenerateca numberof
new attributes and found that the counting attribute #Attr({x1,...k@pstvalue)is highly
relevantfor this problem(the condition C=Firstvaluemeansthat an attribute takesthe

first value of from itsdomainfor a given object).In the hypothesisdeterminatiorphase,



the AQ17-DCI programfound the following consistentand completedescriptionof all
the examples:

#Attr({x1,...x6}, Firstvalue) = 2,
which can be paraphrasedan example belongs to the concept, if exactly two of six
attributes take their first value. It turnedout that this rule exactly representghe target

concept, and thus has a predictive accuracy of 100%.

Attribute selectioncanbe doneby applying one of the many existingattribute selection
criteria. The currentAQ17-DCI employsthe informationgainratio. It selectsfor future
processingthe attributes with gain ratio greaterthan or equal to some predefined

threshold.

Attribute abstractionin AQ17-DCI usesthe ChiMerge algorithm to createrangesof
attribute valuesas describedn [10]. This is a bottom-upalgorithmin which initially all
valuesarestoredin separatentervals,and then mergedinto rangesuntil a termination
condition is met. The interval merging processconsistsof continuouslyrepeatingtwo
steps: 1) compute? values (correlations betwedine value of the classattribute andthe
value of an attribute), and 2) merge the pair of adjacent intervalsheitbwest x2 value.
Intervalsare mergeduntil all pairs of intervalshavex? valuesexceedinghe user-defined
chi-threshold.The chi-thresholdcanbe determinedrom atableandis a function of the
desired significance level and the numbgdegreeof freedom(1 fewer thanthe number
of classes)The x2 value measureghe probability that the attribute interval and class
value are independent.ttie interval hasa x2 value greaterthan thresholdthen classand
interval are correlatedand should be retained.High x2 threshold settings causemore
intervals to be merged resulting in fewer total intervals, or attribute values. Empivieally

have found that g2 threshold of 0.9 (values range from 0.1 to 1.0) is a good default.



Experimental Applications

The presented methodology recognizes that attribomstruction attribute selectionand
abstraction all serve the same purpose, that is, to improve theegralsentatiorspace.
A questionariseshow well this integrationworks in practice.To answerthis question,
this sectionpresentsresultsfor applying the methodologyto two real-world problems:

text categorization and natural scene interpretation.

A. Text Categorization

Text categorizatioris the problem of classifying segmentsof text (usually documents)
into athe bestsingleclassfrom a setof classesin this problem,the specific task is to
classify incoming newswire text as either of interest, or not of interest to a giveif iser.
goal of constructive induction is to learn a description of the user’ s in{prefite) from
feedbackfrom the user. This feedbackconsistsof labels for a (usually small) set of

documents giving the user’s (binary) interest.

Attributes Description
x1..X5 Top 5 subject categories as computed by the SFC text classifier
X6..X59 POL peopletags as computedby the IDD POL tagger.For each

personidentified, the vector containsthe following string attributes
[name,gender honorific, title, occupation,age]. 9 people (eachwith
these subfields) are identified for each article.

x60..x104 POL organization tags as computed by D® POL tagger.For each
organization identified, the vector contains the following string
attributes:[name,type, acronym,country, business]9 organization
(each with these subfields) are identified for each article.

x105..x140 POL location tags as computedby the IDD POL tagger. For each
locationidentified, the vector containsthe following string attributes
[name,type, country, state]9 locations(eachwith thesesubfields
are identified for each article.

x141..x141+n | The topn rankedtf.idf termstl...tn are selectedover all articles.For
each article, position k in t1...tn has the tf.idf weight of téknmn that
article.

Table 2. Attributes used for text description.



One of the mostdifficult aspectsof this problemis in finding a goodrepresentatiorfor
the text. The use of constructive induction method builds on work reporféd])jrwhich
found that a hybrid representatiorfor text, consistingof extracted'subjects’, person,
organizationandlocation (POL) attributesand keywords,coupledwith a generalization
hierarchy performswell for modelingnewswiretext (Table 2). In this previous work,
combinations and subsets of attributes were generated and evaluasetbyhe goal of
this work was to determinine effectivenesof a constructiveinductionapproachto the

problem of finding a good representation automatically.

In this problem,a user has an interestin “Medicine in the United States,”and has
providedfeedbackon the relevanceof 38 (18 positive and 20 negative)articlesfrom a
collection of 442 taken from the Colorado Springs Gazette Telegraph(Oct. through
November 1994). The goal of learning is to find a descriptidgh@tiser’sinterestprofile
so that news articles of interest may be automatically directed tesérdn this domain,
articles are representd&y the setof attributesincluding subjectcategoriesPOL entities

and keywords as shown in Table 2.

In the previous work, reported in [11], the experimentswere performed on

representations consisting of a) only keywords (KEYWORDSynty POL'’s (POL), ¢)

only subjects(SUBJECTS)andd) all attributes(COMPLETE). The COMPLETE and

SUBJECTSattribute sets were found to be the highestperformingin the experiments
previously performed.However,it was felt that constructiveinduction could improve
both of these representationsthe COMPLETE set by attribute selectionand the

SUBJECTS set by attribute construction.

The COMPLETE attribute setonsistsof 145 attributes.The DCI-Generatd AQ+DCI-

Generatemethodwasrun in additionto the DCI-Select(AQ+DCI-Select),which were



then both comparedto the results obtainedfor the COMPLETE (AQ-only), set. The
expectations that the selectionof attributeswill havethe greatesimpacton predictive
accuracy. AlO-fold cross-validatiormethodologywith a 70/30split of the datasetwas

used. The averaged results with the 90% confidence interval are shown in Table 3.

Attribute Set Method Aver age Predictive Accuracy

COMPLETE AQ-only 54.2 +- 6.9
AQ+DCI_Select 70.1 +- 5.8
AQ+DCIl_Generate 67.4 +- 7.6

Table 3. Comparison of Predictive Accuracy on COMPLETE attribute set

Theseresults show that a significant performancemprovementwas obtainedboth by

attribute selectionand attribute construction.The greatestimprovementwas made by

DCI_Select. This was expected because the COMPLETEos¢dinsredundantvays of

describing the article by providing a list of keywords, proper naamdsissignedsubjects
to eacharticle. It seemedtlearfor this small samplethat only someof theseattributes
would be neededfor discrimination.. Eighty five attributes were removed including

gender_personl, gender_person5 and type wdrigh aren’t strongly correlatedwith the
USMED interest

Some improvement was also mame DCI-Generatan constructingnew attributesusing

the counting attribute constructor#Attr(S,C), where S={Subject...Subjeqt..Subjeqt}
and C is true when Subject is presentin the given example. This transformation
overcomesan awkwardnes®f the original representationin the original representation,
an article is describedby an orderedvector of subjects for examplethe descriptionof a
documentas: [subjectl=medicinelor [subject2= sports] or [subject3= finance]. The
problemwith this representatiotis that it doesnot capturethe non-orderechatureof a

person’s interest in a subject. For example, if | am interastsdorts, | don’t really care



if sports isin the subjectlor subject2place.My interestis beststatedas‘Does any of
the subjectsinclude the value sports’. In this datasetthere are 100 different possible
subjects so extending the attribset with all possiblebinary attributeswould makethe
total vector very long and reduce the capability of the system to produce useful
generalizations.These concepts are difficult to representin the attribute-value
representation, unless there is an additional attributeasiehttr(Subjects,sports)>=1.

AQ17-DCI did generate just such attributes.

The counting operatorgeneratesa new attribute for each of the 100 possible subject
values. Each new attribute represents the number of times (value-cardihalitydlueis
presentin the vector. Eachnew attributeis filtered for quality, so as not to overwhelm
the learning algorithm. This operatorconstructednew attributesin six of the 10 runs.
With the counting operator an article’s subject can be more succinctly $tatezkample
to say “the article is aboutfinance” is representeds: #Attr (subjects, finance)=1), and
#Attr (subjects, computers)=0 is usedto statethe “the article is not about computers”.
Hereis a rule describingarticles of interestto the user(good) that usedthe counting
generatedattributes. The total coverageof the rule is shown by the t-weight. The u-

weight counts the number of uniquely covered exarfiples

Class_good<::
[subjectl=sci_& tech]& [subject2=institutions]& [subject3=economy or medicine]
[#Attr(subjects, finance)=0] &[#Attr(subjects,computer)=0] (t:3, u:3)

An articleis of interest,if subjectlis aboutscienceand technology,subject2is about
institutions, subject3is about the economyor medicine,and if none of the subjects

include finance or computers. Table 4 contains the results of this DCI-Generate

4 The condition [Gender=m v f] is present in the rules because gender is assumed here to have three
possible values: m, f and unknown.



transformationto the SUBJECTS attribute set, as well as the DCI-Select results

compared against the baseline of no modification (AQ-only).

Attribute Set Method Aver age Predictive Accuracy
SUBJECTS AQ 78.0 +- 6.6

AQ + DCI-Select 78.0 +- 6.6 - No change

AQ + DCI-Generate 84.7 +- 6.9

Table 4. Comparison of Predictive Accuracy on SUBJECTS attribute set

Data-driven constructive induction was abdeimprove upon both the COMPLETE and
SUBJECTSattribute setsfor the task of predicting userinterestin newswiretext. The
transformationsvere quite comprehensible,in addition to bringing aboutup to a 29%
improvement in predictive accuracy. Additionallhe constructionof only usefulforms
of #Attr(Subjects,x) by the counting operator of AQ17-DCI allowed the learning
algorithmto more efficiently overcomean awkwardnessn the original representatiorof
newswirearticles that would have beenotherwisegreatly expandedhe representation

space, if generated by hand.

B. Natural Scene Interpretation

In the previous application it was found the both attribute selection and attribute
construction improved the representationspace, and the predictive accuracy and
simplicity of the learned rules. This section detailsapplicationof how methodscanbe
usedtogetherto solve a difficult problemin computervision of classifyingregionsin

images of natural scenes. In this problem the gadév&lopa methodthat canaccurately
distinguish objects imutdoorscenesundervarying perceptualconditions.The approach
usedis to learn characterization®f classesof natural objects (sky, trees, road) from

imagesthat havebeenlabeled.Thesecharacterizationdyasedon attributesextractedfor



pixel windows, can then be appliedto new scenesn orderto predict the presenceof

natural objects

In the experimenthe input to the learnerwas a training image which includesselected
examples of the visual concepts to be learned: sky, trees and roand@wing operator,
of size 5x5 scannedover the training area,was usedto extracta numberof attributes.
These attributes include color (color intenfyred, greenand blue) andtexture(in this
case, we used Law masks ftetectinghorizontalandvertical lines, high frequencyspot,
horizontal andvertical v-shapesand Laplacianoperators). The quality of the generated
rules was evaluatedusing a 10-fold cross-validationmethod. This data set has 450

examples equally distributed between the three classes.

Average Average Average Average
Accuracy # of Rules # of Selectors | Learning Time
AQ alone | 72.5 % 27.7 94.8 231.7 sec

Table 5. Results after learning in the original representation space

The standar@pproachto solvingthis problemis to apply a selectiveinductionlearning
algorithm to the raw data directly. Tihesultsobtainedusingthis approachare shownin
Table 5. This is the baseline performance. The results obtained after attribute

construction, attribute selection and attribute abstraction are shown in table 6.

Average Average | Average Average Average
Accuracy # Rules # Selectors | L. Time Cl Time
DCI-Sel 75.3 % 34.7 74.6 215.1 sec. 3.1 sec.
DCI-Quant |85.9% 34.6 114.7 10.8 sed 5.7 sec.
DCI-Gen 87.1%4 18.5 63.5 171.1 seéd. 8.1 sec.

(1, significancea = 0.012: significancea = 0.053; significancea = 0.1)

Table 6. Results after applying a single RSM operator to the representation space



Table 6 shows a dramatic improvementresulting from the data quantization. This
abstractionoperatorreducedaverageattribute domainsize from 256 to 14. The rules
learned after the attribute values Hasenquantized had a significantly higher prediction
accuracy,and the learningtime was significantly shorterthan for rules learnedin the
original spaceHowever,rule complexity increasedrom an averageof 27.7 rulesto 34.6
rules, and thergvas a significantincreasaen numberof selectorgconditions)usedin the
rules. This increase in complexity is surprising and points to the need for furtheomvork

rule truncation.

The rules learned from the space expandeD®Gi-Generatenere also significantly more
accuratehanthe ruleslearnedin the original space.DCI-Generateaddedon averagelO
new attributes,the strongestof which describedabsoluteand relative differencesin the
amountof red, greenand blue color intensities.Given the greentrees,the dark road and
the bluesky presentin the training imagesthis is not surprising.The tree classincluded
new attributes that stated: [green > red] and [green > blue]. The introdattioesenew
attributes to the representation spaesultedin a significantimprovemento all aspects
of the resultingrules. In the new DCI-Gen expandedepresentatiorspacefewer rules
which were significantly more predictively accurate,and less complexwere learnedin

shorter time than in the original representation space.

Importantly, this improvementwas achievedafter only 8.7 secondsspent on searching
for new attributes. Théotal time spentconstructingnew attributes,andthen learningin
the new space was 22Kssthan learningalonein the original representatiorspace.The
transformations the representation space nhgdne other operatorswere not as useful
as those made by DCI-Quant and DCI-Gen. DCI-Sel was the next most useful
transformation. DCI-Sel consistentigmovedattributesx4..x8, which are attributeslike:

horizontal and vertical line, high frequencyspot, horizontal and vertical v-shapethat



describe the patterns withthe 5x5 extractionwindow. This resultedin a slight increase
in predictiveaccuracy a significantreductionin the numberof selectorspresentin the
rules and in learningme, but an increasan the numberof rules generatedThesesingle-
strategy results are encouraging and lead to the investigation of combinatiqes ators,
especiallyattribute generatiorthroughDCI-Gen combinedwith abstractionof the space

through DCI-Quant. The next section describes these experiments.

Average | Average| Average | Average| Average
Accuracy |# Rules|#Selectord L. Time | Cl Time

DCI-Quant ->DCI-| 85.49%4 25.6 147.8 283.0s|5.7+14=7.1s
Gen

DCI-Gen ->DCI-| 93.49%4(3) |20.5 63.711 104.5 s.|8.1+19.3=27.4 s

Quant 1(2)

DCI-Gen->DCI-Sel |[90.3% 25.7 53.613) [142.2 s|8.1+1.0=9.1s
1(2)

1, significancea = 0.01 2; significancea = 0.05 3, significancea = 0.1
Table 7. Results after applying multigRSM operators.Significanceover the baselineis
shownwith the first superscriptvalue. Significanceto the first transformationaloneis

shown with the superscript in paremtheses.

Table 7 showsthe resultsfrom combinationsof the three RSM operators:DCI-Gen,
DCI-Quant, and DCI-Sel that made significant improvementedgepresentatiorspace.
The previoussectionshowedhow initial abstractionof the spacewas useful, but may
have beersub-optimalgiven the increasan rule complexity. This finding was reinforced
when DCI-Gen was run on the abstracted spaltBough the new attributesresultedin

fewer rules, they were less accurate than them®edin the DCI-Quantonly spaceand
were more complex. The contractionof the spacemay be removing some important
information. If the operators areversedand DCI-Quantis appliedto the spacealready
expandediy DCI-Gen,the spaceis significantlyimprovedin almostall respects:Both

learning time and predictive accuracy are now significantly betgerin both the original



spaceand the DCI-Gen only spac&Vhile rule complexity and numberslightly increased
from the DCI-Gen only space,but is still significantly smaller than in the original

representation.

DCI-Sel usedafter DCI-Gen also results someimprovements DCI-Sel after DCI-Gen
resultsin a small increasein predictive accuracyover DCI-Gen alone, a significant
decrease in learning time atitk numberof selectorsused,but anincreasen the number
of rules. In this space as in the originapresentationDCl-Sel removedattributesx4..x8.
DCI-Gen followed by DCI-Quant and then DCI-Sel was tried, but resultedin no

improvement in predictive accuracy of the learned rules.

The multiple transformationsmadeto the representationspace: attribute generation
followed by attribute quantization, resulted in rules whichsagaificantly more accurate,
canbe learnedmuchfaster,and are muchlesscomplexthanrules learnedin the original

representation.

The DCI-Gen combined with DCI-Quargsult suggestdhat thereis both aninteraction
betweenattributesand an excesf detail in the original representationBy performing
DCI-Gen first, this interaction appearsto be at least partially captured, and the
abstraction operator of DCI-Quant can now safeyformits operationwithout looking
at the context provided by the otretributes.BecauseDCl-Quant (using the Chi-merge
algorithm) views each attribute independentlyit may remove information that is
importantto classification.Doing DCI-Genfirst, this dangers reducedlt is premature,
however, to draw any general conclusions about the best ordefitfghdfoperatorsfrom
this single experiment.The conclusionthat canbe drawnfrom this is simply that some
patternsare best describedin the original formulation of the problem,and some only

becomeapparentafter abstraction.If abstractionis sensitiveto interactionsbetween



attributes it may be possible to eliminatechorderingeffects,but sucha methodwould
have to searchan enormousspaceof both combinationsand abstractionlevels. An
approach which more tightly couples thearchfor combinationsand abstractionlevel is

an interesting and important area for future research.

The attributesconstructecby DCI-Genwere not only usefulfor classification,but also
have areasilyinterpretablemeaning,asdifferencesin color intensities.The differencein
color intensity betweenred and green,and betweengreenand blue, were consistentlyin
the top three most informative attributesrasasuredy informationgain (Table8). The
differencebetweenred and blue was also generatedbut was not found to be of high

discriminatory power.

Name Operator used Description
red - green subtraction | intensity difference between red and green
green - blue subtraction | intensity difference between green and blue

Table 8 - Examples of new relevant attributes constructed by DCI-Generate

The application of multiple data-drivenoperators helped not only to increasethe
prediction accuracy, but algeneratedneaningfulnew attributes.Thesetransformations
explicitly found one combinationf color intensitiesbasedon differencethat was useful.
This ability to clearly seeand understandhe transformationamade by the operators
allows researcherso betterunderstandhe results.It may also inspire the use of other
representationdpr examplethe useof hue, intensity and saturationto representcolor
information in the image. Such an interaction cannot currently be found by the DCI
methodas it only combinespairs of numeric attributes. Searchingfor more complex

functions of original attributes is an open area of future research.



The resultsfrom applying data-drivenconstructiveinduction to the above problem of
natural scene interpretation problem shows that data-driven representationspace

transformations can significantly improve the results of rule induction.

Conclusion

This paperpresenteda modernview of constructiveinduction, specifically,as a double
intertwinedsearch—ondor animprovedrepresentatiorspace,and anotherfor a set of
hypotheses. Such constructive induction integrates withimfarm frameworkideasand
methods previously consideredseparately,such as methods of attribute selection,
attribute constructionand attribute abstraction.The usefulnessof combining these
methods has been shown by applications of the implemented pré@amDCI to two

different practical problems: text categorization and natural scene interpretation.

The experiments with the presented methodology mrs@nberof interestingtopics for
future work. One suchtopic is the questionof how tightly to integrateeachof the
availablerepresentatiorspacemodification operators It was found in the natural scene
interpretationproblemthat an ordering effect exists betweenattribute constructionand
abstraction. Developing a meth@m moretightly integratingtheseoperatorsso that the
correctlevel of granularityis presentfor the entire set of attributesavailableis difficult
because of the massive size of the space lssagchedAnothertopic for future work is
the problem of learning “metarules” that would automaticgllide the applicationof the
representatiorspacemodification operatorsfor any given problem. Initial work in this

directions has been described in [8].



Trial experiments on the application of the AQ17-DCI methodology to two
problems—texitcategorizatiorand naturalsceneinterpretation—indicate greatpromise

of the presented ideas for real-world inductive learning problems.
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