Optimization Strategies for Processing Multiple

Pattern Mining Requests Over Streaming Data

Elke A. Rundensteiner
Computer Science Dept., Worcester Polytechnic Institute
rundenst@cs.wpi.edu

In collaboration with Di Yang, Avani Shastri, Matt Ward, and others
from the XMDV research group
April 2011

K This work is supported under NSF grants CCF-0811510, I1S-0119276, I11S-0414380.



mailto:rundenst@cs.wpi.edu

4 I
Motivation: data streams are everywhere

Are there any patterns in
transactions over past hour?

We transaction info patterns
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Where are the main clusters formed by
enemy warcraft?

position info patterns
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Motivation: pattern mining requests tend to be parameterized

e Example 1: give me the stocks that dropped
significz%ntly INn the most recent transactiofns.

with in last 10%, 30% or 50%

10,30, or 60 minutes. to the original price

e Example 2: give me the major clusters formed by
enemy warcratft. T

size: n war-crafts

density: m war-crafts / m
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Motivation: best parameters settings are hard to determine

Clusters formed by boom
carriers need to be updated
every 10 seconds

Clusters formed by
fighter planes need to be
updated every 5 seconds
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| need info for any cluster
sized 5 or higher

T P s § different
parame S "I LSeeEs \ver them
Multiple analysts may raise r@J{p€ kYL

ith different parameter settings.

Parameter settings?
| probably know . But, can |
try different combinations of
them?

@ A single analyst may raise multiple queries with different parameter settings .
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State of the Art

o Efficient pattern mining strategies are designed for mining
static data [Han09],[Marin03],[Hirji99].

e More recently, pattern mining algorithms are designed to
mining streaming data; however mainly for executing single
mining queries [Aggarwal 10][Han09] [YuO08] .

e Multiple query optimization is a core principle studied by
database community [Arasu06]
[HammadO04][Krishnamurthy03], while barely being applied
for complex pattern mining yet [Yang09].




Research Goal

e Shared execution of large numbers of pattern mining
gueries over data streams :

1. Focus on popular pattern mining algorithms, including
clustering, outlier detection, and top-k requests.

2. Consider sliding window scenario, one of the most
widely used guery semantics for stream processing.
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Definition of Density-Based Clustering
» Density-Based Clustering [Ester96] [Cao06] (nput parameters: @™, ™)

‘ Core Object: has no less than@ "' neighbors
in e rang

Q not core object but a neighbor

e ) .
distance from it.

of acore object.

Q Noise: not core object and not a neighbor of

any core object.

A Density-Based Cluster (DB-Cluster) is a maximum group of connected
core objects and the attached to them

e Why: popular and well known, arbitrary shapes, allow unclassified
mining, handles noise, deterministic process, customizable by

parameter settings
@

/




Definition of Distance-Based Outlier Detection

¢ Distance-based Qutliers [Knorr98] (input parameters: §""* @ ™)

@ Outlier: has no more than N* efm neighbors, Outfer
with N the number of data points in the data set. | ®




Definition of Top-k Requests

* Givena datasetD and a preference function F( ), return k

objectsin D with highest preference function score.

RANKINGS
Rank F'::::;{us Brand Country of Origin Sector Brand Value ($m)
Example Query:
1 1 ety United States Beverages 70,452 Find Top-3 Brands for Year 2010
2 2 T =S5 United States Business Services 64,727
D= all major companies in the world
3 3 Microsoit United States Computer Software 60,895 F= CGIIIPEI.II‘I.-"S brand value in 2010
k=3
4 7 Goog[e‘ United States Internet Services 43,557
5 4 @ United States Diversified 42 808
L]
6 6 -{‘{) United States Restaurants 33,578




Streams

Applications include:
« monitoring congestion (cluster) in traffic

 looking for intensive transaction areas (cluster) in stock trades
@ * identifying malicious attacks (cluster) in network




Problem Definition (clustering as example)

e Input: a query group QG with multiple density-based
clustering queries querying on the same input stream but
with arbitrarv parameter settinas.

QQi: DETECT Density-Based Clusters FROM stream

USING 07°™9¢ = r and 0°™" = ¢ pattern-specific
IN Windows WITH win = w and slide = s Window-specific

Template Density-Based Clustering Query Over Sliding Windows

e Goal: to minimize both the average processing time and the
peak memory space needed by the system to process the
full workload.




General Optimization Principles

1. View Prediction Principle
- for incremental pattern maintenance across windows

2. Integrated Pattern Capture Principle

- for shared pattern storage and maintenance across multiple
gueries with varying pattern parameter settings.

3. Meta-Query Principle

- for shared pattern storage and maintenance across multiple
gueries with  varying window parameters.
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View Prediction Technique

e Why?

1. From-scratch computation at each window is too expensive
thus incremental pattern maintenance method is critical

2. Object expiration usually causes complex pattern structure
changes

thus makes incremental computation computationally expensive

e How?

1. Analyze the life span of objects and relationship to future
windows

Determine their contribution to patterns being monitored.
3. Prehandle the impact of objects’ expiration upon their




Concept of Predicted Views
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Current View of Wo

WO

Predicted View of W1 Predicted View of W2

window size=16, slide size=4, time=1
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W1

w2 |

Predicted View of W3

w3 |

Qased on Di Yang, et al., VLDB’2009
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View Prediction for Top-k Requests

Why ?

Insertion:
Deletion:

ADD @
* cheap. /
* expensive

examine *
@ Y

*may need t
full window




View Prediction for Top-k Requests
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View Prediction for Top-k Reqguest

1 F(o) Current Top-3 Objects in WO
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F(D} Predicted Top-3 Objects in W1
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!':3 Time

Predicted View of W2

Predicted View of W3

Major “Side” Bonus:

State-of-the-art :
[Mouratidis:SIGMODO06] requires
to store the whole window,

Now [Yang:EDBT’2011]:
We succeed to only have to
store small object set ever:
{01, 06,07,014,015, 016}

Proof:
1. Necessity & sufficiency of set
2. Optimality of solution

[Mouratidis06]: Continuous monitoring of top-k queries over sliding windows SIGMOD 2006
[Yang et al.2011]: Optimal Solution for TopK Monitoring EDBT 2011



http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod2006.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod2006.html

Predicted Top-k Maintenance

* Independent Window Maintenance (PreTopk)
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Conclusion for View Prediction Principle

 Key ldea
- pre-prepare pattern detection results for future windows

e Benefits:
- eliminate the need to deal with (expensive) object expiration.

- realize efficient incremental pattern maintenance (save
resources)

e When can be applied:

when object expiration constitutes key bottleneck for incremental
pattern maintenance

has been found to be the case for clustering, outlier detection and
top-k queries
other data mining algorithms likely also applicable : “low-hanging”

fruit ... %




General Optimization Principles

1. View Prediction Principle
- for incremental pattern maintenance across windows

2. Integrated Pattern Capture Principle

- for shared pattern storage and maintenance across multiple
gueries with varying pattern parameter settings.

3. Meta-Query Principle

- for shared pattern storage and maintenance across multiple
gueries with  varying window parameters.

(-




From Independent to Integrated Pattern Capture

e Why?
1. Independent Pattern Representation for each query prevents
us from sharing storage space

2. Plus, independent computation for pattern queries and thus
prevents us from sharing maintenance costs

3. Solution will not scalable for large number of queries
e How?
1. Analyze interrelationships between patterns detected by
gueries with different parameters.
2. Incrementally represent related patterns in a single structure.

3. Devise maintenance algorithms that conduct mining for
related patterns in one shot




~Towards an Integrated Representation Tor
Clusters

e Any relationship between the cluster sets identified by them?

o a3
® e
®e %as

Original Data Set
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“Growth Property” among Cluster Sets

0 000 Clu_Set1

©

L

- ||‘“
A
’ |I'-\\

5. SEEEE N EmEEsE 8.
Cluster Memb-ershlp Storage of Cluster Set 1

of Clusfer Set
(c1> @2 6::3)

H : Shared Data Point ™ : Shared Data Point 'f_C_:_i..:':Cluster Membership B : Shared Data Point W : Shared Data Point (QI) :Cluster Membership

. e

@ Independent Cluster Structure Storage Hierarchical Cluster Structure Storage
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g Benefits of Hierarchical Cluster
Structure

» Benefits for Memory Resources:

Memory space needed by storing cluster sets identified by
multiple queries in QG is independent from |QG.

» Benefits for Computational Resources:
Multiple cluster sets stored in the hierarchical cluster structure
(which are usually similar) can be maintained incrementally in
one shot, rather than independently.
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Arbitrary Pattern-Specific Parameter Case
-- arbitrary 8™ , fixed™"

e Growth property transitively holds among the cluster sets
identified by multiple queri@$ ' with arbitrd@¥/*° and
same

clusters Identlfled by Q1

clusters Identified by Q2 clusters Identlfled by Q3
range _ g o g cnt - o e range _ g o 6’ = D
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Arbitrary Pattern-Specific Parameter Case
-- arbitrary 8™ , fixed™"

e ldea: Growth property transitively holds.
e Solution: A single integrated representation of multiple cluster

clusters Identlfled by Q3
g =02 g°“"=2

RLsH @

clusters Identifi ed by Q2
g rarnge o.= 6 =

clusters Identlfled by Q1
Q""" =02 @g°

™~




General Case for Pattern Parameters
-- arbitrary 8" | arbitrary8™

<

» Growth property holdsQi. ™ Qj.#™"  Qi.&fid QJ.0™

e That s, if query Qi is more “relaxed” (bigger) than Qj, then
Qi’s clusters are a growth of Qj’s clusters

e Propose : Asingle tree structure organizing for all queries
based on this “growth” relationship.




General Case for Pattern Parameters

» Growth property holds ¢ifi. " Qj.®™* Qj.eénd Qj.6

<
&? o ; Cluster set by Q1 Cluster set by Q2
/A N \ grow
Q1 / Q2
| % e Cluster set by Q5
4
= \\/{/j S| clustersetby Q4
grow
3 1\
e Cluster set by Q3
Q1@ T =0.5., & 7" =5) Q2@ T =04, g7 =4)
Qa7 =7 =0.3, G =7) QS 7T =04 . g7 =28)
Q3@ T =0.2, 7T = 10)




Integrated Representation for Top-k Queries

Query Group -

Q1: .. [WIN = 12s SLIDE=4s K=1]
Q2: .. [WIN =12s SLIDE=4s K=2]
Q3: .. [WIN =12s SLIDE=4s K=3]

e e e e e e e e e e | .t s o s s o o o o

Preds cted
wiena of W

i lew of W2 L8 X 10)
Q1 results at t=12s 2@ @ vemertE - =d
Current and predicted views Wo, W1
Q2 results at t=12s @ and W2 windows at time t=12
seconds
Q3 results at t=12s ®

Current Predictad Predicted
op-3 in WO top-3 in VW1 rop-3 in W2

W1

W2

Top-3 results for windows WO, W1
and W2

\ Avani S., Di Yang, et al, in progress.




~ Conclusion for Integrated Pattern
Representation

e Benefits:

1. Save memory space compared to independent pattern
storage.

2. Share computation for pattern detection maintenance.

 When can be applied?

1. Queries are querying on the same portion of the stream (as
common in window-based stream processing)

2. The concept of “strictness” exists among queries (again
common for queries with different parameter settings).




General Optimization Principles

1. View Prediction Principle
- for incremental pattern maintenance across windows

2. Integrated Pattern Capture Principle

- for shared pattern storage and maintenance across multiple
gueries with varying pattern parameter settings.

3. Meta-Query Principle

- for shared pattern storage and maintenance across multiple
gueries with  varying window parameters.

{




Meta Query Strategy

e Why?
1. Predicted views (windows) maintained by multiple queries
may overlap.

2. The integrated pattern storage and maintenance has to be
applied to these predicted views of different queries.

e How?
1. Analyze the predicted views of queries with different window
parameter settings.

2. Share maintenance process for overlapped predicted views
driven by a scheduling process




o —_— 0 ™~
Parameters
-- arbitrary win, fixed slide
e Claim: maintaining a single query will be sufficient to answer all
gueries.
e Key : The predicted views for Qi with largest win cover all needs.
Answer for Q1 at T=16 Answer for Q2 at T=16 Answer for Q3 at T=1 Answer for Q4 at T=16
Qg R R
O T ®az A0 Paz 40 Paz
~. g %@ g'S_:hg_%cj | QSh'grS_lg_’éﬁ Shared -
predicted view of WO predicted view of W1 predicted view of W2 predicted view of W3
wo PO@0OOO®DOOVOPB®VB® QLwin=16, slide=4
A | |
W2 W3 |
. . > Time
Wo 1 Q2.win=12, slide=4

@ WO | Q3.win=8, slide=4
A, WO | Q4.win=4, slide=4 -
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Cluster Detection: Vary Window Parameters
-- arbitrary slide, arbitrary win

e Use a single meta query with largest window size and
adaptive slide size to represent queries.

Q7

Q>

Q3

Qmefa

™~
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Meta-Query Strategy for Top-k Queries

Naive method — execute queries one by one

Query Group -

Q1: .. [WIN = 8s SLIDE=2s K=1]
Q2: .. [WIN =8s SLIDE=3s K=3]
Q3: .. [WIN =8s SLIDE=6s K=2]

Q1 - 4 predicted views to output every 2s

Q2 - 3 predicted views to output every 3s

00
129 1 2 3 _11_5 .6
WO @@.@@ 6 Q3 - 2 predicted views to output every 6s
wi  [5(8)

Need to maintain 9 predicted view windows for answering each of the queries

- /




: Meta-Query Strategy for Top-k Queries

Meta query strategy - Slide size is NOT fixed but adaptive during execution

Query Group -

Q1: .. [WIN = 8s SLIDE=2s K=1] — Q meta: ... [ WIN=8s,SLIDE = ADAPTIVE, K = ADAPTIVE ]
Q2: .. [WIN =8s SLIDE=3s K=3] —

Q3: .. [WIN =8s SLIDE=6s K=2]

Q1 needs output at 8, 10, 12, 14 tf 8s - SLIDE - 2
Q2 needs output at 8, 11, 14, — [F10s-SLIDE=I
Q3 needs output at 8, 14 t=11s - SLIDE =1

t=12s - SLIDE =2

Multiple Queries share windows:

W1 2@@4@@@ WO- serves Q1,Q2, and Q3,

k=max(Q1,Q2,Q3) is saved
W1- serves Q1, k=1is saved
W2 E)@@@ W2- serves Q2, K=2 is saved
vz ' W3 - serves Q2 and Q3, k=max(Q2,Q3)
W4 - serves Q1,Q2, and Q3

Significant saving in number of views- maintains only 5 (instead of 9) predicted
views for all 3 queries in the workload

-




Conclusion for Meta-Query Strategy

o Benefits:

1. ldentify and share overlapped predicted views across
multiple queries.

2. Maximize the opportunities for Integrated Pattern
Representation.

 When can be applied:

1. Whenever overlapped predicted views exist (little to no
overhead even if no overlapped predicted view exist).




Put it all together
-- arbitrary all four parameters (clustering)

e Our proposed technigues
e for arbitrary pattern parameter cases (intra-window-optimization)
e for arbitrary window parameter cases (inter-window-optimization)
are orthogonal to each other.

e Final integrated structun®iew for QG.
Q7. Q3 " R DR3 DT D3 y Rz ' QT
W\ a AYAVC AYAY e AYAY A WVo
j‘ —\r :jJ: iE.‘l- o] 1 ]
— AT N LA 7] =B N~
I <=2\ \/ [=>3
&=
= S W __
=¥ 27 Q7 =¥ Q7
Int\vView VW
10 s ' & ' a ' > ' o




Relationship among optimization principles

Integrated
Pattern
Representation

Meta-Query
Strategy

View Prediction




Experimental Study for Clustering

e Alternative Methods:
1. Incremental DBSCAN [Ester98]
2. Incremental DBSCAN with rgs (range query search sharing)
3. Extra-N [Yang09]
4. Extra-N with rgs (range query search sharing)
5. Chandi [ VLDB'2009 with all 3 principles applied ]
e Real Streaming Data:

1. GMTI data recording information about moving vehicles
[MitreQ8].

2. STT data recording stock transactions from NYSE
[INETATSO08].

 Measurements:
1. Average processing time for each tuple.
@ 2. Memory footprint to measure peak memory utilization.




~Cluster Performance Evaluation 1or varying

Parameters

GO0 _—o— IncDBSCAN

—— IncDBSCAN with rsq
500 —&— Extra-N

= ——=— Extra-N with rqs

| —— Chandi

2Q 10Q 15Q 200Q

CPU for Arbitrary Pattern
Parameter Case

Count parameter varyin 2-20 and

—4— IncDBSCATNN

_ —l— IncDBSCAN with 13
70000 = Extra-N

60000 < Extra-IN with rqgs
50000 ——=— Chandi
40000
30000

20000
10000 F 9; =

O

0000

Memory Footprint (K)

SQ 100 15Q 200Q

Memory for Arbitrary Pattern
Parameter Case

range parameter vary in [0.01 — 0.1]
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Cluster Performance Evaluation for Queries
with Varying Window Parameters

70
60
S0
40

CPU Time (ms)

10 -

30
20

—— IncDBSCAN
—— IncDBSCAN with r=q
—&— Extra-N
—<— Extra-N with rqs
| —¢— Chanda

2K

I
i

5Q 10Q) 15Q) 200
CPU in Arbitrary Window
Parameter Case

Window parameter in [1000,5000]

30000 € IncDBSCAN

—— IncDBSCAN with rsq
i Extra-IN
60000 r e Extra-N with rqs
50000 —#— Chandi

Memory Footprint (K)
S
S
o

20000
10000 | bi

sQ 10Q 15Q 20Q
Memory in Arbitrary Window

Parameter Case

and slide parameter in [500:5000]
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Evaluation for Performance

Arbitrary All Four Parameter Cases

~0 [ range query search Bl cluster mamtenance
[ 70
60 | Cl1l: 200Q Cases 6o L C2: 400Q Cases
- . A
£°50 | Z 50 Ao
g40 - ‘g 40 |
= 30 = 30 r A3
) =
© 20 < 20 Ad
. I s 0 i -
O - — o - [
70 C3: 600Q Cases L00% C4:
60 .
— = gzﬁ 80% .
Bg-0r A3 = |
L 40 | = 60% - 1
.= [ ]
B~ = ||
— 30 Ad E 40% 60y
S 20 | o 40Q Cases
10 A5 0% 200 Cases
o L L 0% Cases

AS: Extra-N Ad: Extra-N with ras AS: Chandi

@ A1l: IncDBSCAN A2: IncDBSCAN with rgs
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Experimental Study for TopK Requests

e Alternative Methods:
1. MinTopk [Yangll] (optimal for single queries; uses prediction)
2. M-Topk-IndeView (Independent window maintenance)
3. M-Topk-IntView (Integrated window maintenance)

e Real Streaming Data:
1. GMTI data recording information about moving vehicles
[MitreQ8].
2. STT data recording stock transactions from NYSE
[INETATSO08].
e Measurements:
1. Average processing time for each tuple.
2. Memory footprint to capture peak utilization.
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CPU time /tuple (ms) on Logarithmic scale

Some Experimental Findings for top-k

Queries

100000 +
100000 -
10000 i'd
10000 +
1 o
1000 1000 ® SiMinTopk/
= Pindiggguery m M7 M-Topk-Inde View
100 1 w0 1 " m vt M-Topk-IntView
10 - 10 A
1 . . , 1
10 100 1000 10 100 1000
Number of queries
CASE 1- Fixed WIN &SLIDE, Arbitrary K CASE 2 - Fixed WIN, Arbitrary SLIDE& K




Conclusions

1. Proposed three general principles for
optimizing multi-pattern workloads.

2. Applied proposed principles to several popular
parameterized pattern mining types (case
studies)

3. Analytically and experimentally demonstrated
O the superiority of our methods to art-of-the-art
\
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Future Work

1. Apply proposed principles to more pattern

types.

2. Study other (multi-query) optimization
principles.

3. Support interactive pattern mining with
visualization.

4. Work collaboratively with domain experts to
apply technologies.

Explore Extraction and Compaction of
Significant Patterns into a Nugget Store




The End
Thanks




