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Abstract

We describe a methodology for performing variable ranking and selection using support
vector machines (SVMs). The method constructs a series of sparse linear SVMs to generate
linear models that can generalize well, and uses a subset of nonzero weighted variables found
by the linear models to produce a final nonlinear model. The method exploits the fact that a
linear SVM (no kernels) with `1-norm regularization inherently performs variable selection
as a side-effect of minimizing capacity of the SVM model. The distribution of the linear
model weights provides a mechanism for ranking and interpreting the effects of variables.
Starplots are used to visualize the magnitude and variance of the weights for each variable.
We illustrate the effectiveness of the methodology on synthetic data, benchmark problems,
and challenging regression problems in drug design. This method can dramatically reduce
the number of variables and outperforms SVMs trained using all attributes and using the
attributes selected according to correlation coefficients. The visualization of the resulting
models is useful for understanding the role of underlying variables.

Keywords: Variable Selection, Dimensionality Reduction, Support Vector Machines,
Regression, Pattern Search, Bootstrap Aggregation, Model Visualization

1. Introduction

Variable selection refers to the problem of selecting input variables that are most predictive
of a given outcome. Appropriate variable selection can enhance the effectiveness and domain
interpretability of an inference model. Variable selection problems are found in many su-
pervised and unsupervised machine learning tasks including classification, regression, time
series prediction, clustering, etc. We shall focus on supervised regression tasks, but the
general methodology can be extended to any inference task that can be formulated as an
`1-norm SVM, such as classification and novelty detection (Campbell and Bennett, 2000,
Bennett and Bredensteiner, 1997). The objective of variable selection is two-fold: improv-
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ing prediction performance (Kittler, 1986) and enhancing understanding of the underlying
concepts in the induction model.

Our variable selection methodology for SVMs was created to address challenging prob-
lems in Quantitative Structural-Activity Relationships (QSAR) analysis. The goal of QSAR
analysis is to predict the bioactivity of molecules. Each molecule has many potential de-
scriptors (300-1000) that may be highly correlated with each other or irrelevant to the target
bioactivity. The bioactivity is known for only a few molecules (30-200). These issues make
model validation challenging and overfitting easy. The results of the SVMs are somewhat
unstable – small changes in the training and validation data or on model parameters may
produce rather different sets of nonzero weighted attributes (Breneman et al., 2002). Our
variable selection and ranking methodology exploits this instability. Computational costs
are not a primary issue in our experiments due to lack of data. Our method is based on
sparse SVMs, so we call the algorithm VS-SSVM for Variable Selection via Sparse SVMs.

Variable selection is a search problem, with each state in the search space specifying a
subset of the possible attributes of the task. Exhaustive evaluation of all variable subsets
is usually intractable. Genetic algorithms, population-based learning, and related Bayesian
methods have been commonly used as search engines for the variable selection process (Inza
et al., 1999, Yang and Honavar, 1997, Kudo et al., 2000). Particularly for SVMs, a variable
selection method was introduced (Weston et al., 2000) based on finding the variables that
minimize bounds on the leave-one-out error for classification. The search of variable subsets
can be efficiently performed by a gradient descent algorithm. The method, however, was
limited to separable classification problems, and thus is not directly applicable to the re-
gression problems examined in this paper. Guyon et al. proposed another variable selection
method for classification by recursively eliminating the input variables that decrease the
margin the least (Guyon et al., 2002). A generic wrapper approach based on sensitivity
analysis has been applied to kernel SVM regression (SVR) (Embrechts et al., 2001) but it
is more computationally intensive than our proposed approach.

Variable selection methods are often divided along two lines: filter and wrapper methods
(Kohavi and John, 1997). The filter approach of selecting variables serves as a preprocessing
step to the induction. The main disadvantage of the filter approach is that it totally ignores
the effects of the selected variable subset on the performance of the induction algorithm. The
wrapper method searches through the space of variable subsets using the estimated accuracy
from an induction algorithm as the measure of “goodness” for a particular variable subset.
Thus, the variable selection is being “wrapped around” a particular induction algorithm.
These methods have encountered some success with induction tasks, but they can be very
computationally expensive for tasks with a large number of variables.

Our approach (VS-SSVM) consists largely of two consecutive parts: variable selection
and nonlinear induction. The selection of variables serves as a preprocessing step to the
final kernel SVR induction. The variable selection itself is performed by wrapping around
linear SVMs (no kernels) with sparse norm regularization. Such sparse linear SVMs are
constructed to both identify variable subsets and assess their relevance in a computationally
cheaper way compared with a direct wrap around nonlinear SVMs. However, the variable
selection by linear SVMs and the final nonlinear SVM inference are tightly coupled since
they both employ the same loss function. Our method is similar in spirit to the Least
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Absolute Shrinkage and Selection Operator (LASSO) method (Tibshirani, 1994) but is
specifically targeted to SVR with the ε-insensitive loss function.

This article is organized as follows. In Section 2, we review sparse SVMs with `1-norm
regularization, specifically, the sparse ν-SVR. Section 3 provides details on the VS-SSVM
algorithm based on sparse linear SVMs. Sections 4 and 5 compare VS-SSVM with stepwise
dimensionality reduction and correlation coefficient ranking methods on synthetic data and
Boston Housing data. Model visualization is also explored in Section 5 to reveal domain
insights. Computational results on real-life QSAR data are included in Section 6.

2. Sparse Support Vector Machines

In this section, we investigate sparse SVMs. Consider the regression problem as finding a
function f∗ ∈ F = {f : Rn → R} that minimizes the regularized risk functional (Boser
et al., 1992, Vapnik, 1995, Smola, 1998): R[f ] := P[f ] + C 1

`

∑`
i=1 L(yi, f(xi)), where L(·)

is a loss function. Usually the ε-insensitive loss Lε(y, f(x)) = max{|y − f(x)| − ε, 0} is
used in SVR. P[·] is a regularization operator and C is called the regularization parameter.
For linear functions, f(x) = w′x + b, the regularization operator in classic SVMs is the
squared `2-norm of the normal vector w. Nonlinear functions are produced by mapping x
to Φ(x) in a feature space via the kernel function k and constructing linear functions in the
feature space. A linear function in feature space corresponds to a nonlinear function in the
original input space. The optimal solution w to SVMs can be expressed as a support vector
expansion w =

∑
αiΦ(xi). Thus, the regression function can be equivalently expressed

as a kernel expansion f(x) =
∑

αiΦ(xi)′Φ(x) + b =
∑

αik(xi,x) + b. Classic SVMs are
quadratic programs (QPs) in terms of α.

Solving QPs is typically computationally more expensive than solving linear programs
(LPs). SVMs can be transformed into LPs as in Bennett (1999), Breiman (1999) and
Smola et al. (1999). This is achieved by regularizing with a sparse norm, e.g. the `1-norm.
This technique is also used in basis pursuit (Chen et al., 1995), parsimonious least norm
approximation (Bradley et al., 1998), and LASSO (Tibshirani, 1994). Instead of choosing
the “flattest” function as in classic SVR, we directly apply the `1-norm to the coefficient
vector α in the kernel expansion of f . The regularized risk functional is then specified as

R[f ] :=
∑̀

i=1

|αi|+ C
1
`

∑̀

i=1

Lε(yi, f(xi)). (1)

This is referred to as a “sparse” SVM because the optimal solution w is usually constructed
based on fewer training examples xi than in classic SVMs and thus the function f requires
fewer kernel entries k(xi,x).

The classic SVR approach has two hyper-parameters C and ε. The tube parameter ε
can be difficult to select as one does not know beforehand how accurately the function will
fit. The ν-SVR (Schölkopf et al., 2000, Smola et al., 1999) was developed to automatically
adjust the tube size, ε, by using a parameter ν ∈ (0, 1]. The parameter ν provides an
upper bound on the fraction of error examples and a lower bound on the fraction of support
vectors. To form the ν-SVR LP, we rewrite αj = uj − vj where uj , vj ≥ 0. The solution
has either uj or vj equal to 0, depending on the sign of αj , so |αj | = uj + vj . Let the
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training data be (xi, yi), i = 1, · · · , ` where xi ∈ Rn with the jth component of xi denoted
as xij , j = 1, · · · , n. The LP is formulated in variables u, v, b, ε, ξ and η as

min
∑̀

j=1

(uj + vj) + C
1
`

∑̀

i=1

(ξi + ηi) + Cνε

s.t. yi −
∑̀
j=1

(uj − vj) k(xi,xj)− b ≤ ε + ξi, i = 1, . . . , `,

∑̀
j=1

(uj − vj) k(xi,xj) + b− yi ≤ ε + ηi, i = 1, . . . , `,

uj , vj , ξi, ηi, ε ≥ 0, i, j = 1, . . . , `.

(2)

LP (2) provides the basis of both our variable selection and modeling methods. To select
variables effectively, we employ a sparse linear SVR which is formulated from LP (2) simply
by replacing k(xi,xj) by xij with index i running over examples and index j running over
variables. The optimal solution is then given by w = u−v. To construct the final nonlinear
model, we use the sparse nonlinear SVR LP(2) with a nonlinear kernel such as the RBF
kernel k(x, z) = exp

(−||x−z||2
σ2

)
. The optimal solution is then given by α = u− v.

3. The VS-SSVM Algorithm

We briefly describe the VS-SSVM algorithm in this section. The VS-SSVM algorithm
consists of 5 essential components: 1. A linear model with sparse w constructed by solving
a linear SVM LP to obtain a subset of variables nonzero-weighted in the linear model; 2. An
efficient search for optimal hyper-parameters C and ν in the linear SVM LP using “pattern
search”; 3. The use of bagging to reduce the variability of variable selection; 4. A method
for discarding the least significant variables by comparing them to “random” variables; 5.
A nonlinear regression model created by training and bagging the LPs (2) with RBF kernels
on the final subset of variables selected. We shall explain the various components in more
detail in this section1. Pseudocode for the first four steps is given in Algorithm 1 in the
appendix. Algorithm 2 in the appendix describes the final nonlinear regression modeling
algorithm. In Section 5, we describe how further filtering of variables can be achieved by
visualizing the bagged solutions and applying rules to the bagged models.

Sparse linear models: Sparse linear models are constructed using the following LP:

min
n∑

j=1

(uj + vj) + C
1
`

∑̀

i=1

(ξi + ηi) + Cνε

s.t. yi −
n∑

j=1
(uj − vj) xij − b ≤ ε + ξi, i = 1, . . . , `,

n∑
j=1

(uj − vj) xij + b− yi ≤ ε + ηi, i = 1, . . . , `,

uj , vj , ξi, ηi, ε ≥ 0, i = 1, . . . , `, j = 1, . . . , n.

(3)

Let w = u − v be the solution to the linear SVR LP (3). The magnitude and sign of
the component wj indicates the effect of the jth variable on the model. If wj > 0, the

1. More details are available at the website http://www.rpi.edu/˜bij2/featsele.html
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variable contributes to y; if wj < 0, the variable reduces y. The `1-norm of w inherently en-
forces sparseness of the solution. Roughly speaking, the vectors further from the coordinate
axes are “larger” with respect to the `1-norm than with respect to `p-norms with p > 1.
For example, consider the vectors (1, 0) and (1/

√
2, 1/

√
2). For the `2-norm, ‖(1, 0)‖2 =

‖(1/√2, 1/
√

2)‖2 = 1, but for the `1-norm, 1 = ‖(1, 0)‖1 < ‖(1/√2, 1/
√

2)‖1 =
√

2. The
degree of sparsity of the solution w depends on the regularization parameter C and the
tube parameter ν in LP(3).

Pattern search: Since the hyper-parameters play a crucial role in our variable selec-
tion approach, we optimize them using a pattern search approach. This optimization is
automatically performed based on validation set results by applying the derivative-free pat-
tern search method (Dennis and Torczon, 1994) in the C-ν search space. For each choice
of C-ν, LP (3) generates a linear model based on the training data. Then the resulting
model is applied to the validation data and evaluated using the statistic Q2 =

P
(yi−ŷi)

2P
(yi−ȳ)2

,
the mean squared error scaled by the variance of the response, where ŷi is the prediction
of yi for the ith validation example and ȳ is the mean of the actual responses. The pat-
tern search method optimizes this validation Q2 over the C-ν space. A good range for the
hyper-parameters may be problem-specific, but we prefer to a generic approach applicable
to most datasets. Hence a reasonably large range is adopted to produce the C-ν space,
specifically, C ∈ [e−2 = 0.1353, e10 = 22026] and ν ∈ [0.02, 0.6].

The pattern search algorithm is embedded in Algorithm 1 as a sub-routine. Each itera-
tion of a pattern search algorithm starts with a center (initially randomly chosen), samples
other points around the center in the search space, and calculates objective values of each
neighboring point until it finds a point with objective value less than that of the center. The
algorithm then moves the center to the new minimizer. If all the points around the center
fail to bring a decrease to the objective, the search step (used to determine the neighboring
points) is reduced by half. This search continues until the search step gets sufficiently small,
thus ensuring convergence to a local minimizer. For a full explanation of pattern search for
SVR see Momma and Bennett (2002).

Variability reduction: The optimal weight vectors w for LP (3) exhibit considerable
variance due to local minima in the pattern search, the small dataset size, and changes
in validation data. Different partitions of data may produce very different answers. No
individual model can be considered completely reliable, especially for QSAR data. Thus
“bootstrap aggregation” or “bagging” is used to make the procedure more stable (Breiman,
1996). In our experiments, models were constructed based on T = 20 random partitions to
produce distinct weight vectors. There are several schemes to combine models. We took
the superset of nonzero weighted variables obtained in any of the 20 different partitions
– the “bagged” subset of the variables. Bagging can augment the performance of various
individual models due to the reduced variance of the “bagged” model (Breiman, 1996).
For problems with large variance, regression based on the average usually outperforms any
single model. We use bagging for both variable selection and nonlinear SVR modeling.

Discarding least significant variables: Sparsity of the linear model eliminates many
variables in every bootstrap, but it is possible that in any given bootstrap irrelevant variables
are included. Thus, we also eliminate variables by introducing random gauge variables. The
intuition is that if an independent variable has even less significance than a random variable
which is barely related to the response, then it may be safely deleted. The VS-SSVM
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Algorithm 1 first augments the data with normally distributed random variables (mean
0 and standard deviation 1). Random variables following other distributions can also be
employed. See Stoppiglia and Dreyfus (2003) for a more thorough discussion of this issue.
Based on the previous empirical results in Embrechts et al. (2001), we added 3 random
variables with sample correlations to the response less than 0.13 in magnitude. The weights
w for these random variables provide clues for thresholding the selection of variables based
on the average of the weights on the 3 variables across all the bootstraps. Only variables
with average weight greater than this average will be selected. The selection of variables
can be further refined. We leave the explanation of our scheme for model visualization and
further filtering of the variables until Section 5.

Nonlinear SVR models: After the final set of variables is selected, we employ Al-
gorithm 2 in the appendix to construct the nonlinear SVR model. Nonlinear models were
constructed based on T = 10 partitions and then averaged to produce the final model. We
focus on evaluating the performance of the variable selection method more than optimizing
the predictor. Hence a simple grid search was used in nonlinear SVR modeling to select
hyper-parameters rather than pattern search in each fold of the bagging. In the grid search,
we considered only the RBF kernels with parameter σ2 equal to 8, 100, 150, 250, 500, 1000,
3000, 5000, and 10000. The parameter C was chosen from values between 10 and 20000
with 100 as the increment within 1000 and 1000 as the increment from 1000 to 20000, and
the parameter ν from 0.1, 0.15, 0.2, 0.3, and 0.5.

4. Computational Analysis of VS-SSVM

We evaluated the computational effectiveness of VS-SSVM on synthetic data and the bench-
mark Boston Housing problem (Harrison and Rubinfeld, 1978). Our goal was to examine
whether VS-SSVM can improve generalization. The LPs (2) and (3) formulated on training
data were both solved using CPLEX version 6.6 (ILOG, 1999).

We compared VS-SSVM with a widely used method, “stepwise regression” wrapped
around Generalized Linear Models (GLM) (Miller, 1990). For fair comparison, the GLM
models were also bagged. Hence 20 different GLM models were generated using Splus 2000
(Venables and Ripley, 1994, McCullagh and Nelder, 1983) based on different bootstrapped
samples, and the resulting models were bagged. The bagged models performed at least as
well as single models, so only the bagged results are presented here. In each trial, half of
the examples were held out for test and the other half were used in training. VS-SSVM and
stepwise regression were run on the training data. The training data were further divided
to create a validation set in each fold of the bagging scheme. The final models were applied
to the hold-out test data in order to compute the test Q2. This procedure was repeated 20
times on different training-test splits of the data for both methods.

The synthetic data set was randomly generated with solution pre-specified as follows:
there are 12 independent variables and 1 response variable. The first 5 variables, x1, . . . , x5,
were drawn independently and identically distributed from the standard normal distribu-
tion. The 6th variable was x6 = x1 + 1 which is correlated to x1. The 7th variable was
x7 = x2x3 which relates to both x2 and x3. Five additional standard normally distributed
variables were also generated, and had nothing to do with the dependent y. We call them
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Table 1: A comparison of selected variable subsets by VS-SSVM (left) and stepwise (right)
within 20 trials. The variables x1, x2, x3 were selected in all trials by both methods.
NV1 ∼ NV5 means all 5 noise variables.

Times Variable subsets
6 x4, x5, x1 + 1, NV2

3 x4, x5, x1 + 1, NV1, NV5

3 x5, x1 + 1
2 x4, x5, x1 + 1, x2x3, NV5

1 x4, x5

1 x4, x5, x1 + 1, NV5

1 x5, NV2

1 x5, x1 + 1, NV1, NV5

1 x5, x1 + 1, NV2, NV3, NV5

1 x4, x5, x1 + 1, NV1 ∼ NV5

Times Variable subsets
2 x4, x5, x2x3, NV1, NV5

2 x4, x5, NV1, NV5

2 x4, x5, NV1, NV5

2 x5, x2x3, NV2, NV4, NV5

2 x5, NV1, NV2, NV4, NV5

1 x4, x5, NV2, NV3, NV4

1 x4, x5, NV2, NV4, NV5

1 x4, x5, NV5

1 x4, x5, x2x3, NV4, NV5

1 x4, x5, NV1, NV2, NV4, NV5

1 x5, NV2, NV5

1 x5, NV2, NV3, NV4

1 x5, x2x3

1 x5, x2x3, NV2

1 x5, NV3, NV5

noise variables NV1 to NV5. The y was calculated as y = x1 + 2x2 + 3x3 + x2
4 + ex5 . We

generated 200 examples.

Table 1(left) shows that VS-SSVM consistently selected all the desired variables x1 to
x5, and discarded most of the irrelevant attributes NVi. Since the randomly-generated
attributes NVi can be correlated with the response by chance, they can not always be
eliminated. Thresholding based on the maximum weight rather than the average weight on
the random variables added in Algorithm 1 can eliminate all NV s, but this may also remove
relevant variables. VS-SSVM selected exactly one of x1 and x1 + 1 in each fold since either
could be used to represent the function, but taking the superset over all folds brought both
variables into the selected set. Fortunately, such highly correlated variables can be directly
filtered as in Section 5. For nonlinear SVR, it is better to have many variables than too
few, and correlated variables can be beneficial when noise is presented.

The results for stepwise regression are summarized in Table 1(right). The Splus GLM
modeling was constructed for the Gaussian family. We experimented with the quadratic
form of GLM but it constructed a function of many nuisance variables like NV 2

2 . Therefore
GLM was restricted to linear models. Note that x1 + 1 never appeared in the model, so
stepwise regression seemed to handle linearly-correlated variables better than VS-SSVM.
However, it was likely to pick the nonlinearly-interrelated variable x2x3 and the irrelevant
variables NV s. Moreover it missed the desired variable x4 more times than did VS-SSVM.
The stepwise regression method is computationally expensive for problems with many at-
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Figure 1: On synthetic data; left: VS-SSVM result; right: stepwise regression result.
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Figure 2: On Boston Housing data; left: VS-SSVM result; right: stepwise regression result.

tributes. The Splus GLM modeling could not be applied to the QSAR problems in Section
6 since these problems have fewer sample points than variables.

VS-SSVM generalized better than stepwise regression. Figure 1 depicts the observed
versus the predicted responses of the test examples over all 20 trials on synthetic data for
VS-SSVM and GLM. Each point is represented by a vertical bar with the middle point
representing the mean and the length of the bar drawn according to the standard deviation
of predictions for that point. VS-SSVM obtains a test Q2 of .0332±.0027 and stepwise GLM
achieves a Q2 of .1287± .0065. Recall that Q2 is proportional to the mean squared error so
smaller values are better. The squared correlation coefficient, r2, between the observed and
predicted responses is also provided in the figures, and the larger r2, the better. Figure 2
summarizes the results on the Boston Housing Data, for which all variables were selected
by VS-SSVM and stepwise regression in most of the 20 trials.
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Figure 3: Starplots for left: the synthetic data and right: the Boston Housing data. Dotted and
solid boxes contain non-positive and non-negative weighted variables.

5. Model Visualization

Model visualization can be used to interpret the results of the VS-SSVM. Recall that
even within a single trial, VS-SSVM produces different linear models using different par-
titions/bootstraps of data. The final variable subset is the aggregate of these models.
Examining the distribution of the weights on each variable in different bootstrap models
can yield valuable insights into the relationship between the independent and response vari-
ables. Visualization techniques such as starplots, histograms, and stackplots can enhance
understanding of the role of the variables (Fayyad et al., 2001).

We constructed a starplot for each variable. The starplot consists of a sequence of equi-
angular spokes (radials). Each spoke represents the variable’s weight in a different bootstrap
model. We did 20 bootstraps, so there are 20 spokes. The spokes are ordered ascendingly
by the ||w|| corresponding to each bootstrap. The w for each bootstrap is normalized such
that for each component, |wj | ∈ [0, 1]. A line connecting the spokes gives the starplot its
name. The relative size and shape of starplots allow one to quickly assess relationships
beyond simple mean and variance across the bootstraps.

Figure 3(left) is a representative starplot for the synthetic data. The starplots within
the dashed box represent those variables with negative weights w. The starplots within the
solid box represent variables with positive weights. The remaining variables have weights
that flip signs. The stars are ordered according to the average weight for each variable on
different bootstraps. Variable x3 was the most positively-linearly related to the response,
and x2 the second, which reflects the truth as y = x1 +2x2 +3x3 +x2

4 + ex5 . By only fitting
linear functions, VS-SSVM may not always detect nonlinearly-related variables correctly.
In our experiments, it did detect the nonlinear variables x4 and x5. Note that since x2

4 is
part of the true model, the sign of x4 is negative, showing that the linear model focuses on
correcting the negative values of x4. The NV2 has no clear relation with the response since
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the weights for NV2 flip signs among different models. The strategy of removing variables
with flipping signs can further refine variable selection.

The variables with flipping signs do not always coincide with the variables that are least
correlated with the response. On the synthetic data the correlation coefficients r of the
variables and the response are:

x1 x2 x3 x4 x5 x1 + 1 NV2

0.233 0.498 0.711 -0.077 0.506 0.233 -0.080

Removing all variables with r less than 0.08 in magnitude would also delete x4.
The size and shape of the starplots provide information about the models. The starplots

for variable x1 and x1 +1 are complementary, which means if a bootstrap model selects x1,
it does not include x1 +1. The starplots help spot such complementary behavior in models.
Hence highly correlated variables can be further filtered.

VS-SSVM with model visualization can be valuable even on datasets where variable
selection does not eliminate variables. For example, on the Boston Housing data, VS-
SSVM does not drop any variables. However, the weights produced by VS-SSVM can help
understand the role and the relative importance of the variables in the model. The starplots
based on the entire Boston Housing data are given in Figure 3(right). They are drawn in
the same way as for the synthetic data. For instance, the RM (average number of rooms
per dwelling) is the most positively related to the housing price, which reflects that the
number of rooms is important for determining the housing price and the more rooms the
house has, the higher the price. The INDUS (proportion of non-retail business acres per
town) appears not to affect the housing price significantly in the linear modeling since the
corresponding weights flip signs.

6. Generalization Testing on QSAR Datasets

VS-SSVM was also tested on challenging real-life QSAR data. The QSAR data were cre-
ated in the ongoing NSF-funded Drug Design and Semi-supervised Learning (DDASSL)
project (See http://www.drugmining.com). Leave-one-out cross-validation was performed
for QSAR data. As described in Section 3, variables were selected separately for each left-
out point. We used exactly the same group of examples for both experiments with and
without variable selection.

Table 2: A summary of data and reduced data.
# of Original Preproc. 1st VS 2nd VS

Dataset Obs. # of Vars. # of Vars. # of Vars # of Vars
Aquasol 197 640 525 118 57
Blood/Brain Barrier 62 694 569 64 51
Cancer 46 769 362 73 34
Cholecystokinin 66 626 350 93 69
HIV 64 620 561 53 17
Caco2 27 715 713 79 41

10



Dimensionality Reduction via Sparse Support Vector Machines

Table 3: The experimental results on full datasets and reduced datasets obtained by VS-
SSVM. The 1st VS-SSVM means to run VS-SSVM once on the full data.

Full Data 1st VS-SSVM reduced data
Dataset r2 Q2 Std(Q2) r2 Q2 Std(Q2)
Aquasol 0.918 0.082 0.006 0.929 0.071 0.018
Blood/Brain Barrier 0.693 0.310 0.079 0.719 0.286 0.074
Cancer 0.507 0.500 0.171 0.779 0.223 0.102
Cholecystokinin 0.616 0.404 0.087 0.673 0.332 0.068
HIV 0.551 0.458 0.086 0.652 0.357 0.066
Caco2 0.693 0.326 0.083 0.736 0.300 0.069

Table 2 summarizes the datasets. Variables with a range greater than 4 standard devi-
ations were removed (a common practice in commercial analytical tools used in chemomet-
rics). This very primitive form of variable filtering rarely hurts and usually improves the
results. The resulting numbers of variables are in the 3rd column of Table 2. VS-SSVM
greatly reduced the number of attributes as shown in columns 4 and 5 of Table 2 while
improving generalization (see Table 3). Column 5 (Table 2) gives the results obtained by it-
eratively applying VS-SSVM to the original or reduced data until no variables have weights
that flip signs.

Table 4: The comparison of VS-SSVM by iteratively eliminating “flipped” variables and
the correlation coefficient ranking.

2nd VS-SSVM corr. coef. rank
Dataset r2 Q2 Std(Q2) r2 Q2 Std(Q2)
Aquasol 0.936 0.065 0.010 0.908 0.092 0.006
Blood/Brain Barrier 0.718 0.283 0.076 0.693 0.300 0.017
Cancer 0.836 0.164 0.035 0.820 0.185 0.020
Cholecystokinin 0.643 0.370 0.073 0.650 0.350 0.020
HIV 0.612 0.396 0.087 0.592 0.415 0.025
Caco2 0.725 0.293 0.074 0.672 0.351 0.046

Table 3 gives a comparison of the results based on all attributes versus those selected by
one iteration of VS-SSVM. We compared VS-SSVM to the correlation coefficient ranking
method. The ranking method chose the q variables most correlated to the response. The
number q was chosen to be the same number of variables selected by VS-SSVM. After
the variables were selected, Algorithm 2 was used to construct the final nonlinear model.
Table 4 presents the results for VS-SSVM after iteratively removing variables with flipping
signs versus the results for the correlation coefficient ranking. The squared correlation
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Table 5: The experimental results for the paired t-test.
Dataset mean εf mean εr t-statistic p-value
Aquasol 0.489 0.458 0.469 0.640
Blood/Brain Barrier 0.331 0.305 1.334 0.187
Cancer 0.431 0.292 2.506 0.016
Cholecystokinin 0.728 0.698 0.577 0.566
HIV 0.721 0.609 2.446 0.017
Caco2 0.643 0.636 0.052 0.959

coefficient between the actual and predicted responses (1 is the best) and leave-one-out
Q2 (0 is the best) are reported. The standard deviation of Q2, Std(Q2), is computed as
the standard deviation of the squared errors on the test data scaled by the variance of the
actual response. By cross referencing with Table 3, Table 4 shows that the ranking scheme
by correlation coefficients failed to improve the generalization performance. The significance
of the differences was assessed using a paired t-test. We calculated the mean of the error
ε = |y− ŷ| and performed the paired t-test on the squared errors ε2. The results are shown
in Table 5. The absolute errors for modeling with full data and with variable reduction are
denoted as εf and εr respectively.

From all these tables we conclude that VS-SSVM is effective at reducing the dimension-
ality on QSAR problems. The first phase of VS-SSVM significantly reduced the number
of variables and further reductions were achieved by iteratively feeding QSAR data to VS-
SSVM and removing variables with flipping signs in the linear models. VS-SSVM either
produced significantly better (3 of the 6 problems by Table 5) or no worse generalization
accuracy using dramatically fewer variables. The most significant improvements were ob-
tained on the Cancer and HIV data. Plots of the actual versus predicted responses for
Cancer data in Figure 4 illustrate the improved generalization obtained by VS-SSVM.

7. Conclusions and Discussion

The key components of our variable selection approach are first, exploiting the inherent
selection of variables done by the sparse linear SVM LP(3), second, aggregation of many
sparse models to overcome the unreliability of any single model, and third, visualization or
analysis of bagged models to discover trends. In this research, we only investigated a sparse
SVM regression algorithm, but any sparse modeling process can serve a similar function.
We focused on starplots for model visualization, but other visualization methods can also
be applied and may be more informative. For instance, we found parallel coordinate plots
of variable weights versus bootstraps to be valuable.

VS-SSVM proved to be very effective on problems in drug design. The number of
variables was dramatically reduced while maintaining or even improving the generalization
ability. This method outperforms SVMs trained using all the attributes and the attributes
selected by correlation ranking. Chemists have found model visualization to be useful both
for guiding the modeling process and for interpreting the effects of the descriptors used in the
models (Song et al., 2002). Through model visualization, we discovered the simple rule of
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Figure 4: Left: Cancer full data; right: Cancer with variable selection.

eliminating variables with weights that flip signs in distinct individual models. Automating
this rule proved to be a valuable heuristic for further refining variable selection.

VS-SSVM is not a general methodology suitable for all types of problems. We have
demonstrated its effectiveness on very high-dimensional problems with very little data. On
problems where linear models cannot adequately capture relationships, the method would
fail. Open research areas include a theoretical underpinning of the approach, characteriza-
tion of the domains on which it is effective, and extension to nonlinear interactions.
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Algorithm 1 The Variable Selection Algorithm.
arguments: Sample data X ∈ RM×N ,y ∈ RM

return: Variable subset S
function VS-SSVM(X,y)

Add in L random variables RV s as new descriptors, X ← (X RV s) ∈ RM×(N+L)

t ← 0
repeat

t ← t + 1
Randomly partition data into training (Xtr,ytr) and validation(Xv,yv) sets
Perform model selection over parameters C and ν using pattern search
Solve LP(3) on (Xtr,ytr), obtain a linear model with the weight vector w(t)

until t ≥ T, the maximum number of iterations
Combine weight vectors to obtain w ← Combine(w(t), t = 1, 2, . . . , T ),
set the threshold γ ← average{wN+l, l = 1, · · · , L}, the weights for RV s.
return Variable subset S consisting of variables with w greater

than threshold γ
end

Algorithm 2 The Induction Algorithm.
arguments: Sample X ∈ RM×N ,y ∈ RM

return: SVM regression model f.
function SSVM(X,y)

t ← 0
repeat

t ← t + 1
Randomly partition data into training (Xtr,ytr) and validation (Xv,yv) sets
Perform model selection over parameters C, ν, and σ2

Solve LP(2) over (Xtr,ytr) with best C, ν, and σ2,
obtain the nonlinear model f (t)

until t ≥ T, maximum number of bootstraps

Bag models f (t), f ← 1
T

∑T
t=1 f (t)

return SVM regression model f
end
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