Enabling End-User Datawarehouse Mining
Contract No. IST-1999-11993
Deliverable No. D19

Problem Modeling Deliverable D19

Ronnie Bathoorn'2, Nico Brandt!, Marc de Haas', and Olaf Rem!

1 Perot Systems

Dept. Knowledge Engineering
NL-3821 AE, Netherlands
{Nico.Brandt, Marc.DeHaas, Olaf.Rem}@ps.net

2 University of Groningen
Dept. of Computer Science
D-44221 Groningen, Netherlands
{r.w.bathoorn}@wing.rug.nl

June 21, 2001

Contents

1 Introduction
1.1 Relation to other work packages.

2 Domain Visualisation
2.1 Graphical Representation
2.2 Data mining extensions for UML class diagrams
2.3 Data mining extensions for UML interaction diagrams
2.4 Code generation from a visual language
2.5 Domain Knowledge Elements

3 Using visual language elements in a case
3.1 Constructing the domain model
3.2 Capturing data mining process steps

4 Conclusion and Outlook

13
13
18

20

Abstract

Domain understanding and description of activities are still a challenge in
the context of the data mining process. This report presents a language that
can be used to identify, organise and model the knowledge about the data
and the data mining process and supports its reuse for similar situations.

Chapter 1

Introduction

A data-mining project starts with understanding the project objectives and
requirements from a business perspective, and then converting this knowl-
edge into a data mining problem definition. This task requires in depth
knowledge of the business domain. A graphical representation of the do-
main enables a domain expert and a data-mining expert to get a better
overview and gives her/him a basis for communication. This work package
is named problem modeling because that is the essence of what is done while
modeling the domain in which we want to find hidden patterns and rela-
tions. This report describes a language that can be used to define domain
knowledge and presents, as example, a high level case that can be reused as
design pattern for similar learning problem!. It is based on OMG’s? Unified
Modeling Language (UML). The UML represents a collection of best prac-
tices that have proven successful in the modeling of complex systems. This
workpackage introduces extensions on UML that meet the specific needs for
specification and visualisation of the data mining process.

1.1 Relation to other work packages

This work package builds further on the results of workpackage 5, in which
classes of domain knowledge have been defined. Results of this workpackage
will be used in the workpackages 12 and 16 in which libraries for a graphical
user interface are build and in workpackage 10 for specifying prior data
mining projects.

LA case base of prior data mining projects will be produced in WP10

2The Object Management Group (OMG) is an open membership, not-for-profit consor-
tium that produces and maintains computer industry specifications for interoperable en-
terprise applications. Their best-known specifications include CORBA, OMG IDL, 1IOP,
UML, the MOF, CWM and Domain Facilities in industries such as healthcare, manufac-
turing. Fore more information visit their website at http://www.omg.org/

Chapter 2

Domain Visualisation

Visualisation is about creating order in information chaos. By creating
visualisations of tables, relations and dependencies between element in your
data you get a much better view of the problem. With a little help from
the GUI you can also build a data-mining set-up without having to know
everything there is to know about data mining and databases. If you have
a graphical representation in which it is possible to visualise your database
model and any domain knowledge it would be possible to create a program
which domain experts can use to add their domain knowledge to a picture
of a database model. Then the data mining expert can use this domain
knowledge in the data mining process right from the data model instead
of having to handcode it into lots of configuration files for different mining
engines.

We use the UML with additional extensions for specifying domain knowl-
edge. The UML has grown into the de facto visual language for specifying,
constructing and documenting the artefacts of information systems and is
becoming more and more popular for modeling business processes. For rea-
sons of acceptance it is important to comply with these standards. Further-
more, the object oriented methodology provides very useful features that
enable compact and readable specifications.

A data mining process is more than domain analysis. In the end we
will also need to execute pre-processing actions and run learning algorithms
by using databases and programs. Programs and databases still require
other languages. We need glue between these languages, a glue that makes
a straightforward transformation from specification from domain analysis
to implementation/execution possible!. For the time being we can take
the very pragmatic approach by allowing the user to only use graphical
representations that are high level or that have a direct translation to a

LAt this point we have to notice that the UML has no formal semantics. This is a
potential danger, since we don’t have a sound axiomatization. This is a challenge that
provides a lot of opportunities for further investigation (see [4]), but that is not in the
scope of this workpackage or even this project.

Mining Mart IST-1999-11993, Deliverable No. D19 3

fixed set of pre-defined operators, like those that are described in WP8 and
WP9.

2.1 Graphical Representation

In the context of the data mining process the UML class diagrams can be
used to give a static representation of the concepts we want to use in the
learning process and the relation between these concepts. The standard vi-
sual UML elements class, association, aggregation, composition, inheritance
and dependency will be used with their standard interpretation?. We intro-
duce new stereotypes <<base>>, <<aggregate>>, <<constructs>> and
<< summarise>> for data mining specific constructions. We also add some
visual elements for expressing aggregation functions like sum, mazimum,
minimum, average and time frame on properties.

For modeling dynamic elements of the data mining process, like se-
quences of operations and iterations, we use UML sequence diagrams. For
a better connection with the data mining process we introduce new visual
elements for data mining goal, analysis paradigm and domain model. These
sequence diagrams can represent very detailed sequences of operations, but
could also be more high level. These high level diagrams can be seen as a
case description and can be reused for a similar data mining goal.

In the next sections we will discuss the visual elements and their relation
to the domain knowledge elements from WP5.

2.2 Data mining extensions for UML class dia-
grams

e Class and <<base>>
For the visualisation you need concepts which are collections of data
that represent a concept in the domain of your data. These concepts
can be in different levels of abstraction with at the base tables in
a relational-database or objects in an OO-database. Concepts are
visualised as an UML class with a name and a couple of attributes
that represent the data that is contained in the concept. A concept
that is a direct representation of a stored table or object will have the
stereotype <<base>>. An example is shown in figure 2.1. In this way
a clear distinction can be made between concepts that do have a direct
representation and concepts that do not. From these base concepts
we can build higher level concepts or, alternatively, we can map a
high level concept to one or more base concepts. Figure 2.2 shows

At http://www.omg.org/technology /uml/index.htm the UML specification can be
downloaded.

Mining Mart IST-1999-11993, Deliverable No. D19 4

an example of a data model of molecules with the concepts Atom,
Model and Bond. Furthermore it shows how the concept OH-Group
can be constructed from this data model with the help of dependency
relations and object diagrams. The objects are elements from the
concepts Atom and Bond that, in a given structure, form the concept

OH-Group.
<<base>> ProfitablePerson
Person
— -loan_amount
-c!lmt_lq -loan_duration
-district_id -age
-age s
-sex
Figure 2.1: Concepts
Atom atom_O:Atom
-model_id:int - _
-atom_id:int element="0'
-element: String
-typeiint
-charge:float
Model +arget(isMutagen) < - — — = 1 — - atom_H:Atom
. OHGroup
-model_id:int
-isMutagen:boolean element="h’
-lumo:float
-logp:float
Bond
Haget(isMutagen) | <— _mogel_ictint
-bond_id:int bond_OH:Bond
-atoml:int
-atom2:int < - 4
-typesint type=1
+target(isMutagen)

Figure 2.2: Structural model of an OH group

e Association

Between our concepts we can have relations. Visually a relation is
represented by an association (see figure 2.3). These associations have
a multiplicity for both of the concepts involved and can have a reading
direction. This reading direction is necessary in the data mining pro-
cess to determine which data is accessible from where. An association

between two concepts means that the data in those two concepts is
somehow related.

e Aggregation & Composition
Aggregation and composition are two special kinds of relations. If

Mining Mart IST-1999-11993, Deliverable No. D19 5

Client Transaction
execute

Figure 2.3: Association

there is an aggregation relation between concepts A & B it means that
one instance of concept A can be related to a number of instances of
concept B. In a composition relation concept A is build up of elements
from concept B. This means that removing an element from A also
removes all related elements. Aggregation is visualised by a diamond
shaped box at the end of a relation and composition with a diamond
shaped box filled with black (see figure 2.4). Notice that we also want
to be able to specify a reading direction for these relations.

Parent Child
parent_of

0.2 0.*

Book Page
belongs to

Figure 2.4: Aggregation (top) and composition (bottom)

o <<summarise>> and <<aggregate>>

Summarisation is an important method in the data mining process
where you have a concept that represents a summary of of groups in
your data. For this summarisation you can use operations like aver-
age, minimum, mazimum, sum and predominant. These operations are
represented by small boxes behind the attributes (see figure 2.5). The
attribute over which you are grouping the data gets a diamond behind
it. The summarisation is represented by a dependency arrow with the
stereotype <<summarise>>. The class representing the summarised
concept has the stereotype <<aggregate>>. Notice that a concept
with stereotype <<aggregate>> can have <<summarise>> depen-
dencies with more than one concept.

Mining Mart IST-1999-11993, Deliverable No. D19

Client Transaction

date
amount
1 0. balance

[l

I

|

| <<summarize>>
I

I

I

y

<<aggregate>>
TransSummary

date week
amount EHEIE
0.% balance HEIE

Figure 2.5: Summarisation

e <<construct>>

New features can be constructed by taking data from different concepts
and use it to compute a new attribute in a concept. The new feature
is visualised by a circle attached to the concept with dependencies to

all the tables that contain data that was used to compute it (see figure
2.6).

Client Transaction
date
amount
1 0. balance
b
1 | |
<<construct>> 1 _
\l/ 1 <<summarize>>
|
numberOfQ |
i
<<eggregate>>
TransSummary

date week

amount EHEIE

0.* balance HEIE
. numberOf

Figure 2.6: Feature construction

Mining Mart IST-1999-11993, Deliverable No. D19 7

e Inheritance

Concepts can be split up in a couple of sub concepts using the UML
inheritance representation. In this way, for example, Clients could
be divided in Profitable Clients and Nonprofitable Clients (see figure
2.7). This classification can be based on one or more attributes, but
it could just as well be based on a complex model. For example the
classification of Profitable Clients could be based on a model that has
been build to compute the profit the bank has from a client based on
a learning operator, like a decision tree or a neural network. In the
case of classification based on the client having a credit card or not it
could just be the attribute hasCreditCard in the base concept Client
being 7Y’ if the client has a credit card.

Person

-client_id
~district_id
-age

-sex

GoodClient BadClient

Figure 2.7: Inheritance

2.3 Data mining extensions for UML interaction
diagrams

We use an interaction diagram to visualise the dynamic part of the data-
mining process. In this diagram we show the sequence of the actions that
need to take place to reach the mining goal. For this interaction diagram
we define the following additional elements:

e Data mining Goal
This element specifies what you want the data-mining environment to
discover. This could be a function that predicts a numerical value or
a decision tree for a nominal value. It also contains some specification
as to when this answer is satisfying.

e Analysis Paradigm
The class that the data-mining task belongs to, for example classi-
fication, regression or clustering is specified by this element. This

Mining Mart IST-1999-11993, Deliverable No. D19 8

narrows down the number of algorithms the data mining environment
could choose from to find its solution.

e Domain Model
This element represents the whole class diagram in which information
about the structure of the concepts is described and where the link
between these entities in your model and their real world equivalents
is specified.

A

data mining goal analysis paradigm domain model
Figure 2.8: Interaction Diagram extensions

With these extensions we can now build interaction diagrams that rep-
resent a data mining process for a certain mining task as seen in figure 2.9.
In this interaction diagram we can make a coupling between concepts in our
domain model and the tasks which should be performed on them. Thus
creating a recipe for a data-mining problem. This interaction diagram can
be used as a design pattern for a data mining problem. That is, we take
an existing interaction diagram and map the concepts used in it to an other
database model. In this way we get a new mapping between the data and
the concepts in the sequence diagram.

A data mining process can be split up into multiple diagrams with dif-
ferent levels of detail. There can be a high level description of our data
mining process showing only the high level actions, for example, a diagram
as in figure 2.10 comparable to the data mining process described in the
CRISP-DM model. A number of diagrams with low level descriptions can
specify, in detail, sequences of actions of the data mining process.

Mining Mart IST-1999-11993, Deliverable No. D19

% p % ‘ :Client ‘ ‘:Transaction‘ ‘:SumTrans

Define domain , .
model i i
i i
Create dorain model N
\ Select data »
SM’ Build summarized
transaction conce pt
_—
Select analysis
paradigm
Set Target
Run mining =
task 2
»
Show result
T
i
i
i

Figure 2.9: Interaction Diagram

Data mining goal Dormain model Analysis paradigm

Business Understanding

; |
provides goal Al

Data Understanding

/ pravides model i
il

D ata Preparation
can adapt model

[] Modeling
defines paradigm

-

Evaluation
provides user results

A

Deployment
provides user benefits

A

Figure 2.10: High level Interaction Diagram

Mining Mart IST-1999-11993, Deliverable No. D19 10

2.4 Code generation from a visual language

Modeling the domain is only beneficial if we can use the domain specification
to enhance the data mining process. In other words we want to produce some
sort of code from class and interaction diagrams. Later on we can use this
code to pre-process our data and start our data-mining algorithm. Before
we can generate code from our diagrams we first need to determine what
sort of code we want to produce. Do we only want to a create code sceleton®
that defines the structure and the sequence of the data mining task? In that
case the data mining expert has to provide the implementation. Another
option is to generate execution ready code (SQL, stored procedures or calls
to some external program) for that part of the specification that is complete
and unambigious.

Figure 2.11 shows an example of the SQL generated from a Person con-
cept that is summarised into age categories of ten years. For these age
categories we compute the number of men and women in them and statis-
tics about their income.

Person <<aggregate>>
Person
age i
= | STUmmanze® | age K310years
income Sex
income L1HEFE]

SELECT FLOOR(age/10), SUM(IF(sex=’M’,1,0)) maleCOUNT,
SUM(IF(sex=’F’,1,0)) femaleCOUNT,
MIN(income) incomeMIN, MAX(income) incomeMAX,
AVG(income) incomeAVG, SUM(income) incomeSUM

FROM Person

GROUP BY FLOOR(age/10)

Figure 2.11: Summarisation to age categories and the equivalent SQL code

An example of feature construction is shown in figure 2.12 where the age
of a Person concept is computed from the attribute birthday and the Oracle
variable SYSDATE that holds the current date. For the construction of
new features we could also use the operators from the M4-model. The only
thing we need to do then is provide the relations to the concepts and fields
that are needed to compute the operation and deliver its result in the new
feature.

3This is what current UML modeling tools like Rational Rose, Telelogic tau UML suite
and TogetherSoft Control Centre can do.

Mining Mart IST-1999-11993, Deliverable No. D19 11

<<bhase>> Person

Person

name

name age

birthdate <<construct>> Sex

§ex R income

ncome

age

SELECT name, FLOOR(MONTHS_BETWEEN(SYSDATE-birthdate)/12) age, sex,
city, income
FROM Person

Figure 2.12: Construction of the age field and the equivalent SQL code

2.5 Domain Knowledge Elements

The visual elements from the previous section have a relation to the Domain
Knowledge Elements from WP5.

e Data Collection History
This is part of the <<base>> concepts which represent our stored
data.

e Data Model
These are models about the data used in the data-mining process and
as such they are represented by all our visual elements. Where all the
<<base>> concepts together are the database model. By hiding all
the less important concepts we can get representations of the business,
conceptual model and analysis model.

e Causal Model
This is a view of the domain model showing the connections between
the <<base>> concepts and the high level concepts on which you
want to mine.

e Design Patterns
A high level case build up of the most abstract concepts can be used as
a design pattern for which you now only need to make the connections
to your stored data.

e Analysis Paradigm
The Analysis Paradigm can be found in the interaction diagram.

e Goal Specification
The Mining Goal can be found in the interaction diagram.

Mining Mart IST-1999-11993, Deliverable No. D19 12

e Background Knowledge
Things like the best time frame to aggregate over or which aggregates
have the most meaning in certain situations are all background in-
formation. Also known features and from which concepts they can
be computed belong to this group. Associations and dependancies
between concepts or stereotypes represent them.

e Integrity Constraints
Integrity Constraints are contained in the concepts where they provide
information over constraints on the attributes in this concept.

Chapter 3

Using visual language
elements 1n a case

In this chapter we will focus on how the previously introduced language
elements can be used in a case and how parts of this case can be reused for
other cases. First we focus on the construction of the domain model and
then we will look at the data mining process steps.

3.1 Constructing the domain model

The case we will be looking at here is credit risk assessment!. If a client of
a bank requests a loan, the bank will want to make an estimate of the risk
that the client doesn’t repay the loan.

We will use a top down approach, meaning that first the concepts of
the domain will be introduced and later on these concepts will be tied to
their database representations. It should be mentioned here that the reverse
process, a bottom up approach, is also possible. In that case base concepts
would first be imported from a database and then the conceptual model
would be constructed from these base concepts.

In order not to make this case too complex we will consider a simplified
bank for which the following statements hold:

e clients of the bank can have one or more accounts;
e by requesting a transaction an account can be credited or debited;

e a client may have one or more permanent orders per account for re-
curring payments;

!The data model introduced here is based on the financial dataset that has been made
available for the PKDD1999 and PKDD2000 conferences.

13

Mining Mart IST-1999-11993, Deliverable No. D19 14

e a client may request one or more loans per account;

e per account two credit cards may be issued;

Loan Credit Card
0.2| -
1 1
Transaction Account Client
i 1 i 1
1
COrder

Figure 3.1: Conceptual model

Now a first version of a conceptual model can be constructed for this
domain (see figure 3.1). The figure shows the concepts Client, Account,
Transaction, Loan, Order and Credit Card. Furthermore the relationships
between the concepts are shown.

The bank also wants to be able to see which clients form a household.
For this the concept Household is added to the model using the aggregation
symbol. Further the bank is interested how demographic aspects as aver-
age income, unemployment and number of crimes per year influence client
behaviour. This demographic data per district is obtained from an external
company. Then as a last addition the bank would like summarised informa-
tion about transactions per account per month. This includes information
like the minimum, maximum and average balance and the number of trans-
actions.

An adapted version of the conceptual model is shown in figure 3.2. Only
the attributes have been shown that are relevant at this point.

The bank wants to be able to distinguish good clients from bad clients.
In the respect of loans a Good Client is a client that has paid back (or still is
paying back) his loan without any problems, whereas a Bad Client is a client
that did have problems paying back his loan. This can be visualised by con-
structing a new attribute in the Client concept, which is called Loan_OK and

Mining Mart IST-1999-11993, Deliverable No. D19

15

Loan Credit Card
1 1
Crder Account Client
* 1 account_id * 1
1
1 *
1
» Household
Transaction Transsum
trans_id account_id K3
account_id date KCt month
dlate | ._s=summarize=> | &mount L]
amount balance =] 1
balance numperQf 3
==construct=> =
= I i Diistrict
numberOf avg_income

unemployment
crimes_per_vear

Figure 3.2: Updated conceptual model

Loan

==construct=»
Loan_OK

Client
Loan_OK

Target

Good Client Bad Client

Figure 3.3: Classification of Client concept in Good and Bad Clients

that is derived from information from the Loan concept. Figure 3.3 shows
the part of the conceptual model that has been updated for this. Note that

Mining Mart IST-1999-11993, Deliverable No. D19 16

we don’t have to show the whole model every time. It is allowed to split
UML diagrams and focus on the part that is relevant at a certain point.
With these steps the conceptual model has been completed, a goal has been
set and an analysis paradigm has been defined.

z<zhgse=>>
<<base== Credit Card
Order

disp_id
account_id %
=<hase=> 1 ==hase== =<hase=> =<hase=>
Transaction Account Disposition Client
account_id " 1 | account_id disp_id client_id

client_id
1 account_id

<<hase==
<<hase=> Diistrict
Loan
account_id "

Figure 3.4: Database model

We will now look at the step of relating the concepts from the conceptual
model to their representations (objects or tables) in a database. In this case
the bank has a relational database and the concepts are stored as tables. It
contains the concepts that are shown in figure 3.1. The demographic data
is read from a different database. The resulting database model is shown in
figure 3.4.

Note that the database model contains a table Disposition that is not
part of the conceptual model. This table states who is allowed to dispose
over an account. Conceptually, however, this table is not needed. Another
point to notice is that the District table does not have any relationships yet
with other tables.

The concepts Loan, Transaction, Order and District can be related directly
to their base representations, because they can be used directly without any
transformation.

Mining Mart IST-1999-11993, Deliverable No. D19 17

The following steps have to be taken in order to connect the remaining
concepts to the base concepts:

e create the Account and Credit Card concepts using their base repre-
sentations and the Disposition table;

e construct the Household concept from the Client table;

e connect the Household concept and District table by a primary - for-
eign key relationship;

Account Credt Card
account_id 1 0..2| account_id
client_id
client_id év‘ é account_id
F O v,
; - ; o
==constructs=+ <<con5truct;>‘-.\ J,*JCCCOHSUU(:D) ? “g=construct>>
<<hase== <<hase== <<hasg==
Account Disposition Credit Card
account_id disp_id disp_id
- client_id G
account_id

Figure 3.5: Creation of the Account and Credit Card concepts from their
base representations

Figure 3.5 shows how the concepts Credit Card and Account can be
formed from their base representations.

The Household concept can be created from the Client table. Clients
who live on the same address will be assumed to share the same household.
Let us assume that the address information is moved from the Clients table
to the Household concept and that the postal code in the address can be
used as a primary - foreign key with the District table. In this way the
relationship between Household and District can easily be created. To make
this example not too long we will skip the diagrams for creating the House-
hold concept and connecting the Household concept to the District table.
The diagrams that are needed for this are, however, comparable to figure
3.5.

With these steps the construction of the domain model has been completed.

It has been shown in this section how the domain model can be constructed
and visualised. First the basic concepts in the domain have been defined.

Mining Mart IST-1999-11993, Deliverable No. D19 18

Then some more concepts have been added. After that the target table has
been chosen and a classification goal has been set. Finally it was shown how
base representations can be connected to the previously defined concepts.

3.2 Capturing data mining process steps

Data mining process steps can be described using UML interaction diagrams
and the extensions introduced earlier. These steps can be looked at from
different detail levels. The high level steps that have been done up till now,
can be visualised in an interaction diagram as shown in figure 3.6.

T 2

Data mining goal Analysis paradigm Domain model

Define basic
conceptual model = |
S

Refine conceptual E:I
rmodel i

- Set Target D
/ Setgoal: Table: Client

Sredibrise analy'slf Attribute: Loan_OK 3
|

v

Select analysis
paradigm:
Classification

[] Import database §

maodel £l

Relate base |_,_|
representations |
to concepts

Figure 3.6: High level view of mining process steps

One can also use an interaction diagram for a more detailed view. A
more detailed view of the step 'refine conceptual model’ is shown in figure
3.7. Tt shows the involved concepts and actions.

If we would want to do cross-validation on the created domain model
in our example, this could be depicted as shown in figure 3.8. Data from
the Transaction concept is split into two datasets. The first dataset is used
for building a knowledge model and the second one is used to estimate the
validity and accuracy of the knowledge model.

Mining Mart IST-1999-11993, Deliverable No. D19

Ciomain model

Refine canceptual '
model i

<<creater>

k4

<<creater>

:Household

“<createx>

¥

:District

¥

‘TransSum

Figure 3.7: Lower level view of one mining process step

Diomain model

Select sample |

Add condition
trans_id = 1000

:Transaction

J

i
Build knowledge madel |

|

Select sample i

Change condition:
trans_id 2 1000

¥

]

|
Test knowledge mode] |

)

Figure 3.8: Cross-validation step

The three previously shown figures illustrate how a data mining process

19

can be visualised. As stated before: high level diagrams make a coupling
between concepts in the domain model and the tasks that should be per-
formed on them. Therefore figures 3.6 and 3.8 together can be seen as a
design pattern for credit risk assessment using cross-validation.

Chapter 4

Conclusion and Outlook

In this workpackage we have introduced a visual language that can be used
to capture domain knowledge and define the data mining process itself. High
level sequence diagrams capturing a data mining process can be reused in
other data mining problems. Thus they can form a design pattern for han-
dling certain types of data mining problems.

Visualizing domain knowledge and the data mining process will make com-
munication easier between a data mining expert and a domain expert in
a data mining project. The domain expert can focus his attention on the
conceptual model of the domain and the data mining expert can use this
model to map the concepts to the base concepts. Thus preprocessing steps
can be defined in a visual way that helps the data mining expert to keep
the overview of the data mining process. Some of the diagrams that define
these preprocessing steps could be transformed directly into a formal lan-
guage like SQL. Because UML is not a formal language, the application that
provides the modeling functionality should, however, help the user to draw
only diagrams that can be translated to a formal language.

A natural extension to the new techniques in data mining is mining in a
distributed environment. Practical experience has shown that rich sources
of information are provided by an increasingly large number of distributed
and heterogeneous databases. We think that with the use of the UML ex-
tension that we have proposed in this workpackage, distributed database
environments can be modeled and used for data mining. Concepts, like
consumer and product type for example, can be specified on a global level.
Mappings from these concepts can be specified to the different databases us-
ing <<summerize>> and <<construct>> dependancies, associations and
inheritance. This task can be assisted by using techniques like attribute
equivalence theory [5], quantitative measure of relevance [2], text mining,
ontology learning and grammar induction [1].

20

Bibliography

[1]

Adriaans P.W., Trautwein M.H., Vervoort M.R., Towards high speed
grammar induction on large text corpora, in Proceedings of SOFSEM?2
2000, 2000.

Huan Liu, Hongjun Lu, JunYao, Towards Multidatabase Mining: Iden-
tifying Relevant Databases, IEEE Transactions on knowledge and Data
Engeneering, IEEECS Log Number 105570, 2000

Date C.J., Darwen H., Foundation for Future Database Systems, The
Third Manifesto, second edition, 2000, Addison-Wesley.

Haas E. de, Logics for information systems, ILLC Dissertation Series
2001-03, 2001

Haihong Dai, An Object Oriented Approach to Schema Integration and
Data Mining in multiple databases, Proceedings of the Technology of
Object-Oriented Langueges and Systems-Tools 24, 1998.

Knobbe A., Schipper A., Brockhausen P., Domain Knowledge and Data
Mining Process Decisions, MiningMart Deliverable D5 IST research
project, 2000.

Morisio M., Travassos G.H., Stark M.E., Extending UML to Support
Domain Analysis, The fifteenth IEEE International Conference on Au-
tomated Software Engeneering, 2000.

Arno Knobbe & Arno Siebes & Hendrik Blockeel & Danil van der
Wallen, Multi-Relational Data Mining, using UML for ILP, In Pro-
ceedings of PKDD 2000, 2000.

Knobbe, A.J., Blockeel, H., Siebes, A., Van der Wallen, D.M.G. Multi-
Relational Data Mining, In Proceedings of Benelearn 99, 1999.

Quinan J.R., C4.5 Programs for Machine Learning, San Mateo: Morgan
Kaufmann, 1993.

21

