
Policy-Based Secrecy in the Runs & Systems
Framework and Controlled Query Evaluation?

Joachim Biskup and Cornelia Tadros

Technische Universität Dortmund, Germany
{biskup,tadros}@ls6.cs.uni-dortmund.de

Abstract. Controlled Query Evaluation (CQE) ensures the confiden-
tiality of information in the context of information systems where a user
can gain information beyond the mere representation of released data.
To date, CQE provides a host of enforcement protocols under differ-
ent system parameters for client-server architectures. In this paper, we
embed the CQE approach in the Runs & Systems model and relate con-
fidentiality preservation to the notions of secrecy proposed by Halpern
and O’Neill in the context of multiagent systems (MAS) as a unified
framework. In particular, we introduce the novel notion of policy-based
secrecy, and we show how to state a common confidentiality require-
ment of CQE in their framework. By this, we lay a foundation to make
use of the various inference control protocols of CQE in MAS scenarios
and also to extend the CQE confidentiality model to MAS. Further by
adopting Halpern and O’Neill’s unified and general framework we ease
the comparison to other approaches in the future.

1 Introduction

Controlled Query Evaluation (CQE) is a framework for inference control in infor-
mation systems. Inference control in general aims not to leak sensitive informa-
tion to a user who can reason about the information revealed to him. The CQE
framework supports client-server architectures with a single data provider and
several clients and offers controlled update transactions as well as queries [1, 2] in
logic-oriented information systems. In this paper, we relate the CQE approach [2]
and the formal model of Halpern and O’Neill [3] for secrecy in multiagent sys-
tems (MAS), which is general enough to be comparable to other approaches and
expressive enough to give options for different agent reasoning or policy models.

Halpern and O’Neill proposed Runs & Systems (introduced by Fagin et al. in
[4]) as a general model for formulating notions of secrecy in MAS [3]. A variety
of existing notions have been reformulated in this framework by Halpern and
O’Neill in the same paper, i.e., separability [5], generalized noninterference [6],
?

Notice for the use of this material The copyright of this material is retained by the Information
Processing Society of Japan (IPSJ). This material is published on this web site with the agreement
of the author (s) and the IPSJ. Please be complied with Copyright Law of Japan and the Code
of Ethics of the IPSJ if any users wish to reproduce, make derivative work, distribute or make
available to the public any part or whole thereof. All Rights Reserved, Copyright (C) Information
Processing Society of Japan

2

asynchronous separability [7] and asynchronous generalized noninterference [7].
Furthermore, Halpern and O’Neill described several notions of anonymity in this
framework in another work [8], supporting the choice of their framework and its
expressiveness. Also, the basic framework has been augmented with probability
or plausibility measures and corresponding notions of secrecy.

In line with Halpern and O’Neill’s work, in this paper we reformulate CQE [2]
in their framework. Firstly, this reformulation is another step towards extend-
ing CQE to multiagent systems in future work (cf. [9] as a preliminary draft).
The features of the Runs & Systems framework to incorporate other forms of
knowledge representations, e.g., probability or plausibility measures, are essen-
tial for reasoning or information sharing etc. in multiagent systems. Moreover,
the logic of knowledge and time over the Runs & Systems model offers an intu-
itive way to specify confidentiality properties. Secondly, we hope to give a basis
for comparison of CQE with other approaches of confidentiality preservation.

As our main original contribution, we propose another notion of secrecy,
called policy-based secrecy, which fulfills the following objectives:

1. policy-based secrecy can be applied to any system described in the Runs &
Systems model (e.g., not only to systems in the CQE setting); thus, policy-
based secrecy can be applied not only to client-server architectures as present
in CQE but to general MAS architectures

2. policy-based secrecy separates the different aspects of an information hiding
property: (a) “What information needs to be hidden?”, (b) “Who does it
need to be hidden from?”, (c) “How well does it need to be hidden?” and
(d) “When does it need to be hidden (e.g., on what conditions)?” ((a)–(c)
are taken from [8]); thus, policy-based secrecy can be easily adapted to other
security needs

3. policy-based secrecy bases upon Halpern and O’Neill’s notions of secrecy
from [3]; in particular, policy-based secrecy is compliant with their frame-
work

4. the notion of confidentiality preservation in CQE [10] is an instance of policy-
based secrecy; thus, policy-based secrecy might be enforced by – possibly
enhanced – CQE protocols in MAS

As a further contribution, we give a syntactic representation of policy-based
secrecy in the logic of knowledge and time over the Runs & Systems model like
in [3].

This paper is organized as follows. In Section 2, we introduce policy-based
secrecy and compare it to secrecy notions in Halpern and O’Neill’s framework.
In Section 3, we see that confidentiality preservation in the CQE context ([10])
is a special case of policy-based secrecy. In Section 4, policy-based secrecy is
described in terms of the logic of knowledge and time presented by [3]. There
are also other approaches which propose a unified framework to define secrecy
properties: In Section 5, we focus on one approach – function views [11] which use
a set of functions as a description of system behavior to give a formal framework
for security verification of a system. By this, we illustrate how we can apply
and compare other approaches of confidentiality preservation to CQE easily by

3

policy-based secrecy. Finally, in our conclusion in Section 6, we hint how the
model developed in this paper opens new ways to apply or extend CQE under
different aspects.

2 Policy-Based Secrecy

In [3] the information accessible to an agent is encoded in his local state in
the description of the system. A system is statically described by a global state
(se, s1, . . . , sn), i.e., the collection of all agent’s local states s1, . . . , sn and op-
tionally an environment state se, and dynamically as a set of runs. A run r
is a function from discrete time N0 to global states, i.e., one possible evolve-
ment of the system over time. A system R is a collection of runs and the set
PT (R) := {(r,m) | r ∈ R ,m ∈ N0} is called the points of R . The current view
of agent i on the system R at time m in a run r is

Ki (r,m) := {(r′,m′) ∈ PT (R) | ri(m) = r′i(m
′)},

where ri(m) denotes the local state of agent i in the global state r(m). In words,
Ki (r,m) is the set of points in which agent i has the same local state as in
(r,m). The set Ki (r,m) is called i-information set and models the reasoning
of agent i about the system at point (r,m). In run r at time m all possible
system states from agent i’s point of view are Ki(r,m). If the reasoning of an
agent i is expressed by Ki, one assumes implicitly that agent i knows the system
specification R and can determine Ki.

Halpern and O’Neill weaken their notion total secrecy, which permits no
information-flow at all, in particular under two aspects, what to protect by
total f -secrecy as well as C-secrecy and when to protect by C-secrecy. These
notions are still considered separately from each other in their work. In this
section we generalize these two notions and propose a generic notion “policy-
based” secrecy which will turn out to be suitable to express some confidentiality
requirements in the CQE context throughout Section 3. Afterwards, we compare
policy-based secrecy to Halpern and O’Neill’s aforementioned notions of secrecy.

In our CQE-related proposal, an agent j locally declares in each point (r,m) ∈
PT (R) which information about his state an agent i – the potential attacker –
must consider possible in a j-possibility policy :

Definition 1 (j-Possibility Policy). A j-possibility policy is a function policy :
PT (R)→ P(P(P(PT (R)))) such that policy(r,m) := {I1, I2 . . .} contains sets
Ik of j-information sets, where P denotes the power set operation. The sets Ik
and policy(r,m) may be infinite.

The idea behind the formalisms of Definition 1 is: To talk about a state of agent
j we are bound to talk about j-information sets. An Ik contains (packed in
j-information sets S) the set of all points in which j’s state has properties of
interest, e.g., agent j stored a relevant data item. We will speak about an Ik
as security-relevant information or shortly relevant information. In the context

4

of confidentiality preservation, Ik is no confidential information by itself, but
essential to protect other confidential information and in this sense relevant
information. For instance, if the fact that a patient has cancer is confidential,
then the fact that he has no cancer is relevant information. Concrete j-possibility
policies are demonstrated in the following example from the database area:

Example 1. An agent 1 stored information in form of propositions a and b in an
internal database. E.g., his state description (a) can be read as “a holds and b
doesn’t hold”. So the set States1 := {(), (a), (b), (a, b)} denotes all his possible
states. Now agent 1 can declare some possibility policies:

– policy1(r,m) := {{K1 (ra,ma)}, {K1 (rb,mb)}}, where (ra,ma) and (rb,mb)
are points at which agent 1 is in state (a) and in state (b), respectively. The
states (a) and (b) are both declared relevant.

– policy2(r,m) := {{K1 (ra,ma),K1 (rb,mb)}}. The relevant information is
that agent 1 is in state (a) or in state (b).

– policy3(r,m) := {{K1 (ra,ma),K1 (rb,mb)}, {K1 (rab,mab)}}, where
(rab,mab) is a point, at which agent 1 is in state (a, b). Relevant information
is that agent 1 is in state (a) or in state (b), like in policy2; additionally,
state (a, b) is relevant.

In our example, all policies do not depend on the current run r and time m
and are thus rather a global than a local declaration. This is not necessary but
simplifies our presentation. In the context of confidentiality preservation these
possibility policies get a more intuitive meaning:

– policy1 requires the attacker to consider state (a) and state (b) of agent 1
possible. Thus, if the fact ¬a∨b holds in agent 1’s database (corresponding to
the set of states States1\{(a)} = {(), (b), (a, b)}), this situation must be kept
confidential; similarly, if the fact a∨¬b holds in the database (corresponding
to the set of states States1 \ {(b)} = {(), (a), (a, b)}), this situation must be
kept confidential as well.

– policy2 requires the attacker to consider state (a) or state (b) of agent 1
possible. Thus, if the fact a ≡ b holds in the database (corresponding to the
set of states States1 \ {(a), (b)} = {(), (a, b)}), this situation must be kept
confidential.

– policy3 like in policy2 aims to keep the situation, in which the fact a ≡ b holds
in agent 1’s database, confidential. Additionally, the attacker is required to
consider state (a, b) possible. Thus, if the fact ¬a∨¬b holds in the database
(corresponding to the set of states States1 \ {(a, b)} = {(), (a), (b)}), this
situation must be kept confidential as well.

In words, a j-possibility policy describes a set of pieces of information {I1, . . . , In}
agent i, the attacker, should not rule out about agent j’s state. Thus in every
system state (r,m) ∈ PT (R) and for every piece of information Ik of the local
policy policy(r,m), describing a set of agent j’s local states by a corresponding
set of points

⋃
S∈Ik

S, there is a possible system state from agent i’s point of view

5

(r′,m′) ∈ Ki(r,m) in which agent j’s local state carries information Ik (i.e.,
(r′,m′) ∈ ⋃

S∈Ik

S). This is enforced via policy-based secrecy:

Definition 2 (Policy-based Secrecy). If policy is a j-possibility policy, agent
j maintains policy-based secrecy with respect to agent i in R if, for all points
(r,m) ∈ PT (R) and for all Ik ∈ policy(r,m):

Ki (r,m) ∩
⋃
S∈Ik

S 6= ∅

In the following we write policy-based secrecy to point out the used j-possibility
policy policy. We continue Example 1 to illustrate policy-based secrecy:

Example 2. Another agent 2 – the potential attacker – can pose queries to agent
1, written as propositional formulas over the alphabet A = {a, b}. The internal
database serves as a propositional interpretation to evaluate the queries. Con-
sider a system consisting of the following runs, in which agent 2 queries for a at
time m = 0 and receives the answer in return at time m = 1. We write global
states as (s1, s2) and agent 2’s local states as (−) and (+), which mean agent 2
received a negative and positive answer, respectively.

m = 0 m = 1 . . .

R := {r1 = 〈 ((), ()), ((), (−)), . . . 〉,
r2 = 〈 ((a), ()), ((a), (+)), . . . 〉,
r3 = 〈 ((b), ()), ((b), (−)), . . . 〉,
r4 = 〈 ((a, b), ()), ((a, b), (+)), . . . 〉}

Now, we discuss the preservation of the policies defined in Example 1 in the
sense of Definition 2:

– policy1 is violated in (r1, 1) because K2 (r1, 1)∩K1 (ra,ma) = {(r1, 1), (r3, 1),
(r1, 2), (r3, 2), . . .} ∩ {(r2, 0), (r2, 1), . . .} = ∅ with policy1(r,m) :=
{{K1 (ra,ma)}, {K1 (rb,mb)}}, which says that in state (−) agent 2 can rule
out state (a) of agent 1

– in contrast, policy2 is not violated in (r1, 1) because K2 (r1, 1)∩(K1 (ra,ma)∪
K1 (rb,mb)) 6= ∅ with policy2(r,m) := {{K1 (ra,ma),K1 (rb,mb)}}

– policy3 again is not preserved because
K2 (r1, 1) ∩ K1 (rab,mab) = ∅ with policy3(r,m) := {{K1 (ra,ma),
K1 (rb,mb)}, {K1 (rab,mab)}}
In the following, we will see that both total f -secrecy and C-secrecy are

special cases of policy-based secrecy each with a particular kind of policy.
The idea of total f -secrecy [3] is that agent j can declare relevant information

about his state with a function f : PT (R)→ V that only depends on his state.
Total f -secrecy requires that for all points (r,m) ∈ PT (R) and values v in the
range of f , Ki(r,m) ∩ f−1(v) 6= ∅ (where f−1(v) is simply the preimage of v).
The arbitrary set V contains abstract values that denote information which the

6

attacker should not rule out. Next, for total f -secrecy we define the following
policy:

policyf (r,m) := {{Kj(r′,m′) | f(r′,m′) = v} | v ∈ V } (1)

Note firstly that policyf is a global policy since it is a constant so that policyf
depends on neither r nor m. Secondly, note that because f can be understood
as a function on j’s state, the sets Ik in policyf induce a partition of agent j’s
states. Vice versa a partition of agent j’s states induces a function on his states.
Hence, as concluded by the following Proposition 1, total f -secrecy corresponds
to policy-based secrecy for the class of all global policies where the Ik yield a
partition of j’s states.

Proposition 1 (Total f-Secrecy Is policyf -based Secrecy). Let f be a j-
information function and policyf the resulting policy given by Equation (1). Then
agent j maintains total f -secrecy with respect to agent i in R iff j maintains
policyf -based secrecy with respect to i in R .

For space reasons, instead of the full proof we give the key to the proof in the
following: Because f only depends on agent j’s state and in a set Kj(r,m) agent
j has the same local state by definition, all points (r′′,m′′) ∈ Kj(r′,m′) in the
definition of policyf in (1) have the same evaluation under f , say v. Thus the set
{Kj(r′,m′) | f(r′,m′) = v} exactly represents the abstract information v about
agent j’s state. Both for total f -secrecy and policyf -based secrecy, the attacker
agent i should not rule out this information.

In the same fashion we analyze C-secrecy in terms of policy-based secrecy.
The idea of C-secrecy is, that at a point (r,m) agent j can locally allow agent
i to exclude some of his states, i.e., all of agent j’s states in PT (R) \ C(r,m).
Thus C(r,m) are the only relevant points. C-secrecy requires that for all points
(r,m) ∈ PT (R) and (r′,m′) ∈ C(r,m), we have Ki(r,m) ∩ Kj(r′,m′) 6= ∅. We
reformulate C-secrecy with the help of the following j-possibility policy:

policyC(r,m) := {{Kj(r′,m′)} | (r′,m′) ∈ C(r,m)} (2)

Firstly, note that policyC needs not be global unlike policyf . Secondly, all sets
Ik are unary. A unary Ik just represents a state of agent j. Vice versa, if a policy
just contains unary sets Ik in each point (r,m), so that the Iks cover Ki(r,m)1,
an i-allowability function C can be defined by selecting at least one point from
Kj(r′,m′) where Ik = {Kj(r′,m′)} for each Ik ∈ policy(r,m). As a conclusion,
C-secrecy corresponds to policy-based secrecy for the class of all policies, where
the Iks are unary and cover Ki(r,m) in each point (r,m).

Proposition 2 (C-secrecy Is policyC-based Secrecy). Let C be an i-allow-
ability function and policyC the resulting policy given by Equation (2). Then
agent j maintains C-secrecy with respect to agent i in R iff j maintains policyC-
based secrecy with respect to i in R .

1 The covering is required for the i-allowability function C in [3].

7

This proposition follows almost immediately from the definitions: For C-secrecy
the attacker agent i should not rule out Kj(r′,m′) for each (r′,m′) ∈ C(r,m).
Each such Kj(r′,m′) appears in policyC(r,m) as relevant information I =
{Kj(r′,m′)}. A formal proof cannot be presented here due to lack of space.

One objective mentioned in the introductory section was to separate different
aspects of an information hiding property. In this sense, a policy specifies

1. what to protect as pieces of information Ik about j’s state
2. from whom to protect by targeting a potential adversary agent i the same

as with the secrecy notions in [3]
3. how well to protect by stating a possibilistic property “agent i considers

possible, that” the same as with the possibilistic notions in [3]
4. when to protect as a local declaration policy(r,m)

In comparison, total f -secrecy is first confined in saying what to protect because
only certain types of policies are allowed and second in saying when to protect
because the policy is global. As for C-secrecy, also only certain types of policies
are allowed, so that C-secrecy is confined in saying what to protect compared
to policy-based secrecy. In the next section, we will view the confidentiality
requirements of CQE in the light of these considerations.

3 CQE in the Runs & Systems Framework

Controlled Query Evaluation (CQE) is a framework together with several imple-
mented control mechanisms to prevent single users from inferring secret infor-
mation from disclosed data items. In this section our main goal is to reformulate
confidentiality preservation of CQE in the Runs & Systems framework, as mo-
tivated in the introduction. In this section we proceed as follows: In Section 3.1
we describe the general components of a CQE control mechanism (a CQE im-
plementation); In Section 3.2 the CQE framework is modeled as a system in
Runs & Systems; Section 3.3 discusses our major result of Section 3, namely,
confidentiality preservation in the CQE context can be stated in the Runs & Sys-
tems model in line with the work of [3] as a special case of policy-based secrecy.

3.1 The Setting

At first we describe a general setting of CQE, into which several implementations
like in [10] can be embedded.

– Inst : the set of all database instances
– LQ: a query language, together with
– eval : LQ × Inst → V : a query evaluation function where V = {true, false}

or V = {true, false, undefined}
– Lps: a policy specification language, together with
– evalps : Lps × Inst → {true, false}: an evaluation function, that interprets a

sentence in Lps in a database instance

8

– “User Awareness”: assumptions about what the user knows about the setting
or the implementation of CQE or its input

Generally evalps(F)(db) = true is to be read “F holds in db”. Especially, if F
expresses prior knowledge or database constraints evalps(F)(db) = true means
that F is consistent with db or that db fulfills F .

Next, we describe the elements of the control mechanism, the implementation
cqe. In this section, we fix our illustrations on a single user system. Several users
would be each treated like a single user. At design time a database administrator
sets up the constraints con for the database instance, a user administrator models
the assumed a priori knowledge viewCQE,U of the user about the CQE system
as a set of sentences in Lps. The denotation viewCQE,U makes clear, that this
set is about what the system CQE supposes an user U to know (in the CQE
literature viewCQE,U is usually denoted as prior). The security administrator
specifies the information a user should not know as a set pot sec of sentences
in Lps, called potential secrets. The fact, that a potential secret ψ holds in
a database instance db, i.e., evalps(ψ)(db) = true, must be hidden from the
user but if evalps(ψ)(db) = false, this fact can be disclosed to the user. The cqe
implementation employs an enforcement method, i.e., refusal, lying or combined.
Answers from the database, that leak sensitive information, are either replaced
by mum (refusal), or replaced by a lie (lying) or both methods are combined.

Definition 3 (CQE Implementation cqe). An implementation cqe has the
following input:

– pot sec: a confidentiality policy with pot sec ⊆ Lps (usually finite)
– con: database constraints with con ⊆ viewCQE,U (usually finite)
– viewCQE,U : the user’s assumed a priori knowledge with viewCQE,U ⊆ Lps

(usually finite)
– db: a database instance with db ∈ Inst
– Q := 〈φ1, . . . , φk〉: a finite sequence of queries with φi ∈ LQ

Furthermore an implementation cqe requires preconditions on its input. CQE
always demands con to be fulfilled in db. We denote the output by

cqe(db, pot sec, viewCQE,U , Q) = (ans1, . . . , ansk)

where ansi ∈ {true, false}(∪{undefined})(∪{mum}) (the cases in brackets de-
pend on the range of the query evaluation function eval and on the enforcement
method). Intermediate computation steps are denoted by

cqe(db, pot sec, logi−1, φk) = (ansi, logi),

where logi is the logfile produced at step i with the initial logfile being log0 =
viewCQE,U .

Depending on the implementation, the logfile logi may be used to keep track of
the information revealed to the user and to compute the user’s inferences from
his knowledge. Later we will sketch an implementation of CQE to illustrate the
reformulation of CQE in the Runs & Systems framework.

9

3.2 Describing a CQE System in Runs & Systems

A CQE system can be seen as a system of two agents U , the user, and CQE,
the cqe algorithm, with U sending queries φ to CQE and CQE replying to φ.
The state of U must encode everything that U observes during system execution
or previously knows about the system like the confidentiality policy or database
constraints. The state of agent CQE must encode everything that is needed by
the cqe implementation to run, e.g., the input parameters, the computed logfile
etcetera. Next we formally translate all parts of a CQE system into a system
RCQE of the Runs & Systems framework. A global state (sU , sCQE) is de-
scribed by sU := ([pot sec,]viewCQE,U , 〈φ1?ans1!, φ2?ans2!, . . . , φk?ansk!〉, con)
and sCQE := (pot sec, logk, db) with log0 := viewCQE,U . First, the state of agent
U might contain the policy depending on whether or not the user is assumed
to know the confidentiality policy pot sec. Second, by containing viewCQE,U in
agent U ’s state, we claim that agent U knows what a priori knowledge agent
CQE assumes about U . Third, the sequence 〈φ1?ans1!, φ2?ans2!, . . . 〉 are agent
U ’s observations. And last, by containing con we claim that agent U knows the
database constraints. In a permissible initial state of RCQE the database con-
straints con contained in sU must hold in db and pot sec, viewCQE,U and db
satisfy precondition as prescribed by the cqe implementation. The policies in
agent U ’s and CQE’s states are equal, whenever U knows the confidentiality
policy. We now define the runs of RCQE by simulating the execution of the cqe
implementation in agent CQE:

Definition 4 (The System RCQE). Let Q := 〈φ1, . . . , φn〉 be a finite query
sequence in LQ and pot sec, viewCQE,U and db an input which satisfies precon-
dition and db satisfies the database constraints included in viewCQE,U . The run
rQ,pot sec,viewCQE,U ,db starts from the permissible initial state

rQ,pot sec,viewCQE,U ,db(0) := (([pot sec,]viewCQE,U , 〈〉, con), (pot sec, log0, db))

where log0 := viewCQE,U and continues as follows for k ≤ n:

rQ,pot sec,viewCQE,U ,db(k) := (
([pot sec,]viewCQE,U , 〈φ1?ans1!, . . ., φk?ansk!〉, con), (pot sec, logk, db))

where (ansk, logk) = cqe(db, pot sec, logk−1, φk). After all queries in Q the
global state does not change any longer:

rQ,policy,prior,db(k) = rQ,policy,prior,db(n) where k > n.

The system RCQE is the set of all possible runs rQ,pot sec,viewCQE,U ,db.

Let db(r,m), pot sec(r,m), viewCQE,U (r,m) and log(r,m) denote the system
components in a point (r,m) ∈ PT (RCQE). The definition of RCQE implicitly
contains the assumptions, that the user is aware of the input parameters and
the implementation cqe (including precondition) and knows that the database
constraints always hold in an instance. For simplifying the exposition, in addition

10

r1
({a, b}, ∅, 〈〉)
({a, b}, ∅, a b)

({a, b}, ∅, 〈a ∨ b?a ∨ b!〉)
({a, b}, {a ∨ b}, a b)

({a, b}, ∅, 〈a ∨ b?a ∨ b!, a?mum!〉)
({a, b}, {a ∨ b}, a b)

r2
({a, b}, ∅, 〈〉)
({a, b}, ∅,¬a b)

({a, b}, ∅, 〈a ∨ b?a ∨ b!〉)
({a, b}, {a ∨ b},¬a b)

({a, b}, ∅, 〈a ∨ b?a ∨ b!, a?mum!〉)
({a, b}, {a ∨ b},¬a b)

r3
({a, b}, ∅, 〈〉)

({a, b}, ∅,¬a¬b)
({a, b}, ∅, 〈a ∨ b?¬(a ∨ b)!〉)
({a, b}, {¬(a ∨ b)},¬a¬b)

({a, b}, ∅, 〈a ∨ b?¬(a ∨ b)!, a?¬a!〉)
({a, b}, {¬(a ∨ b),¬a},¬a¬b)

time 0 1 2 . . .

a ∨ b?

a ∨ b!

a?

mum!

a ∨ b?

a ∨ b!

a?

mum!

a ∨ b?

¬(a ∨ b)!

a?

¬a!

Fig. 1. An excerpt of RCQE with refusal

to Definition 4 we assume that the user knows nothing else about the database,
i.e., viewCQE,U = con.2 We conclude this section with an implementation of
CQE with refusal (taken from [10]) in the Runs & Systems framework, at the
same time continuing Example 1 in the CQE context:

Example 3 (CQE with known policy and refusal). We consider propositional
databases over the schema with alphabet D := {a, b} and database constraints
con = ∅, i.e., a database instance can be any propositional interpretation of
the atomic propositions in D. Queries are expressed in propositional logic over
the alphabet D and so is the confidentiality policy and the user knowledge (in
viewCQE,U and log). The evaluation functions are eval(φ)(db) := db |= φ and
evalps(ψ)(db) := db |= ψ with the propositional model operator |=. The user
is assumed to know the confidentiality policy. A global state (sU , sCQE) =
((pot sec, viewCQE,U , 〈φ1?ans1!, . . . 〉, con), (policy, logk, db)) is drawn with sU
in the upper and sCQE in the lower part of a state. We omit the part con of sU
in the graphic because we assumed con = viewCQE,U . On each state transition,
the issued query φ? and the response ans! is denoted. These labels beside the
transitions are only for a better readability but not part of the system model
in Runs & Systems. For a better understanding of agent CQE’s strategy, note
that agent CQE keeps the local invariant log(r,m) 6|= ψ for all ψ ∈ pot sec(r,m)
(more details can be found in [10]). The graphic in Figure 1 shows an excerpt
of the system RCQE with pot sec = {a, b}, viewCQE,U = con = ∅ and agent U
issuing the sequence of queries 〈a ∨ b, a〉.

3.3 Confidentiality Preservation

In the beginning, we consider confidentiality preservation in CQE. The main
idea is: whatever the user learns about the database instance db by querying it,
he is never sure that a potential secret holds in db.
2 Generally, the a priori knowledge of U in the Runs & Systems model is encoded in
KU (r, 0) for each run r. In the CQE literature often 〈φ1?ans1, φ2?ans2, . . . 〉 might
be non-empty in an initial state.

11

Definition 5 (Confidentiality Preservation in CQE). (see Definition 1
of [10]) An implementation cqe as given by Definition 3 preserves confidentiality
iff

for every confidentiality policy pot sec,
for every initial user knowledge viewCQE,U – including database constraints
con,
for every database instance db ∈ Inst that is consistent with con,
so that pot sec, viewCQE,U and db satisfy precondition,
for every finite query sequence Q, for all ψ ∈ pot sec

there exist an alternative database instance db′ and policy pot sec′, so that

(a) [permissible inputs] pot sec′, viewCQE,U and db′ satisfy precondition and
db′ satisfies the database constraints

(b) [same answers]
cqe(db, pot sec, viewCQE,U , Q) = cqe(db′, pot sec′, viewCQE,U , Q)

and db′ refutes ψ

(c) [ψ protected] evalps(ψ)(db′) = false.

If the user is aware of the confidentiality policy, it holds

(d) [same policy] pot sec′ = pot sec.

In other words: the user can never exclude that a potential secret does not hold
in db (because of the existence of a db′). So the information, that a potential
secret ψ does not hold in such an instance db′(r,m), is relevant to ensure the
confidentiality of ψ.
Now we formulate an equivalent notion of secrecy for agent CQE inRCQE using
policy-based secrecy:

policyRCQE
(r,m) := {{KCQE (r′,m′) | evalps(ψ)(db(r′,m′)) = false}

| ψ ∈ pot sec(r,m)} (3)

In order to ensure the confidentiality of the property “ψ holds in agent CQE’s
local database”, the complement property “ψ does not hold in agent CQE’s local
database” must be a target of the CQE-possibility policy policyRCQE

. In the re-
mainder of the article Iψ denotes the set {KCQE (r′,m′) | evalps(ψ)(db(r′,m′)) =
false}. The following theorem shows that we can adequately express the require-
ments of Definition 5 in the Runs & Systems framework using policyRCQE

-based
secrecy:

Theorem 1 (Equivalence of Confidentiality Preservation and policyRCQE
-

based Secrecy). Given an implementation cqe and the associated system RCQE,
agent CQE maintains policyRCQE

-based secrecy with respect to agent U accord-
ing to Definition 2 iff cqe preserves confidentiality according to Definition 5.

The main keys to the proof are listed in the following.

12

– The simulation of the cqe implementation by agent CQE in the system
RCQE :
especially, only permissible input states are considered (ensuring point (a)
of Definition 5).

– The definition of the state of agent U :
This state encodes the user’s prior information, awareness and observations
according to the assumptions about the user’s abilities. Moreover, the state
of agent U determines KU in the Runs & Systems framework and models
the alternative situations from the user’s point of view described by points
(b) and (d) of Definition 5.

– The definition of policyRCQE
:

This policy declares the fact that db refutes ψ, i.e., point (c) of Definition 5,
as relevant information, which agent U , the user, should not rule out.

The full proof is omitted due to lack of space. Next, we illustrate policyRCQE
-

based secrecy by continuing Example 3.

Example 4. (CQE with known policy and refusal (continued)): Our illustrations
(cf. Figure 2) focus on the protection of the potential secret a in the points (r1, 1)
and (r1, 2). In the graphics, the state representation is simplified to (sU , sCQE) =
((〈φ1?ans1!, . . . , φk?ansk!〉), (logk, db)) for the sake of readability, yet, agent U
knows con, viewCQE,U and pot sec. In run r1 at time 1 agent U , when reasoning
about the possible system states, might determine KU (r1, 1), combining all “run-
time” information available to him (encoded in sU) and the knowledge about
the system (the specification RCQE). The relevant information for the protec-
tion of the potential secret a is Ia = {KCQE(r,m) | evalps(a)(db(r,m)) = false}.
In both (r1, 1) and (r1, 2) the condition of policyRCQE

-based secrecy is ful-
filled (with “witnesses” (r2, 1) and (r2, 2) respectively) for Ia ∈ policy(r1, 1)
and Ia ∈ policy(r1, 2) respectively.
You can observe that, if in r2 at time 2 agent CQE returned the correct an-
swer ¬a! instead of mum!, agent U would have learned at point (r1, 2) that
a holds in the current database instance and at point (r2, 2) that b holds in
the current database instance. In run r2, the disclosure of b to agent U is pro-
hibited by the local confidentiality policy. The first harm of the local confi-
dentiality policy would not be detected by means of the logfile log(r1, 2), i.e.,
log(r1, 2) 6|= a and thus is called meta-inference (|= denotes logical implication
in propositional logic). The second inference would be detected by means of the
logfile log′(r2, 2) = log(r2, 2) ∪ {¬a} |= b. In this situation, we notice that only
by means of the logfile log(r,m) and logical implication |=, agent CQE cannot
determine KU (r,m), as we have seen, that agent CQE cannot detect all infer-
ences of agent U with the logfile. But agent CQE’s strategy, i.e., the strategy of
the algorithm cqe, nevertheless prevents such harmful inferences by additional
refusals.

Unlike policy-based secrecy, total f -secrecy and C-secrecy do not suffice to ex-
press the confidentiality requirement in the CQE context.

13

r1
(〈〉)
(∅, a b)

(〈a ∨ b?a ∨ b!〉)
({a ∨ b}, a b)

(〈a ∨ b?a ∨ b!, a?mum!〉)
({a ∨ b}, a b)

r2
(〈〉)
(∅,¬a b)

(〈a ∨ b?a ∨ b!〉)
({a ∨ b},¬a b)

(〈a ∨ b?a ∨ b!, a?mum!〉)
({a ∨ b},¬a b)

r3
(〈〉)
(∅,¬a¬b)

(〈a ∨ b?¬(a ∨ b)!〉)
({¬(a ∨ b)},¬a¬b)

(〈a ∨ b?¬(a ∨ b)!, a?¬a!〉)
({¬(a ∨ b),¬a},¬a¬b)

time 0 1 2 . . .

a ∨ b?

a ∨ b!

a?

mum!

a ∨ b?

a ∨ b!

a?

mum!

a ∨ b?

¬(a ∨ b)!

a?

¬a!

prior = con = ∅ pot sec = {a, b}

Fig. 2. CQE with known policy and refusal: Agent U considers possible in (r1, 1)
and (r1, 2), that a does not hold, which is visualized by the non-empty intersection
of the gray colored (Ia = {KCQE(r,m) | evalps(a)(db(r,m)) = false}) with the points
with a single frame (KU (r1, 1)) or with the points with a double frame resp. (KU (r1, 2)).

Proposition 3 (Confidentiality, Total f-Secrecy and C-Secrecy). Given
an implementation cqe for database instances Inst ⊇ {(), (a), (b), (a, b)} like in
Example 1 and the associated system RCQE, there is no function f : PT (RCQE)
→ V , such that cqe satisfies the requirements of Definition 5 iff agent CQE
maintains total f -secrecy with respect to agent U in RCQE. Also there is no
function C : PT (RCQE) → P(PT (RCQE)), such that cqe satisfies the require-
ments of Definition 5 iff agent CQE maintains C-secrecy with respect to agent
U in RCQE.

In our proof sketch we consider a policy pot sec = {a, b} as an input to the
cqe implementation. This policy can be equivalently enforced in RCQE in a
point (r̃, 0) by the local policy policy(r̃, 0) = {Ia, Ib} with Ia = {KCQE(r,m) |
evalps(a)(db(r,m)) = false} and Ib analogously (Theorem 1). Policy-based se-
crecy for policy can neither be enforced by the means of total f -secrecy nor by
the means of C-secrecy:

– We cannot find a function f with

policyf (r̃, 0)
= {{KCQE(r′,m′) | f(r′,m′) = v1}, {KCQE(r′,m′) | f(r′,m′) = v2}}
= {Ia, Ib} = policy(r̃, 0) by (1),

because for a (r′,m′) ∈ Ia∩Ib(6= ∅) either f(r′,m′) = v1 6= v2 or f(r′,m′) =
v2. Hence, by Proposition 1, policy-based secrecy (and the requirements of
Definition 5 for pot sec) cannot equivalently be enforced by total f -secrecy.

14

– Ia contains at least the two different information sets KCQE(r1,m1) with
eval(b)(db(r1,m1)) = false and KCQE(r2,m2) with eval(b)(db(r2,m2)) =
true where both evalps(a)(db(r1,m1)) = evalps(a)(db(r2,m2)) = false. Hence
we cannot find a function C with

policyC(r̃, 0) = {{KCQE(r′,m′)}, {KCQE(r′′,m′′)}}
= {Ia, Ib} = policy(r̃, 0) by (2)

and, by Proposition 2, policy-based secrecy (and Definition 5) cannot equiv-
alently be enforced by C-secrecy.

4 Policy-Based Secrecy in Interpreted Systems

Halpern and O’Neill in [3] also use a logic of knowledge and time (introduced
in [4]) to express properties of a system. Several of their notions of secrecy can
be equivalently described in terms of this logic, i.e. syntactically. Next, we reca-
pitulate this logic in brief: A formula F is build by F :: ≡A|F∨F |F∧F |Ki F |♦F
where A is an atomic proposition from an alphabet A. The meaning of a formula
F is given by an interpreted system:

Definition 6 (Interpreted System I). (Section 2 of [3]) Let R be a system
and A an alphabet of atomic propositions. An interpretation π of A in R is a
function

π : A×Σ → {true, false}
where Σ is the set of all global states in R . The pair (R , π) is called an inter-
preted system and denoted by I.

The interpretation of the connectives is as usual and the modal operators are
interpreted as follows:

(I , r,m) |= Ki ϕ iff (I , r′,m′) |= ϕ for all (r′,m′) ∈ Ki(r,m)

(I , r,m) |= ♦ϕ iff there exists an n such that (I , r, n) |= ϕ

A formula whose evaluation depends only on the state of an agent j in I is called
j-local, formally: For all points (r,m) and (r′,m′) such that rj(m) = r′j(m

′) it
holds that (I , r,m) |= ϕ iff (I , r′,m′) |= ϕ.

Like Halpern and O’Neill, we restate policy-based secrecy in terms of this
logic:

Proposition 4 (Policy-Based Secrecy in Interpreted Systems)). Let R be
a system, A a propositional alphabet and policy a j-possibility policy. Agent j
maintains policy-based secrecy in R with respect to agent i iff for all interpreta-
tions π and points (r,m) ∈ PT (R):
if a formula ϕ is j-local in I = (R , π) and for some Ik ∈ policy(r,m):

(I, r′,m′) |= ϕ iff (r′,m′) ∈
⋃
S∈Ik

S (4)

then (I , r,m) |= ¬Ki ¬ϕ.

15

Let us review Proposition 4: [3] offers several interpretations of j-locality among
which the following is useful in our case: A j-local formula can be understood
as a property of agent’s j state. So Equation (4) says that regarding π the
formula ϕ expresses the same property as Ik does. Now the equivalent criterion
for policy-based secrecy reads as: whenever a j-local formula ϕ describes relevant
information about j’s state according to policy(r,m), agent i cannot rule out that
ϕ holds, i.e., agent i doesn’t know that ϕ does not hold. The proof cannot be
shown here due to lack of space. This syntactic characterization gives ideas how
a notion of secrecy can be slightly adapted to suit other purposes (cf. [8]), e.g.,

– (ICQE , r,m) |= ¬KU ♦ψ: agent U does not know, whether ψ held, holds or
will hold at some time during system execution

– (ICQE , r,m) |= C → ¬KU ψ: only if condition C is satisfied, the potential
secret ψ must be protected

5 Related Work

In [11] Hughes and Shmatikov propose a “technique (which) combines the ben-
efits of the knowledge based approach (e.g., like in this article), namely, natural
specification of information hiding properties, with those of the process algebra-
based approach, namely, natural specification of system behavior.” The confi-
dential data items are attributes which are functions each with a type X → Y .
E.g., bal : X → R returns the balance of a customer x’s (∈ X) bank account.
Such an attribute is instantiated in each system state with a function of type
X → Y , e.g., balC : Jones 7→ 10000, Smith 7→ 36000 with X = {Smith, Jones}.
An attacker can acquire partial knowledge of a function, e.g., an attribute, which
is represented by a function view N = 〈F, I,K〉. A function view comprises the
attacker’s knowledge about the graph, e.g., f(x) 6= y, by f ⊆ F ⊆ X ×Y , about
the range of the image, e.g., y ∈ f(X), by I ⊆ f(X), and about the kernel ker,
e.g., f(x) = f(x′), by an equivalence relation K on X ×X. In the first example,
knowing F and thus (x, y) 6∈ F the attacker knows that the point (x, y) does
not lie on the graph of f , i.e., f(x) 6= y. The semantics of a function view N is
given as lin(N) := {f : X → Y | f ⊆ F, I ⊆ f(X),K ⊆ ker f} which is the
set of functions an attacker with knowledge N considers possible. Additionally,
a function view N of f is consistent with f , i.e., f ∈ lin(N), and closed, which
means it accounts for all inferences an attacker can draw due to the interrela-
tions between F , I and K. Hughes and Shmatikov express information hiding
properties in terms of function views, e.g., Z-value opaqueness which requires
that the attacker with view N of f considers possible that f might output any
value in Z on an arbitrary input x. As an application of function views, one
can declare opaqueness properties for attributes with respect to the view of an
attacker. This view of the attacker in a system state C is the function view rep-
resenting L∼α,C = {αC′ : X → Y | C ∼ C ′}. Thereby, the equivalence relation
C ∼ C ′ on system states denotes that the attacker cannot distinguish the states
C and C’.

16

In our context of policy-based secrecy, a system has the states PT (R) with
the equivalence relation Ki for the attacker agent i. All attributes of interest are
the relevant properties Ik of agent j’s state. Let hasPropertyIk denote such an
attribute with type → {0, 1} (i.e., a binary constant), which is instantiated in
each state (r,m) ∈ PT (R) as a function

hasPropertyIk(r,m) = if

(
(r,m) ∈

⋃
S∈Ik

S

)
then 1 else 0

Whenever in a state (r,m) a property is declared security-relevant in the local
j-possibility policy, the attacker agent i must think that agent j might have this
property. Hence, we require {1}-value opaqueness on agent i’s view in (r,m). As
a conclusion, we see that policy-based secrecy and hence confidentiality preser-
vation in CQE translates to opaqueness properties of function views as proposed
in [11] in a natural way. Thus, CQE might in the future also benefit from the
solution of [11] to provide for a natural system specification as well as security
property specification for formal verification.

Mantel in [12] formalizes information flow properties in trace-based systems
in MAKS (modular assembly kit for security properties) in which he character-
ized several common information flow properties. Generally, as noted by [13],
these information-flow properties might be too restrictive to be useful in the
database context. For instance, non-interference [7] does not allow the attacker to
conclude that some but not which secret holds in the database instance. Further-
more, as elaborated in [3], separability [5] and generalized non-interference [6]
are stricter than synchronous secrecy which is a special case of C-secrecy and
total f -secrecy, respectively, in that the former properties model that an agent
can observe and reason about an entire infinite run. In contrast, C-secrecy etc.
and also policy-based secrecy considers an agent to make observations only af-
ter finite time. Nevertheless, Mantel’s proposal allows for weakened definitions
of information flow properties which, for instance, can also be used for hiding
the value of an agent’s internal variables from another agent while exchanging
messages in MAS [14].

Altogether, by choosing the general framework of Halpern and O’Neill we
provide a basis for comparing confidentiality requirements of CQE with other
approaches in the future. In the discussion of [11] above, we could identify the
proper equivalence relation, attributes and opaqueness property to enforce the
confidentiality requirements of CQE easily because we expressed the require-
ments of CQE by policy-based secrecy.

6 Conclusion and Future Work

In this paper, we demonstrated that the notion of confidentiality preservation of
CQE complements Halpern and O’Neill’s notions of total secrecy, C-secrecy and
total f -secrecy in that an agent can declare individually which of the agent’s

17

properties are relevant. In particular, total secrecy being a special case of C-
secrecy [3], C-secrecy and total f -secrecy can be enforced by appropriate decla-
rations. Introducing the generic notion of policy-based secrecy we pointed out the
essence of confidentiality preservation in CQE in comparison to total f -secrecy
and C-secrecy. In particular, we saw that confidentiality preservation in CQE
is not expressible by either of these notions. For future work, the results of this
paper can be applied to CQE under several aspects:
Time-Related Confidentiality Requirements. The logic of knowledge and time,
used to express policy-based secrecy in Proposition 4, offers means to change the
requirement of policy-based secrecy in an intuitive way: Consider the following
confidentiality requirements of employee Smith where the temporal operator /
should be read as ”in the past”:

1. ¬KJones phone(Smith, 6789)
2. ¬KJones ♦cancer(Smith)
3. ¬KJones [/HR(Smith,ProjectA, teamleader)∧
¬HR(Smith,ProjectA, teamleader) ∧HR(Smith,ProjectA, programmer)]

Requirement 1) complies with the syntax used in Proposition 4 and expresses
that Jones must not know whether Smith currently has the phone number 6789.
Requirement 2) expresses that Jones must not know whether Smith ever had
cancer (or has or will have). Even more complex, requirement 3) means that
Jones must not know whether Smith has lost his position as a team leader in
ProjectA and now works as a programmer. Such time-related requirements make
sense in the context of database updates or update operations in MAS. Whereas
requirement 1) expresses the requirement of Definition 5, which has been shown
in this paper, requirement 2) may be found in the context of controlled update
transactions in [1]; and more complex requirements like 3) have not yet been
formulated in CQE. Since the formula ♦cancer(Smith) is generally not j-local,
requirement 2) (as well as 3)) cannot be expressed by policy-based secrecy (cf.
Proposition 4), but another semantic representation has to be found.
Attacker Model. Policy-based secrecy assumes that the attacker has full aware-
ness of the system specification and can determine all possible system states
at runtime. These assumptions are inherent in the K-operator used in Propo-
sition 4. In Halpern and O’Neill’s framework other attacker models have been
studied as well using the following inference models: PrJones(cancer(Smith)) de-
notes Jones’ reasoning about the probability of the fact that Smith has cancer [3];
XJones(cancer(Smith)) denotes Jones’ computation of the fact that Smith has
cancer [15] (resource-bounded reasoning). Using the algorithmic knowledge oper-
ator Xj one can individually model the computational capabilities of the attacker
j as demonstrated in [15]. Halpern and O’Neill in [3] discuss more attacker mod-
els in their framework. The results presented here can be a starting point to
apply these attacker models to CQE.
MAS. Employing the formal framework presented in this article we can formulate
– even complex and time-related – confidentiality requirements more intuitively
then for example in [10, 1, 9], as suggested in the previous two paragraphs. Yet,
we might identify the requirements in [10, 1] with ¬KUψ and ¬KU♦ψ where ψ

18

doesn’t contain temporal operators such as in the examples with employee Smith
above. Thus, the results in [10, 1] should be useful to develop protocols for general
MAS even to enforce more complex temporal confidentiality requirements.

References

1. Biskup, J., Gogolin, C., Seiler, J., Weibert, T.: Requirements and protocols for
inference-proof interactions in information systems. In: Fourteenth European
Symposium on Research in Computer Security (ESORICS 2009). Volume 5789
of LNCS. (2009) 285–302

2. Biskup, J.: Usability confinement of server reactions: Maintaining inference-proof
client views by controlled interaction execution. In: Sixth International Workshop
on Databases in Networked Information Systems (DNIS 2010). Volume 5999 of
LNCS. (2010) 80–106

3. Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Transactions
on Information and System Security 12(1) (2008)

4. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT
Press, Cambridge (1995)

5. McLean, J.: A general theory of composition for trace sets closed under selective
interleaving functions. In: Fifteenth IEEE Symposium on Security and Privacy
(SP 1994). (1994) 79–93

6. McCullough, D.: Specifications for multi-level security and a hook-up property. In:
Eighth IEEE Symposium on Security and Privacy (SP 1987). (1987) 161–166

7. Lee, E., Zakinthinos, A.: A general theory of security properties. In: Eighteenth
IEEE Symposium on Security and Privacy (SP 1997). (1997) 94–102

8. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent
systems. Journal of Computer Security 13(3) (2005) 483–512

9. Biskup, J., Kern-Isberner, G., Thimm, M.: Towards enforcement of confidential-
ity in agent interactions. In: Twelfth International Workshop on Non-Monotonic
reasoning (NMR 2008). (September 2008) 179–188

10. Biskup, J., Bonatti, P.: Controlled query evaluation for enforcing confidentiality
in complete information systems. International Journal of Information Security 3
(2004) 14–27

11. Hughes, D., Shmatikov, V.: Information hiding, anonymity and privacy: a modular
approach. Journal of Computer Security 12(1) (2004) 3–36

12. Mantel, H.: A uniform framework for the formal specification and verification of
information flow security. PhD thesis, Universität des Saarlandes (2003)

13. Cuppens, F., Trouessin, G.: Information flow controls vs interference controls: An
integrated approach. In: Third European Symposium on Research in Computer
Security (ESORICS 1994). Volume 875 of LNCS. (1994) 447–468

14. Schairer, A.: Towards using possibilistic information flow control to design secure
multiagent systems. In: First International Conference on Security in Pervasive
Computing (SPC 2003). Volume 2802 of LNCS. (2003) 101–115

15. Halpern, J.Y., Pucella, R.: Modeling adversaries in a logic for security protocol
analysis. The Computing Research Repository CoRR abs/cs/0607146 (2006)

