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Motivation: data streams are everywhere
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transaction info patterns

Stock Market

Are there any patterns in  

transactions over past hour?

Battlefield

position info

Stock Analysts

Commander

Where are the main clusters formed by 

enemy warcraft?

patterns
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Motivation: pattern mining requests tend to be parameterized
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 Example 1: give me the stocks that dropped 

significantly in the most recent transactions.

 Example  2: give me the major clusters formed by 

enemy warcraft.

10%, 30% or 50%

to the original price 

with in last 

10,30, or 60 minutes.

size: n war-crafts

density: m war-crafts / mi
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Motivation: best parameters settings are hard to determine

I need info for any cluster 

sized 5 or higher

Clusters formed by 

fighter planes need to be 

updated every 5 seconds

I only care about the 

clusters that are formed by 

more than 20 warcraft

Clusters formed by boom 

carriers need to be updated 

every 10 seconds

Multiple analysts may raise multiple queries with different parameter settings.

Parameter settings?               

I probably know . But, can I 

try different combinations of 

them? 
?

A single analyst may raise multiple queries with different parameter settings .
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Problem: 

A lot of similar queries, yet with different 

parameter settings, how to answer them 

efficiently.



State of the Art
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 Efficient pattern mining strategies are designed for mining 

static data [Han09],[Marin03],[Hirji99].

 More recently, pattern mining algorithms are designed to 

mining streaming data; however mainly for executing single 

mining queries [Aggarwal 10][Han09] [Yu08] .

 Multiple query optimization is a core principle studied by 

database community [Arasu06] 

[Hammad04][Krishnamurthy03], while barely being applied 

for complex pattern mining yet [Yang09].



Research Goal
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 Shared execution of large numbers of pattern mining 

queries over data streams :

1. Focus on popular pattern mining algorithms, including 

clustering, outlier detection, and top-k requests.

2. Consider sliding window scenario, one of the most 

widely used query semantics for stream processing.



Definition of Density-Based Clustering
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Core Object: has no less than          neighbors 

in                distance from it.

Edge Object: not core object but a neighbor

of a core object.

Noise: not core object and not  a neighbor of

any core object.

θ
range

θ cnt

A Density-Based Cluster (DB-Cluster) is a maximum group of connected      

core objects and the edge objects attached to them

 Why: popular and well known, arbitrary shapes, allow unclassified 

mining, handles noise,  deterministic process, customizable  by 

parameter settings

 Density-Based Clustering [Ester96] [Cao06] [Chen07].



Definition of Distance-Based Outlier Detection
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Definition of Top-k  Requests
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Pattern Mining in Sliding Windows Over 

Streams

54321 6 7 8

W1

54321 6 7 8

W2
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Applications include: 
• monitoring congestion (cluster) in traffic

• looking for intensive transaction areas (cluster) in stock trades  

• identifying malicious attacks (cluster) in network



Problem Definition (clustering as example)

 Input: a query group QG with multiple density-based 
clustering queries querying on the same input stream but 
with arbitrary parameter settings.

 Goal: to minimize both the average processing time and the 
peak memory space needed by the system to process the 
full workload.11

Template Density-Based Clustering Query Over Sliding Windows

Pattern-specific 

Window-specific 



General Optimization Principles
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1. View Prediction Principle

- for incremental pattern maintenance across windows

2. Integrated Pattern Capture Principle 

- for shared pattern storage and maintenance across multiple 

queries with varying pattern parameter settings.

3. Meta-Query Principle

- for shared pattern storage and maintenance across multiple 

queries with varying window parameters.



View Prediction Technique
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 Why?

1. From-scratch  computation at each window is too expensive 

1. thus incremental pattern maintenance method is critical

2. Object expiration usually causes complex pattern structure 

changes 

1. thus makes incremental computation computationally expensive 

 How?

1. Analyze the life span of objects and relationship to future 

windows

2. Determine their contribution to patterns being monitored.

3. Prehandle the impact of objects’ expiration upon their 

arrival



Concept of Predicted Views
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Predicted View of W3
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W0

W1
W2

W3
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Based on Di Yang, et al., VLDB’2009



Update Predicted Views

Current View of W1 Predicted View of W2
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Predicted View of W4
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New Data Points
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View Prediction for Top-k Requests
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Why ?

Insertion:

* cheap.

Deletion:

* expensive

* may need to

examine 

full window.

ADD

DELETE

ADD



View Prediction for Top-k Requests
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View Prediction for Top-k Request
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Major “Side”  Bonus:

State-of-the-art :  

[Mouratidis:SIGMOD06] requires 

to store the whole window, 

Now [Yang:EDBT’2011]: 

We succeed to only have to 

store small object set ever: 

{o1, o6,o7,o14,o15, o16}

Proof: 

1. Necessity & sufficiency of set

2.  Optimality of solution

[Mouratidis06]: Continuous monitoring of top-k queries over sliding windows SIGMOD 2006

[Yang et al.2011]: Optimal Solution for TopK Monitoring EDBT 2011

http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod2006.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod2006.html


Predicted Top-k Maintenance
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 Independent Window Maintenance (PreTopk)

TimeW0 W1



Conclusion for View Prediction Principle
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 Key Idea

- pre-prepare pattern detection results for future windows

 Benefits:

- eliminate the need to deal with (expensive) object expiration.

- realize efficient incremental pattern maintenance (save 
resources)

 When can be applied:
- when object expiration constitutes  key bottleneck for incremental 

pattern maintenance 
- has been found to be the case for clustering, outlier detection and 

top-k queries
- other data mining algorithms likely also applicable : “low-hanging” 

fruit …  



General Optimization Principles
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1. View Prediction Principle

- for incremental pattern maintenance across windows

2. Integrated Pattern Capture Principle 

- for shared pattern storage and maintenance across multiple 

queries with varying pattern parameter settings.

3. Meta-Query Principle

- for shared pattern storage and maintenance across multiple 

queries with varying window parameters.



From Independent to Integrated Pattern Capture
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 Why?
1. Independent Pattern Representation  for each query prevents 

us from sharing storage space 

2. Plus, independent computation for pattern queries and thus 
prevents us from sharing maintenance costs

3. Solution will not scalable for large number of queries

 How?
1. Analyze interrelationships between  patterns detected by  

queries with different parameters.

2. Incrementally represent related patterns  in a single structure.

3. Devise maintenance algorithms that conduct mining for 
related patterns in one shot



Towards an Integrated Representation for 

Clusters 
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 Any relationship between the cluster sets identified by them?



“Growth Property” among Cluster Sets

24 Independent Cluster Structure Storage Hierarchical Cluster Structure Storage

Grow

If each cluster Ci in Clu_Set1 is “contained” by  one cluster in Clu_Set2, Clu_Set2 is a “Growth” of Clu_Set1 . 

c6c5c4 c6c5c4



Benefits of Hierarchical Cluster 

Structure
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 Benefits for Memory Resources: 

Memory space needed by storing cluster sets identified by 

multiple queries in QG is independent from |QG|.

 Benefits for Computational Resources: 

Multiple cluster sets stored in the hierarchical cluster structure 

(which are usually similar) can be maintained incrementally in 

one shot, rather than independently.  



Arbitrary Pattern-Specific Parameter Case

-- arbitrary , fixed 
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θ
range

θ
cnt

θ
cnt

θ
range

 Growth property transitively holds among the cluster sets 

identified by multiple queries with arbitrary            and 

same        .



Arbitrary Pattern-Specific Parameter Case

-- arbitrary , fixed 
 Idea:  Growth property transitively holds.  

 Solution:  A single integrated representation of multiple cluster 

sets:

θ
range

θ
cnt
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 Growth property holds ,if                   ≥                 and              

≤                .

 That is, if query Qi is more “relaxed” (bigger) than Qj, then 

Qi’s clusters are a growth of Qj’s clusters

 Propose :  A single tree structure organizing  for all queries 

based on this “growth” relationship.

General Case for  Pattern Parameters 

-- arbitrary , arbitrary θ
cnt

θ
range

θ
range

Qi. θ
range

Qj. θ
cntQi. θ

cntQj.
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 Growth property holds ,if                   ≥                 and              

≤                
θ

range

Qi. θ
range

Qj. θ
cnt

Qi. θ
cnt

Qj.

Cluster set by Q3

Cluster set by Q5

Cluster set by Q2Cluster set by Q1

Cluster set by Q4

grow

growgrow

grow

General Case for  Pattern Parameters 



Integrated Representation for Top-k Queries 

Top-3 results for windows W0, W1 

and W2

Current and predicted views Wo, W1 

and W2 windows at time t=12 

seconds

W0

W1

W2

Query Group -

Q1: .. [WIN = 12s SLIDE=4s K=1]

Q2: .. [WIN =12s SLIDE=4s K=2]

Q3: .. [WIN =12s SLIDE=4s K=3] 

Q1 results at t=12s 

Q2 results at t=12s 

Q3 results at t=12s 

Avani S., Di Yang, et al, in progress.



Conclusion for Integrated Pattern 

Representation
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 Benefits:

1. Save memory space compared to independent pattern 

storage.

2. Share computation for pattern detection maintenance.

 When can be applied?

1. Queries are querying on the same portion of the stream (as 

common in window-based stream processing)

2. The concept of “strictness” exists among queries (again 

common for queries with different parameter settings).



General Optimization Principles
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1. View Prediction Principle

- for incremental pattern maintenance across windows

2. Integrated Pattern Capture Principle 

- for shared pattern storage and maintenance across multiple 

queries with varying pattern parameter settings.

3. Meta-Query Principle

- for shared pattern storage and maintenance across multiple 

queries with varying window parameters.



Meta Query Strategy
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 Why?

1. Predicted views (windows) maintained by multiple queries 

may overlap.

2. The integrated pattern  storage and maintenance has to be 

applied to these predicted views of different queries.

 How?

1. Analyze the predicted views of queries with different window

parameter settings.

2. Share maintenance process for overlapped predicted views 

driven by a scheduling process



Cluster Detection : Varying Window 

Parameters 

-- arbitrary win, fixed slide
 Claim: maintaining  a single query will be sufficient to answer all 

queries.

 Key : The predicted views for Qi with largest win cover all needs.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
W0

W1

W3

Q1.win=16, slide=4

Q2.win=12, slide=4W0

W2

Shared Shared Shared

Time

Answer for Q1 at T=16 Answer for Q2 at T=16

W0 Q3.win=8 ,  slide=4

W0 Q4.win=4 ,  slide=4

Answer for Q3 at T=16 Answer for Q4 at T=16



Cluster Detection: Vary Window Parameters

-- arbitrary slide, arbitrary win

 Use a single meta query with largest window size and 

adaptive slide size to represent queries. 
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Grow



Query Group -

Q1: .. [WIN = 8s SLIDE=2s K=1]

Q2: .. [WIN =8s SLIDE=3s K=3]

Q3: .. [WIN =8s SLIDE=6s K=2] 

W3

W1

W1

W0

W1

W2

W2

W0

W0

Need to maintain 9 predicted view windows for answering each of the queries 

Q1 - 4 predicted views to output every 2s

Q2 - 3 predicted views to output every 3s

Q3 - 2 predicted views to output every 6s

Naïve method – execute queries one by one

Meta-Query Strategy for Top-k Queries



Meta-Query Strategy for  Top-k Queries
 Meta query strategy - Slide size is NOT fixed but adaptive during execution

Significant saving in number of views- maintains only 5 (instead of 9) predicted 

views for all 3 queries in the workload

Query Group -

Q1: .. [WIN = 8s SLIDE=2s K=1]

Q2: .. [WIN =8s SLIDE=3s K=3]

Q3: .. [WIN =8s SLIDE=6s K=2] 

Q meta: … [ WIN=8s,SLIDE = ADAPTIVE, K = ADAPTIVE ] =

W0

W1

W2

W3

W4

Q1 needs output at 8, 10, 12, 14

Q2 needs output at  8, 11, 14,

Q3 needs output at 8, 14

t= 8s - SLIDE  = 2 

t=10s - SLIDE = 1

t=11s – SLIDE = 1

t=12s – SLIDE = 2

Multiple Queries share windows:
W0- serves Q1,Q2, and Q3, 

k=max(Q1,Q2,Q3 ) is saved

W1- serves Q1, k= 1 is saved

W2- serves Q2, K=2 is saved

W3 - serves Q2 and Q3, k=max(Q2,Q3 )

W4 - serves Q1,Q2, and Q3 



Conclusion for Meta-Query Strategy
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 Benefits:

1. Identify and share overlapped predicted views across 

multiple queries.

2. Maximize the opportunities  for Integrated Pattern 

Representation.

 When can be applied:

1. Whenever overlapped predicted views exist (little to no 

overhead even if no overlapped predicted view exist).



Put it all together

-- arbitrary all four parameters (clustering)

 Our proposed  techniques

 for arbitrary pattern parameter cases (intra-window-optimization) 

 for arbitrary window parameter cases (inter-window-optimization)

are orthogonal to each other.

 Final integrated structure                 for QG.

40

IntView



Relationship among optimization principles
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Integrated 

Pattern  

Representation

Meta-Query 

Strategy

View Prediction

Multiple Pattern Optimization

Single Pattern Optimization

Orthogonal



Experimental Study for Clustering
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 Alternative Methods:
1. Incremental DBSCAN [Ester98] 

2. Incremental DBSCAN with rqs (range query search sharing)

3. Extra-N [Yang09] 

4. Extra-N with rqs (range query search sharing)

5. Chandi [ VLDB’2009 with all 3 principles applied ] 

 Real Streaming Data:

1. GMTI data recording information about moving vehicles  
[Mitre08].

2. STT data recording stock transactions from NYSE 
[INETATS08].

 Measurements:
1. Average processing time for each tuple.  

2. Memory footprint to measure peak memory utilization.



Cluster Performance Evaluation for Varying 

Parameters
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CPU for Arbitrary Pattern 

Parameter Case

Memory for Arbitrary Pattern 

Parameter Case

Count parameter  vary in 2-20   and    range parameter vary in [0.01 – 0.1] 



Cluster Performance Evaluation  for Queries 

with Varying Window Parameters
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CPU in Arbitrary Window 

Parameter Case
Memory in Arbitrary Window 

Parameter Case

Window parameter in [1000,5000]    and  slide parameter  in  [500:5000]



Evaluation for Performance
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Arbitrary All Four Parameter Cases



Experimental Study for TopK Requests
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 Alternative Methods:

1. MinTopk [Yang11]  (optimal for single queries; uses prediction)

2. M-Topk-IndeView (Independent window maintenance)

3. M-Topk-IntView (Integrated window maintenance)

 Real Streaming Data:

1. GMTI data recording information about moving vehicles  

[Mitre08].

2. STT data recording stock transactions from NYSE 

[INETATS08].

 Measurements:

1. Average processing time for each tuple.  

2. Memory footprint to capture peak utilization.



Some Experimental Findings for top-k 

Queries
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Conclusions

1. Proposed three general principles for 

optimizing multi-pattern workloads.

2. Applied proposed principles to several popular 

parameterized pattern mining types (case 

studies)

3. Analytically and experimentally demonstrated 

the superiority of our methods to art-of-the-art 

solutions.
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Future Work

1. Apply proposed principles to more pattern 

types.

2. Study other (multi-query) optimization 

principles.

3. Support interactive pattern mining with 

visualization.

4. Work collaboratively with domain experts to 

apply technologies. 

5. Explore Extraction and Compaction of 

Significant Patterns into a Nugget Store

6. Support Real-time Matching of Similar 



The  End

Thanks
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