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Abstract

Geometric physically-based simulation systems for milling processes can provide the possibility to analyze and predict characteristically behaviors

of a certain process. The parametrization of the simulation models is a crucial task when optimizing the quality of the simulation prediction. In

order to determine tool load, process forces have to be calculated. Thus, the parametrization of the cutting force model that is mainly subject to

the processed material and tool characteristics has a versatile impact on the simulation results. However, the tool state is expected to be constant

within common milling simulations and therefore tool state variations like several tool wear effects are not represented. The tool state is defined

through the geometric constitution of the cutting edges of the tool. This paper aims to analyze tool wear effects by re-calibrating the parameter

values of the force model within the simulation system. To validate the simulation system, several milling experiments were conducted. In order

to induce a fast change of the tool state within the process and to provoke high tool loads, the powder metallurgic high speed steel 1.3344 was

machined. Advanced surrogate modeling techniques from the design and analysis of computer experiments (DACE) were applied to analyze the

contribution of the force model parameter values. The fitting of the surrogate model is performed by means of sequential design of experiments.

This allows the retrieval of sets of fitting parameter combinations for each tool state with a relatively small amount of simulation runs compared

to genetic algorithms or gradients based methods. The surrogate models are exploited to analyze the behavior of the force model parameter values

over the varying tool states. Approaches for further research are recommended and potential practical applications are discussed.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

In industrial applications, the layout and optimization of ma-

chining processes is often time consuming and costly. Simu-

lation systems allow to predict important process characteris-

tics, such as forces and dynamic effects, for a given process

layout. As a consequence, simulations can reduce the number

of real experiments and therefore time and costs. Altintas et

al. provide a comprehensive survey of recent capabilities of

machining process simulations [1]. In this paper, a geometric

physically-based simulation system, developed at the Institute

of Machining Technology (ISF), is used. This tool enables the

prediction of the material removal process, the resulting cut-

ting forces and resulting effects like chatter vibrations [2]. A

description of the system is given in section 2.

A main requirement for the simulation system is an accurate

calculation of the process forces. To achieve this, an empirical

force model is used [3], whose parameters have to be calibrated

by physical experiments. This is usually done a priori to the ac-

tual milling process using the same tool and material as in the

process. However, tool wear during the milling process causes

a change of the process forces. Research of tool wear effects is

already known in literature, e.g., for simulation systems based

on the finite element method (FEM) [4,5]. Further investiga-

tions were made regarding an extension of an analytical cutting

force model to represent tool wear and to predict the remain-

ing tool life [6]. The calibration of the force model was done

through a genetic algorithm and the idea of an online adaptive

control system using a time series analysis was proposed. The

modeling of tool wear using regression models or artificial neu-

ronal networks is also possible [7]. Kolar et al. developed a

force model, which is highly dependand on tool wear effects

and the basic tool geometry [8]. The averaged flank wear value

was measured in advance in order to integrate the characteris-

tics of tool wear into the force model. To provoke wear effects,

C45 carbon steel was machined using a coated carbide tool.

In geometric physically-based simulation systems, however,

a geometric representation of the tool wear within the simula-
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tion system would significantly increase the computation time.

In addition, the measurement of tool wear for each regarded tool

state is inefficient and only represents the tool wear effects for

the discrete measured states. Therefore, this paper discusses the

implicit modeling of the tool wear effects by adapting the cali-

bration parameters. For this purpose, simulated forces are fitted

to the measured forces of different states of tool wear over the

time and the resulting information about the calibration param-

eters is compared.

Since the evaluation of simulation runs with different cali-

bration parameter values can be time consuming, mathemati-

cal or statical methods are generally utilized to determine fit-

ting calibration parameter values from all possible calibration

parameter combinations, the so called parameter space. In ex-

isting studies, the best solution for these calibration parameter

values is found straightforward by optimization algorithms [9–

12]. This procedure is appropriate when optimizing isolated

single problems. However, regarding the force calibration task,

it will be shown that there are several parameter value com-

binations which lead to equally good results. The existence

of entire regions of optimal solutions makes the comparison

of single points from the parameter space over different tool

wear states therefore inappropriate. Moreover, for a model-

based interpolation of the tool wear states, the information from

all calibration parameter combinations is required. Since opti-

mizers are not able to provide more than single (best) points

from this parameter space, they are not sufficient to tackle this

task. Models from the Design and Analysis of Computer Ex-

periments (DACE), however, can be used to gather information

about the whole space of force coefficients based on a small

set of simulation experiments. Thus, it is possible to analyze

and visualize the progression of suitable calibration parameter

values with increasing tool wear.

However, before the information of these models can be ex-

ploited, their approximation and prediction quality has to be

validated to guarantee a sufficient fit over the considered pa-

rameter space. Therefore, a cross validation of the models is

performed. To finally prove that the regions of good parameter

values found by the models are actually optima, they will be

compared to the solution found by an established optimization

algorithm. The surrogate models and the calibration procedure

are presented in section 3. Section 4 gives a brief overview of

the experiments. The model validation and the results of the

comparison of the calibration parameter values is presented in

section 5. The paper ends with a conclusion in section 6, which

also discusses potential practical applications and how the mod-

els can be used to interpolate the optimum force coefficients

between the tool states.

2. Simulation system

Using a geometric physically-based milling simulation sys-

tem, the material removal process and resulting effects, e.g.,

tool vibrations and heat input, can be predicted. The geomet-

ric model of the used simulation system is based on the Con-

structive Solid Geometry technique (CSG) [13] to model the

geometry of the tool and the workpiece. To achieve a repre-

sentative tool model, basic shapes like spheres, cylinders and

tori can be combined. As initial workpiece model for the stock

material typically a cuboid is used [14]. The calculation of the

process forces is based on the undeformed chip thickness of the

milling process at discrete points in time. To represent the irreg-

ular shape of the undeformed chip, the cutting edge of the tool

model is approximated by rays, whose origin lie on the center

axis of the tool model (Fig. 1). These rays are distributed along

the cutting edge. Furthermore, a time-related discretization is

used to represent the envelope of the tool and the feed move-

ments. The sum of the lengths of the ray intersections with

the workpiece model represents the undeformed chip thickness.

The computed thickness and the width of the chip can be fed

into an appropriate force model to predict the process forces.

This force model [3] is described by the equation

Fi = b · ki · d0 ·
(

d
d0

)1−mi
, i ∈ {c, n, t}, (1)

where d is the thickness and b is the width of the undeformed

chip, which results from the Euclidean distance between the

first and the last endpoint of the intersected rays. Furthermore,

d0 = 1 mm and Fc, Fn, Ft are the resulting forces in the cutting,

normal and tangential direction.

3. Empirical surrogate modeling

3.1. DACE models and correlation functions

The functional relationship between input and output pa-

rameters of complex nonlinear systems can be approximated

by empirical surrogate models. The most popular choice of

a surrogate model is a polynomial regression model [16]. In

this modeling approach, a set of N observations with d input

variables X = (x1, . . . , xd) is generated by methods of design

of experiments. The evaluation of the design on the complex

system leads to N observation pairs (X(i), y(i)), i = 1, . . . ,N
of input parameters and corresponding response values. Poly-

nomial regression models assume the functional relationship

y(X) = f (X)+ε, where the vector of residuals ε is assumed to be

a random noise variable with a mean of zero and an unknown

standard deviation σ. The function f represents a predefined

functional term of the input parameters. Polynomial regression

models are efficient, if the actual underlying problem function

is close to linear or quadratic [16]. However, if the investigated

system is highly nonlinear, this model tends to a poor fit or lo-

cal overfitting [17]. DACE models [18], also called Kriging or

Gaussian process models, enhance the polynomial regression

Fig. 1: The undeformed chip results from an intersection operation with the

current workpiece and tool model. The undeformed chip thickness is approxi-

mated using rays, which originates from the axis of the tool model [15].



85 Stefan Hess et al.  /  Procedia CIRP   55  ( 2016 )  83 – 88 

model by

y(X) = f (X) + Z(X), (2)

where f (X) is usually a constant term β0 or a first order poly-

nomial with a (known) linear trend. The term Z(X) is a

Gaussian process with mean E(Z(X)) = 0 and a covariance

function cov(Z(X(i)), Z(X( j))) = σR(Z(X(i)), Z(X( j))), where

R(Z(X(i)), Z(X( j))) is a correlation function, or kernel, which has

to be chosen in advance. In this paper, three popular approaches

of correlation functions will be applied and compared to find the

best possible fit of the surrogate model. The considered corre-

lation functions are the Gaussian correlation function [19]

R
(
X(i), X( j),Θ j

)
= exp

⎛⎜⎜⎜⎜⎜⎝− 1
2

∑d
j=1

( ∣∣∣∣x(i)
j −x(i)

j

∣∣∣∣
Θ j

)2⎞⎟⎟⎟⎟⎟⎠ , (3)

the Matérn correlation function [19]

R
(
X(i), X( j),Θ j

)
=

⎛⎜⎜⎜⎜⎜⎝1 + √5

∣∣∣∣x(i)
j −x(i)

j

∣∣∣∣
Θ j
+ 5

3

( ∣∣∣∣x(i)
j −x(i)

j

∣∣∣∣
Θ j

)2⎞⎟⎟⎟⎟⎟⎠
· exp

(
−√5

∑d
j=1

∣∣∣∣x(i)
j −x(i)

j

∣∣∣∣
Θ j

) (4)

and the power-exponential correlation function [19]

R
(
X(i), X( j),Θ j, p j

)
= exp

(
−∑d

j=1

( ∣∣∣∣x(i)
j −x(i)

j

∣∣∣∣
Θ j

)p j)
. (5)

DACE models have proven to show a very good fit for the ap-

proximation of computer experiments and have therefore been

used in several applications considering simulations of mechan-

ical engineering problems [20–22].

3.2. Formalization

To make use of surrogate models, the problem has to be for-

malized by defining the input parameters and responses. The

actual force calculation within the simulation system is con-

ducted using the force model, which is defined by equation 1.

The set of coefficients

P = (kc,mc, kn,mn, kt,mt) (6)

will represent the input parameters. For given values of these

coefficients, the process forces can be simulated. For a compar-

ison with measured forces, a coordinate transformation from

the rotating tool system (c, n, t) to the fixed machine system (x,

y, z) of the simulated forces can be done. Using equation 1 and

the transformation based on the position of the tool at discrete

time step ti, the corresponding simulated force components can

be described by

Fsim
j

(P; ti) , j = x, y, z. (7)

The measured forces were acquired using a triaxial force dy-

namometer. The discretization of the time ti, i = 1, . . . ,m of the

measured forces Fmeas
j

can be set according to the discretization

of the simulated forces and, thus, the difference of both values

can be calculated. Fig. 2 exemplarily shows a comparison of

measured and simulated data. To calibrate the force parameters

of the simulation system to a certain set of measured forces, a

fitness value has to be defined. In this paper, this value is given

Fig. 2: Exemplary comparsion of measured and simulated data. The diversion

can be calculated directly or can be transformed to a individual fitness value.

The noise in the measured data results from slight vibrations of the force dy-

namometer.

by

r(P) =
∑m

i=1

∑
j=x,y,z

∣∣∣∣T j

(
Fmeas

j
(ti)
)
− T j

(
Fsim

j
(P; ti)

)∣∣∣∣ , (8)

where Ti is a normalization function to map the forces to

[0,1] in order to ensure that all three directions are represented

equally in the fitness value. The value r(P) therefore represents

the response value and the relationship of r(P) and the input

vector P will be approximated by the DACE model. This en-

ables to analyse and to discuss this relationship for the different

tool states in section 5.

3.3. Sequential design

Sequential designs of experiments can be used to enhance

classic designs of experiments. It ensures that the approxima-

tion of the surrogate model is sufficiently precise in interest-

ing regions of the input parameter space by adding additional

experiments in these regions. To accomplish this, new design

points, e.g. vectors of input parameter values, are found by op-

timizing a certain criterion. This so-called infill criterion [23] is

calculated by the model. It defines a tradeoff, between search-

ing for new design points in the parameter space in regions of

model uncertainty (exploration) or in regions where local op-

tima are presumed (exploitation). The new point is evaluated

and the observation pair is added to the data. Finally, the model

is adapted. This procedure continues until a termination crite-

rion, such as the target accuracy or the maximum number of

simulation runs, has been reached.
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4. Experiments

4.1. Experimental setup

In order to provoke high tool loads and therefore a high vari-

ety of different tool states in a short time, the powder metallur-

gic high speed steel 1.3344 (hardened to 62 HRC) was chosen

as workpiece material. The experimental investigations of a

slot milling process were conducted on a 5-axis machining cen-

tre (DMU50 eVolution) using a spherical cutter with two teeth

and a diameter of 12 mm. In the experiments, a spindle speed

of n = 5300 min−1 and a tooth feed of 0.2 mm were used. The

workpiece was machined with a depth of cut of ap = 0.5 mm

and a width of cut of ae = 0.5 mm. To measure the process

forces, the force dynamometer Kistler 9257B [24] was used.

4.2. Model-based calibration procedure

The choice of the design of experiments strongly depends on

the chosen model class. DACE models require a space filling

distribution of the input parameters. Therefore, a Latin Hyper-

cube Sampling (LHS) [25] was chosen. The input parameter

values were distributed in the 6-dimensional space depending

on their specified range of values. An advantage of LHS designs

is that the number of experiments can be chosen freely. Fur-

thermore, the experimental design can be expanded by further

experiments. The initial sample size was set to N = 600 sim-

ulation experiments. After the evaluation of the experiments,

the DACE models with the three different correlation functions

(Eqn. (3)-(5)) were fitted to the data and compared. To guar-

antee a sufficient goodness of fit, the comparison was based on

a 20-fold cross validation, i.e. the cross validated (also called

predicted) coefficient of determination R2
CV [26]. In this proce-

dure, the data was split into 20 parts. One part was separated

from the data and the model was build on the remaining data.

Subsequently, the removed data is predicted by the model and

compared to the true values. This was performed for each of

the 20 data parts. The optimum value is R2
CV = 1 (excellent

prediction quality). Lower values indicate decreasing predic-

tion quality. The constant prediction of the mean value over all

response values would result in a value of R2
CV = 0. In case

of systematically wrong predictions, even negative values are

possible. The correlation function with a maximum value for

R2
CV was used in the models for the sequential design of exper-

iments. The maximization of the expected improvement (EI)

[25] was chosen as infill criterion.

5. Results

The experiments were conducted according to the experi-

mental setup. A total number of 90 slots were milled until the

end of tool life was reached. First, significant differences in dif-

ferent process characteristics caused by the increased tool wear

were investigated. Subsequently, the quantity of these effect

was analyzed. For this purpose, three tool states at different

points of the tool life were considered (Fig. 3). The tool and

the resulting wear of the cutting edge is shown. The first tool

state represents an almost new tool. Tool state 2 corresponds to

an intermediate tool wear while tool state 3 shows deep wear

marks, since it is almost at the end of the tool life. The plots

Fig. 3: Visualization of the different tool states and the resulting forces in x-

direction.

on the right show the resulting forces in x-direction of the used

force dynamometer. It can clearly be seen that the peak force

values increase with tool wear during the process. The forces

in x-direction almost triple from tool state 1 to tool state 3.

5.1. Model validation

The measured forces were used to calibrate the force coef-

ficients of the simulation system independently for each tool

state. A low fitness value r(P) indicates a good simulation ap-

proximation for a given set of coefficients P (cf. Eqn. (6)).

To prove the application of the DACE models, they should be

able to approximate and predict the functional relationship of

P and the resulting fitness value accurately based on the con-

sidered 600 simulation experiments. Table 1 shows the R2
CV of

each model. It can be seen that all correlation functions show

an almost perfect prediction quality with a R2
CV close to 1. For

further analysis, the Matérn correlation function was selected

as it results in the best R2
CV for all tool states. In the sequen-

tial procedure, Nseq = 300 further simulation experiments were

conducted to improve the model quality in regions with a low

value for r(P).

5.2. Model-based comparsion of the tool states

Fig. 4 shows the response surface of the resulting DACE

models for tool state 1 after the sequential procedure. The plot

only shows areas for a fitness value r(P) < 100 to get a better

view of the regions of satisfactory results. The three force pa-

rameter pairs are depicted separately to compare their behavior.

In each plot, a ”valley” of solutions can be observed. These

results proof the multimodality of the fitting function. Fig. 5
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Table 1: Comparsion of the R2
CV value for the three considered correlation func-

tion for each tool state.

Tool state Gaussian Matérn Power-exp.

Tool state 1 0.9775 0.9864 0.9848

Tool state 2 0.9821 0.9896 0.9873

Tool state 3 0.9771 0.9853 0.9757

shows the results for all three tool states as contour plots. Re-

garding kc and mc, the response surface for tool states 2 clearly

tends to higher values for kc compared to tool state 1 (Fig. 5a).

Comparing the plots of tool state 2 and 3 for these two param-

eters, however, no clear difference can be observed. Therefore,

the influence of kc and mc might have a progressive form over

the different tool states. For kn and mn the progression is con-

tinuous over the three tool states (Fig. 5b). The observed valley

clearly tends to higher values for kn as well as for lower val-

ues for mn. Also for the parameters kt and mt a continuous

progression can be observed whereby kt is decreasing with in-

creasing tool wear (Fig. 5c). These results therefore indicate a

trend of the force parameter values over the three tool states,

which proves that the tool wear can implicitly be represented

by the force model parameters.

Fig. 4: Response surface of the DACE model for tool state 1 for a) kc and mc,

b) kn and mn, c) kt and mt .

Fig. 5: Contour plots for the fitting value modeled by the DACE model for the

three considered tool states for a) kc and mc, b) kn and mn, c) kt and mt .

5.3. Optimization ability of the model

The existence of the ”valleys” shows that single optima

found by optimization algorithms would not be sufficient to

compare the progression of the calibration parameters with in-

creasing tool wear. However, they can be used to validate the

optimization ability of the surrogate models for each tool state

separately by comparing the best results found by both meth-

ods. Therefore, a solution from the best region found by the

surrogate models is compared with the best solution found by

the BroydenFletcherGoldfarbShanno (BFGS) algorithm [27] as

an established optimization algorithm. The results are shown in

Table 2, where the best values found and the required simula-

tion runs are compared. It shows that the DACE models were

even able to find significant better results for tool state 1 and 3

than the BFGS algorithm. Regarding tool state 2, both meth-

ods found equally good fitness values. To show that these fit-

ness values indicate a sufficient fit, the measured and simulated

forces are compared for each tool state in Fig. 6.

Table 2: Comparsion of the best found fitness values by BFGS and the DACE

models and the required number of simulation evaluations.

Tool state BFGS DACE

Best r(P) Sim. runs Best r(P) Sim. runs

Tool state 1 90.46 897 61.35 900

Tool state 2 57.21 2015 57.17 900

Tool state 3 84.13 832 61.69 900

The results have therefore shown that the DACE model are

able to sufficiently approximate the global relationship and are

furthermore accurate in the regions of good solutions. The anal-

ysis of the response surface indicated that it can be possible to

express the obtained trend in a functional relationship in fu-

ture research work. With this information, the prediction of the

forces of the simulation can be adapted and, thus, the effects of

the tool wear can be taken into account within the simulation

system.

Fig. 6: Comparsion of the measured and simulated forces in x-, y- and z-

direction for a) tool state 1, b) tool state 2 and c) tool state 3.

6. Summary and Outlook

In this paper, the force model coefficients of a milling simu-

lation system were analyzed with respect to variations induced

by tool wear. To accomplish this, milling experiments were



88   Stefan Hess et al.  /  Procedia CIRP   55  ( 2016 )  83 – 88 

conducted in the powder metallurgic high speed steel 1.3344.

The resulting forces were measured and the differences in the

forces with increasing tool wear were shown. In addition, the

force model coefficients of the geometric physically-based sim-

ulation system were adjusted to the forces measured for each

tool state. To obtain information about the response surface

of the defined fitness value, empirical surrogate models were

fitted based on the simulation results. It could be shown that

more than one optimum coefficient value vector exist for each

tool state. For a deeper investigation of this observation, the

response surfaces in the vicinity of optimum solutions were

shown and the differences over the considered tool states were

analyzed. The results showed that the use of the established

optimization algorithm BFGS can only be recommended when

the simulation system has to be adapted to one specific data

set. However, if the results of several tool states have to be

compared and the variation in the parameter values has to be

considered, the entire force parameter space has to be analyzed

due to the valley of possible solutions. It could be shown that

the surrogate models, which are based on sequential designs of

experiments, are an excellent choice for this analysis. The in-

vestigations within this paper can serve as basis for further ap-

plications. The models can be used to interpolate the optimum

force coefficients between the tool states by setting up charac-

teristic values for the parameter regions with good solutions.

This allows to integrate tool wear into the simulation system.
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